Deciphering the Anti-Listerial Activity and Phytochemical Composition of Licorice Root Extract Using LC-MS/MS in Combination with In Vitro and Computational Evaluations
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals, Bacterial Strains and Extract
2.2. Determination of Antimicrobial Activity by Broth Microdilution Method
2.3. Determination of Bactericidal Activity
2.4. Identification and Quantification of Individual Phytochemicals in LRE
2.5. In Silico Screening of the Antimicrobial Potency of LRE
3. Results & Discussion
3.1. Evaluation of the Anti-Listerial Potency of LRE
3.2. Elucidation of the Phytochemical Composition of LRE
3.3. In Silico Evaluation of the Antibacterial Potency of LRE Phytoconstituents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farber, J.M.; Zwietering, M.; Wiedmann, M.; Schaffner, D.; Hedberg, C.W.; Harrison, M.A.; Hartnett, E.; Chapman, B.; Donnelly, C.W.; Goodburn, K.E.; et al. Alternative Approaches to the Risk Management of Listeria monocytogenes in Low Risk Foods. Food Control 2021, 123, 107601. [Google Scholar] [CrossRef]
- Lennox, J.A.; Patience, E.O.; Godwin, J.E.; Effiom, E.E. Prevalence of Listeria monocytogenes in Fresh and Raw Fish, Chicken and Beef. J. Adv. Microbiol. 2017, 3, 1–7. [Google Scholar]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A Review of Listeria onocytogenes: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Schoder, D.; Guldimann, C.; Märtlbauer, E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022, 11, 3472. [Google Scholar] [CrossRef] [PubMed]
- Farid, N.; Waheed, A.; Motwani, S. Synthetic and Natural Antimicrobials as a Control against Food Borne Pathogens: A Review. Heliyon 2023, 9, e17021. [Google Scholar] [CrossRef]
- Ricci, A.; Lazzi, C.; Bernini, V. Natural Antimicrobials: A Reservoir to Contrast Listeria monocytogenes. Microorganisms 2023, 11, 2568. [Google Scholar] [CrossRef]
- Zamuz, S.; Munekata, P.E.S.; Dzuvor, C.K.O.; Zhang, W.; Sant’Ana, A.S.; Lorenzo, J.M. The Role of Phenolic Compounds against Listeria monocytogenes in Food. A Review. Trends Food Sci. Technol. 2021, 110, 385–392. [Google Scholar] [CrossRef]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza glabra): A Phytochemical and Pharmacological Review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Chemopreventive Effects of Licorice and Its Components. Curr. Pharmacol. Rep. 2015, 1, 60–71. [Google Scholar] [CrossRef]
- Karkanis, A.; Martins, N.; Petropoulos, S.A.; Ferreira, I.C.F.R. Phytochemical Composition, Health Effects, and Crop Management of Liquorice (Glycyrrhiza glabra L.): A Medicinal Plant. Food Rev. Int. 2018, 34, 182–203. [Google Scholar] [CrossRef]
- Noreen, S.; Mubarik, F.; Farooq, F.; Khan, M.; Khan, A.U.; Pane, Y.S. Medicinal Uses of Licorice (Glycyrrhiza glabra L.): A Comprehensive Review. Open Access Maced. J. Med. Sci. 2021, 9, 668–675. [Google Scholar]
- Husain, I.; Bala, K.; Khan, I.A.; Khan, S.I. A Review on Phytochemicals, Pharmacological Activities, Drug Interactions, and Associated Toxicities of Licorice (Glycyrrhiza Sp.). Food Front. 2021, 2, 449–485. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Yuan, B.; Liu, Y.; Liu, C. The Antiviral and Antimicrobial Activities of Licorice, a Widely-Used Chinese Herb. Acta Pharm. Sin. B 2015, 5, 310–315. [Google Scholar] [CrossRef]
- Long, D.R.; Mead, J.; Hendricks, J.M.; Hardy, M.E.; Voyich, J.M. 18β-Glycyrrhetinic Acid Inhibits Methicillin-Resistant Staphylococcus Aureus Survival and Attenuates Virulence Gene Expression. Antimicrob. Agents Chemother. 2013, 57, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Messier, C.; Grenier, D. Effect of Licorice Compounds Licochalcone A, Glabridin and Glycyrrhizic Acid on Growth and Virulence Properties of Candida albicans. Mycoses 2011, 54, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Deng, X.; Qiu, J. Antimicrobial Activity of Licochalcone E against Staphylococcus aureus and Its Impact on the Production of Staphylococcal Alpha-Toxin. J. Microbiol. Biotechnol. 2012, 22, 800–805. [Google Scholar] [CrossRef]
- Dai, X.H.; Li, H.E.; Lu, C.J.; Wang, J.F.; Dong, J.; Wei, J.Y.; Zhang, Y.; Wang, X.; Tan, W.; Deng, X.M.; et al. Liquiritigenin Prevents Staphylococcus aureus-Mediated Lung Cell Injury via Inhibiting the Production of α-Hemolysin. J. Asian Nat. Prod. Res. 2013, 15, 390–399. [Google Scholar] [CrossRef]
- Gopal, S. In Vitro Antifungal and Antibacterial Activities of Root Extract of Glycyrrhiza glabra. J. of Appl. Sci. Res. 2009, 5, 1436–1439. [Google Scholar]
- Rahnama, M.; Fakheri, B.A.; Mashhady, M.A.; Saeidi, S. Anti-Bacterial and Anti-Biofilm Activity of Glycyrrhiza glabra, Rosmarinus officinalis and Saponaria officinalis Extracts on Important Food Pathogens. Gene Cell Tissue 2019, 6, e96326. [Google Scholar] [CrossRef]
- Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The in Vitro Antibiofilm Activity of Selected Culinary Herbs and Medicinal Plants against Listeria Monocytogenes. Lett. Appl. Microbiol. 2010, 50, 30–35. [Google Scholar] [CrossRef]
- Park, M.; Horn, L.; Lappi, V.; Boxrud, D.; Hedberg, C.; Jeon, B. Antimicrobial Synergy between Aminoglycosides and Licorice Extract in Listeria Monocytogenes. Pathogens 2022, 11, 440. [Google Scholar] [CrossRef]
- Bombelli, A.; Araya-Cloutier, C.; Boeren, S.; Vincken, J.P.; Abee, T.; den Besten, H.M.W. Effects of the Antimicrobial Glabridin on Membrane Integrity and Stress Response Activation in Listeria monocytogenes. Food Res. Int. 2024, 175, 113687. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, A.; Araya-Cloutier, C.; Abee, T.; den Besten, H.M.W. Disinfectant Efficacy of Glabridin against Dried and Biofilm Cells of Listeria monocytogenes and the Impact of Residual Organic Matter. Food Res. Int. 2024, 191, 114613. [Google Scholar] [CrossRef] [PubMed]
- Novais, C.; Molina, A.K.; Abreu, R.M.V.; Santo-Buelga, C.; Ferreira, I.C.F.R.; Pereira, C.; Barros, L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. J. Agric. Food Chem. 2022, 70, 2789–2805. [Google Scholar] [CrossRef] [PubMed]
- El Awamie, M.; Reesm, C. Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain. Int. J. Pharmacol. Pharm. Sci. 2017, 10, 325–335. [Google Scholar]
- Christou, A.; Stavrou, C.; Michael, C.; Botsaris, G.; Goulas, V. New Insights into the Potential Inhibitory Effects of Native Plants from Cyprus on Pathogenic Bacteria and Diabetes-Related Enzymes. Microbiol. Res. 2024, 15, 926–942. [Google Scholar] [CrossRef]
- Silva, S.; Costa, E.M.; Pereira, M.F.; Costa, M.R.; Pintado, M.E. Evaluation of the Antimicrobial Activity of Aqueous Extracts from Dry Vaccinium corymbosum Extracts upon Food Microorganism. Food Control 2013, 34, 645–650. [Google Scholar] [CrossRef]
- Kumar, A.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, V.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Troxler, R.; Von Graevenitz, A.; Funke, G.; Wiedemann, B.; Stock, I. Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clin. Microbiol. Inf. 2000, 6, 525–535. [Google Scholar] [CrossRef]
- Tsakni, A.; Chatzilazarou, A.; Tsakali, E.; Tsantes, A.G.; Van Impe, J.; Houhoula, D. Identification of Bioactive Compounds in Plant Extracts of Greek Flora and Their Antimicrobial and Antioxidant Activity. Separations 2023, 10, 373. [Google Scholar] [CrossRef]
- Dawra, M.; Nehme, N.; El Beyrouthy, M.; Abi Rizk, A.; Taillandier, P.; Bouajila, J.; El Rayess, Y. Comparative Study of Phytochemistry, Antioxidant and Biological Activities of Berberis libanotica Fruit and Leaf Extracts. Plants 2023, 12, 2001. [Google Scholar] [CrossRef] [PubMed]
- Nefzi, K.; Ben Jemaa, M.; Baraket, M.; Dakhlaoui, S.; Msaada, K.; Nasr, Z. In Vitro Antioxidant, Antibacterial and Mechanisms of Action of Ethanolic Extracts of Five Tunisian Plants against Bacteria. App. Sci. 2022, 12, 5038. [Google Scholar] [CrossRef]
- Dawra, M.; El Rayess, Y.; El Beyrouthy, M.; Nehme, N.; El Hage, R.; Taillandier, P.; Bouajila, J. Biological Activities and Chemical Characterization of the Lebanese Endemic Plant Origanum ehrenbergii Boiss. Flavour. Fragr. J. 2021, 36, 339–351. [Google Scholar] [CrossRef]
- Tang, X.; Xu, C.; Yagiz, Y.; Simonne, A.; Marshall, M.R. Phytochemical Profiles, and Antimicrobial and Antioxidant Activities of Greater Galangal [Alpinia galanga (Linn.) Swartz.] Flowers. Food Chem. 2018, 255, 300–308. [Google Scholar] [CrossRef]
- Rožman, T.; Jeršek, B. Antimicrobial Activity of Rosemary Extracts (Rosmarinus officinalis L.) against Different Species of Listeria. Acta Agric. Slov. 2009, 93, 51–58. [Google Scholar]
- De Niederhäusern, S.; Bondi, M.; Camellini, S.; Sabia, C.; Messi, P.; Iseppi, R. Plant Extracts for the Control of Listeria monocytogenes in Meat Products. Applied Sci. 2021, 11, 10820. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Vanden Berghe, D.; Maes, L. Anti-Infective Potential of Natural Products: How to Develop a Stronger In Vitro “Proof-of-Concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, A.; Araya-Cloutier, C.; Vincken, J.P.; Abee, T.; den Besten, H.M.W. Impact of food-relevant conditions and food matrix on the efficacy of prenylated isoflavonoids glabridin and 6,8-diprenylgenistein as potential natural preservatives against Listeria monocytogenes. Int. J. Food Microbiol. 2023, 390, 110109. [Google Scholar] [CrossRef]
- Liao, C.; Yu, C.; Guo, J.; Guan, M. Subinhibitory Concentrations of Glabridin from Glycyrrhiza glabra L. Reduce Listeria monocytogenes Motility and Hemolytic Activity but Do Not Exhibit Antimicrobial Activity. Front. Microbiol. 2024, 15, 1388388. [Google Scholar] [CrossRef]
- Van Dinteren, S.; Meijerink, J.; Witkamp, R.; van Ieperen, B.; Vincken, J.P.; Araya-Cloutier, C. Valorisation of Liquorice (Glycyrrhiza) Roots: Antimicrobial Activity and Cytotoxicity of Prenylated (Iso)Flavonoids and Chalcones from Liquorice Spent (G. glabra, G. inflata, and G. uralensis). Food Funct. 2022, 13, 12105–12120. [Google Scholar] [CrossRef]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Rizzo, S.; Campone, L.; Di Sanzo, R.; Carabetta, S.; Rastrelli, L.; Russo, M. Specialized Metabolite Profiling of Different Glycyrrhiza glabra Organs by Untargeted UHPLC-HRMS. Ind. Crops Prod. 2021, 170, 113688. [Google Scholar] [CrossRef]
- Montero, L.; Ibáñez, E.; Russo, M.; di Sanzo, R.; Rastrelli, L.; Piccinelli, A.L.; Celano, R.; Cifuentes, A.; Herrero, M. Metabolite Profiling of Licorice (Glycyrrhiza glabra) from Different Locations Using Comprehensive Two-Dimensional Liquid Chromatography Coupled to Diode Array and Tandem Mass Spectrometry Detection. Anal. Chim. Acta 2016, 913, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A New Exploration of Licorice Metabolome. Food Chem. 2017, 221, 959–968. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Miyoshi, S.; Murakami, T.; Suzuki, R. Differentiating Between Three Licorice Species Using SFC-TOF/MS Analysis With Principal Component Analysis. Nat. Prod. Commun. 2023, 18, 1–10. [Google Scholar] [CrossRef]
- Liao, W.C.; Lin, Y.H.; Chang, T.M.; Huang, W.Y. Identification of Two Licorice Species, Glycyrrhiza uralensis and Glycyrrhiza glabra, Based on Separation and Identification of Their Bioactive Components. Food Chem. 2012, 132, 2188–2193. [Google Scholar]
- Avula, B.; Bae, J.Y.; Chittiboyina, A.G.; Wang, Y.H.; Wang, M.; Zhao, J.; Ali, Z.; Brinckmann, J.A.; Li, J.; Wu, C.; et al. Chemometric Analysis and Chemical Characterization for the Botanical Identification of Glycyrrhiza Species (G. glabra, G. uralensis, G. inflata, G. echinata and G. lepidota) Using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry (LC-QToF). J. Food Comp. Anal. 2022, 112, 104679. [Google Scholar] [CrossRef]
- Montoro, P.; Maldini, M.; Russo, M.; Postorino, S.; Piacente, S.; Pizza, C. Metabolic Profiling of Roots of Liquorice (Glycyrrhiza glabra) from Different Geographical Areas by ESI/MS/MS and Determination of Major Metabolites by LC-ESI/MS and LC-ESI/MS/MS. J. Pharm. Biomed. Anal. 2011, 54, 535–544. [Google Scholar] [CrossRef]
- Basar, N.; Talukdar, A.D.; Nahar, L.; Stafford, A.; Kushiev, H.; Kan, A.; Sarker, S.D. A Simple Semi-Preparative Reversed-Phase HPLC/PDA Method for Separation and Quantification of Glycyrrhizin in Nine Samples of Glycyrrhiza glabra Root Collected from Different Geographical Origins. Phytochem. Anal. 2014, 25, 399–404. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yang, Y.S. Simultaneous Quantification of Flavonoids and Triterpenoids in Licorice Using HPLC. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2007, 850, 392–399. [Google Scholar] [CrossRef]
- Kim, H.K.; Park, Y.; Kim, H.N.; Choi, B.H.; Jeong, H.G.; Lee, D.G.; Hahm, K.-S. Antimicrobial Mechanism of β-Glycyrrhetinic Acid Isolated from Licorice, Glycyrrhiza glabra. Biotechnol. Let. 2002, 24, 1899–1902. [Google Scholar] [CrossRef]
- Quirós-Sauceda, A.E.; Ovando-Martínez, M.; Velderrain-Rodríguez, G.R.; González-Aguilar, G.A.; Ayala-Zavala, J.F. Licorice (Glycyrrhiza glabra Linn.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2015; pp. 523–530. [Google Scholar]
- Wu, S.C.; Yang, Z.Q.; Liu, F.; Peng, W.J.; Qu, S.Q.; Li, Q.; Song, X.B.; Zhu, K.; Shen, J.Z. Antibacterial Effect and Mode of Action of Flavonoids From Licorice Against Methicillin-Resistant Staphylococcus Aureus. Front. Microbiol. 2019, 10, 2489. [Google Scholar] [CrossRef] [PubMed]
- Koutsoukas, A.; Simms, B.; Kirchmair, J.; Bond, P.J.; Whitmore, A.V.; Zimmer, S.; Young, M.P.; Jenkins, J.L.; Glick, M.; Glen, R.C.; et al. From in Silico Target Prediction to Multi-Target Drug Design: Current Databases, Methods and Applications. J. Proteomics 2011, 74, 2554–2574. [Google Scholar] [CrossRef] [PubMed]
- Torrent, M.; Victoria Nogues, M.; Boix, E. Discovering New In Silico Tools for Antimicrobial Peptide Prediction. Curr. Drug Targets 2012, 13, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.P.S.; Lima, L.R.; Silva, L.B.; Cruz, J.N.; Ramos, R.S.; Lima, L.S.; Cardoso, F.M.N.; Silva, A.V.; Rodrigues, D.P.; Rodrigues, G.S.; et al. Hierarchical Virtual Screening of Potential New Antibiotics from Polyoxygenated Dibenzofurans against Staphylococcus Aureus Strains. Pharmaceuticals 2023, 16, 1430. [Google Scholar] [CrossRef]
- Thakur, D.; Jain, A.; Ghoshal, G. Evaluation of Phytochemical, Antioxidant and Antimicrobial Properties of Glycyrrhizin Extracted from Roots of Glycyrrhiza glabra. J. Scientif Ind. Res. 2016, 75, 487–494. [Google Scholar]
- Fu, Y.; Chen, J.; Li, Y.J.; Zheng, Y.F.; Li, P. Antioxidant and Anti-Inflammatory Activities of Six Flavonoids Separated from Licorice. Food Chem. 2013, 141, 1063–1071. [Google Scholar] [CrossRef]
Listeria Strains and Serotypes | MIC (µg mL−1) | MBC (µg mL−1) | ||
---|---|---|---|---|
Ethanol | Water | Ethanol | Water | |
L. monocytogenes ATCC 23,074 (serotype 4b) | 31.3 | 125 | 62.5 | 500 |
L. monocytogenes EGD (serotype 1/2a) | 31.3 | 125 | 250 | 500 |
L. monocytogenes Scott A (serotype 4b) | 62.5 | 250 | 125 | 500 |
L. monocytogenes NCTC 7973 (serotype 1/2a) | 31.3 | 125 | 62.5 | 250 |
L. monocytogenes NCTC 4885 (serotype 4b) | 62.5 | 125 | 125 | 250 |
L. monocytogenes NCTC 4994 (serotype 4b) | 62.5 | 125 | 125 | 250 |
L. monocytogenes NCTC 1792 (serotype 4b) | 62.5 | 125 | 125 | 500 |
L. ivanovii NCTC 11846 | 62.5 | 250 | 125 | 500 |
L. grayi NCTC 10815 | 62.5 | 250 | 250 | 500 |
L. seeligeri NCTC 11856 | 31.3 | 250 | 250 | 500 |
Peak | RT (min) | Molecular Formula | m/z Experimental [M-H]− | m/z Calculated [M-H]− | Score | Proposed Compound | Content (mg g−1) | Class | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | 6.07 | C27H30O15 | 593.1497 | 593.1506 | 99.92 | vicenin 2 (apigenin-6,8-diC-glucoside) | 1.2 ± 0.0 | Flavone | [41] |
2 | 7.44 | C26H30O13 | 549.1610 | 549.1608 | 99.95 | liquiritin-apioside (liquiritigenin-7-hexose-pentose) | 43.0 ± 0.1 | Flavanone | [41] |
3 | 8.04 | C26H30O13 | 549.1597 | 549.1608 | 98.83 | liquiritin-apioside (liquiritigenin-7-hexose-pentose) isomer | 39.8 ± 0.2 | Flavanone | [41] |
4 | 8.72 | C26H30O14 | 565.1564 | 565.1557 | 96.6 | butin 4′-O-(2″-O-ß-D-apiofuranosyl)-ß-D-glucopyranoside/Glycosidic flavanon * | 0.2 ± 0.0 | Flavanone | [51] |
5 | 9.17 | C33H38O18 | 721.1982 | 721.1980 | 99.52 | 3-Hydroxyl-3-methylglutaroyl-violanthin | 0.5 ± 0.0 | Flavone | [41] |
6 | 9.34 | C26H30O14 | 565.1522 | 565.1557 | 99.55 | butin 4′-O-(2″-O-ß-D-apiofuranosyl)-ß-D-glucopyranoside/Glycosidic flavanon * | 0.8 ± 0.2 | Flavanone | [51] |
7 | 9.76 | C27H30O13 | 561.1596 | 561.1608 | 91.36 | glycyroside (formononetin-7-hexose-pentose) | 6.0 ± 0.2 | Isoflavone | [41] |
8 | 10.68 | C15H12O4 | 255.0634 | 255.0657 | - | Liquiritigenin | 2.7 ± 0.0 | Flavanone | [44] |
9 | 11.11 | C26H30O13 | 549.16 | 549.1608 | 96.6 | iso/liquiritin-apioside (iso/liquiritigenin-7-hexosepentose) | 50.3 ± 3.2 | Flavanone | [41] |
10 | 11.2 | C21H22O9 | 417.1161 | 417.1186 | 95.14 | Liquiritin; Neoisoliquiritin | 1.1 ± 0.1 | Flavanone | [41] |
11 | 11.27 | C16H14O5 | 285.0735 | 285.0763 | 99.44 | LicoChalcone B | 0.6 ± 0.0 | Chalcone | [43] |
12 | 11.631 | C35H36O15 | 695.1982 | 695.1976 | 91.82 | licorice glycoside D1/D2 | nq * | Flavanoid | [43] |
13 | 12.02 | C36H38O16 | 725.2093 | 725.2082 | 92.81 | licorice glycoside C1/C2 | 7.3 ± 0.3 | Flavanoid | [43] |
14 | 12.12 | C35H36O15 | 695.1989 | 695.1976 | 94 | licorice glycoside D1/D2 | 4.6 ± 0.3 | Flavanoid | [41] |
15 | 13.51 | C36H38O16 | 725.2103 | 725.2082 | 98.69 | licorice glycoside A | 3.9 ± 0.3 | Flavanoid | [41] |
16 | 13.66 | C35H36O15 | 695.1994 | 695.1976 | 99.75 | licorice glycoside B | 3.9 ± 0.2 | Flavanoid | [41] |
17 | 13.89 | C16H12O4 | 267.0641 | 267.0657 | 97.47 | Formononetin | 3.8 ± 0.1 | Isoflavone | [41] |
18 | 15.29 | C20H22O5 | 341.1369 | 341.1389 | 99.93 | 3′-prenyl-naringenin dihydrochalcone (3′-prenyl-2′,4′,6′,4-tetrahydroxydihydrochalcone) | 3.8 ± 0.2 | Chalcone | [41] |
19 | 15.51 | C20H22O5 | 341.1372 | 341.1389 | 99.13 | 3′-prenyl-naringenin dihydrochalcone (3′-prenyl-2′,4′,6′,4-tetrahydroxydihydrochalcone) | 1.0 ± 0.0 | Chalcone | [41] |
20 | 15.689 | C25H30O7 | 441.1915 | 441.1913 | 99.99 | Norkurarinol | 0.6 ± 0.1 | Flavanone | [52] |
21 | 15.76 | C20H20O5 | 339.1232 | 339.1224 | 94.99 | 6(8)-prenylnaringenin | 3.1 ± 0.1 | Flavanone | [41] |
22 | 15.88 | C20H18O5 | 337.1076 | 337.1070 | 77.23 less | wighteone or lupiwighteone (8- or 6-prenylgenistein) | 3.4 ± 0.0 | Isoflavone | [41] |
23 | 15.983 | C25H30O7 | 441.192 | 441.1913 | 99.86 | Norkurarinol | 0.8 ± 0.0 | Flavanone | [53] |
24 | 16.095 | C20H18O5 | 337.1076 | 337.1069 | 95.24 | wighteone or lupiwighteone (8- or 6-prenylgenistein) | 0.6 ± 0.1 | Isoflavone | [41] |
25 | 16.153 | C42H62O16 | 821.399 | 821.396 | 94.49 | Glycyrrhizin | nq | Saponin (triterpene glycoside) | [43] |
26 | 16.211 | C21H20O6 | 367.1182 | 367.1172 | 80.2 | Gancaonin N/B/W | 0.8 ± 0.0 | Coumarin | [43] |
27 | 16.44 | C19H18O5 | 325.1066 | 325.1076 | 99.25 | x-Hydroxymoracin N | 5.3 ± 0.2 | Coumarin | [43] |
28 | 16.604 | C21H20O5 | 351.123 | 351.1232 | 99.97 | Gancaonin A/G/M, Glyurallin A | 2.5 ± 0.1 | Coumarin | [43] |
29 | 16.649 | C25H30O6 | 425.1964 | 425.1964 | 99.74 | Kushenol T | 2.5 ± 0.1 | Flavanone | [43] |
30 | 16.769 | C25H30O6 | 425.1962 | 425.1964 | 98.54 | Kushenol T | 2.6 ± 0.1 | Flavanone | [43] |
31 | 16.815 | C21H22O5 | 353.1389 | 353.1382 | 98.23 | Licochalcone D | 1.8 ± 0.0 | Chalcone | [43] |
32 | 16.894 | C20H20O4 | 323.1283 | 323.1277 | - | glabranin (8-prenylpinocembrin) | 4.5 ± 0.0 | Flavanone | [43] |
33 | 16.931 | C20H16O5 | 335.0919 | 335.0913 | 96.7 | Kanzonol W; Licoagroisoflavone | 5.4 ± 0.1 | Isoflavone | [43] |
34 | 16.993 | C21H20O5 | 351.1232 | 351.1221 | 96.81 | Gancaonin A/G/M, Glyurallin A | 1.6 ± 0.1 | Coumarin | [43] |
35 | 17.055 | C20H20O5 | 339.1232 | 339.1217 | 99.85 | 4-[(2Z)-3-(4-tert-Butyl-2-hydroxyphenyl)-3-hydroxyprop-2-enoyl]benzoic acid | 32.9 ± 0.8 | Benzoic acid | [43] |
36 | 17.117 | C20H18O6 | 353.1025 | 353.1013 | 89.23 | Lico-iso-flavone A; Glycyrrh-iso-flavone; Allolicoisoflavone A | 0.9 ± 0.0 | Isoflavone | [43] |
37 | 17.142 | C25H30O6 | 425.1959 | 425.1964 | 99.23 | Kushenol T | 2.5 ± 0.1 | Flavanone | [43] |
38 | 17.171 | C21H22O5 | 353.1378 | 353.1389 | 98.32 | Licochalcone D | 1.0 ± 0.1 | Chalcone | [43] |
39 | 17.22 | C21H20O6 | 367.1182 | 367.1172 | 88.72 | Gancaonin N/B/W | 2.7 ± 0.1 | Coumarin | [43] |
40 | 17.295 | C25H30O5 | 409.2015 | 409.201 | 96.62 | Kanzonol Y | 3.2 ± 0.1 | Isoflavone | [43] |
41 | 17.36 | C21H20O5 | 351.1214 | 351.1232 | 91.61 | Gancaonin A/G/M, Glyurallin A | 2.2 ± 0.1 | Coumarin | [43] |
42 | 17.365 | C25H30O5 | 409.2005 | 409.201 | 99.81 | Kanzonol Y | 4.2 ± 0.2 | Isoflavone | [43] |
43 | 17.415 | C25H28O4 | 391.109 | 391.1885 | 100 | kanzonol C/Hispaglabridin A | 0.4 ± 0.0 | Isoflavone | [43] |
44 | 17.45 | C21H22O4 | 337.1411 | 337.144 | 99.06 | Licochalcone A/C/E | 0.8 ± 0.1 | Chalcone | [43] |
45 | 17.576 | C30H46O4 | 469.3299 | 469.3318 | 99.97 | Glycyrrhetinic acid | nq | Triterpenoid | [41] |
46 | 17.638 | C25H26O5 | 405.1677 | 405.1702 | 90.63 | Gancaonin Q/Glycyrdione B | 1.7 ± 0.0 | Coumarin | [43] |
47 | 17.669 | C30H44O4 | 467.3144 | 467.3161 | 91.28 | Oxoglycyrrhetinic acid | nq | Triterpenoid | [43] |
48 | 17.7 | C25H28O4 | 391.1893 | 391.109 | 99.96 | kanzonol C/Hispaglabridin A | 0.1 ± 0.0 | Isoflavone | [43] |
49 | 17.812 | C25H28O5 | 407.1858 | 407.1845 | 99.77 | Glyinflanin A/Hydroxyglabrol | 2.6 ± 0.1 | Chalcone | [44] |
50 | 17.899 | C40H36O10 | 675.2217 | 675.223 | 99.91 | Guangsangon F | 0.3 ± 0.0 | Flavanone | [43] |
51 | 17.99 | C25H28O4 | 391.1909 | 391.1884 | 99.8 | Glabrol/kanzonol C/Hispaglabridin A | 0.4 ± 0.0 | Isoflavone | [43] |
Compound | PubChem CID | Smiles | Confidence Score |
---|---|---|---|
Liquiritin-apioside | 10076238 | C1[C@H](OC2 = C(C1 = O)C = CC(= C2)O)C3 = CC = C(C = C3)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O[C@H]5[C@@H]([C@](CO5)(CO)O)O | 0.536 |
Isoliquiritin-apioside | 6442433 | C1[C@@]([C@H]([C@@H](O1)O[C@@H]2[C@H]([C@@H]([C@H](O[C@H]2OC3 = CC = C(C = C3)/C = C/C(= O)C4 = C(C = C(C = C4)O)O)CO)O)O)O)(CO)O | 0.338 |
4-[(2Z)-3-(4-tert-Butyl-2-hydroxyphenyl)-3-hydroxyprop-2-enoyl]benzoic acid | 6440678 | CC(C)(C)C1 = CC(= CC(= C1O)C(C)(C)C)/C = C/C(= O)C2 = CC = C(C = C2)C(= O)O | - |
Licorice glycoside C1/C2 | 42607809/101938907 | COC1 = C(C = CC(= C1)/C = C/C(= O)OCC2(CO[C@H]([C@H]2O)OC3[C@H]([C@@H](C(O[C@H]3OC4 = CC = C(C = C4)[C@H]5CC(= O)C6 = C(O5)C = C(C = C6)O)CO)O)O)O)O | 0.483 |
Glycyroside | 101939210 | COC1 = CC = C(C = C1)C2 = COC3 = C(C2 = O)C = CC(= C3)O[C@H]4[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O[C@H]5[C@@H]([C@](CO5)(CO)O)O | 0.385 |
Kanzonol W | 15380912 | CC1(C = CC2 = C(O1)C = CC3 = C2OC(= O)C(= C3)C4 = C(C = C(C = C4)O)O)C | 0.259 |
Glycyrrhizin | 14982 | C[C@]12CC[C@](C[C@H]1C3 = CC(= O)[C@@H]4[C@]5(CC[C@@H](C([C@@H]5CC[C@]4([C@@]3(CC2)C)C)(C)C)O[C@@H]6[C@@H]([C@H]([C@@H]([C@H](O6)C(= O)O)O)O)O[C@H]7[C@@H]([C@H]([C@@H]([C@H](O7)C(= O)O)O)O)O)C)(C)C(= O)O | - |
Glycyrrhetinic acid | 10114 | C[C@]12CC[C@](C[C@H]1C3 = CC(= O)[C@@H]4[C@]5(CC[C@@H](C([C@@H]5CC[C@]4([C@@]3(CC2)C)C)(C)C)O)C)(C)C(= O)O | - |
Ampicillin | 6249 | CC1([C@@H](N2[C@H](S1)[C@@H](C2 = O)NC(= O)[C@@H](C3 = CC = CC = C3)N)C(= O)O)C | 0.641 |
Gentamicin | 3467 | CC(C1CCC(C(O1)OC2C(CC(C(C2O)OC3C(C(C(CO3)(C)O)NC)O)N)N)N)NC | 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michael, C.; Christou, A.; Gómez-Caravaca, A.M.; Goulas, V.; Rees, C.E.D.; Botsaris, G. Deciphering the Anti-Listerial Activity and Phytochemical Composition of Licorice Root Extract Using LC-MS/MS in Combination with In Vitro and Computational Evaluations. Appl. Sci. 2025, 15, 5276. https://doi.org/10.3390/app15105276
Michael C, Christou A, Gómez-Caravaca AM, Goulas V, Rees CED, Botsaris G. Deciphering the Anti-Listerial Activity and Phytochemical Composition of Licorice Root Extract Using LC-MS/MS in Combination with In Vitro and Computational Evaluations. Applied Sciences. 2025; 15(10):5276. https://doi.org/10.3390/app15105276
Chicago/Turabian StyleMichael, Christodoulos, Atalanti Christou, Ana Maria Gómez-Caravaca, Vlasios Goulas, Catherine E. D. Rees, and George Botsaris. 2025. "Deciphering the Anti-Listerial Activity and Phytochemical Composition of Licorice Root Extract Using LC-MS/MS in Combination with In Vitro and Computational Evaluations" Applied Sciences 15, no. 10: 5276. https://doi.org/10.3390/app15105276
APA StyleMichael, C., Christou, A., Gómez-Caravaca, A. M., Goulas, V., Rees, C. E. D., & Botsaris, G. (2025). Deciphering the Anti-Listerial Activity and Phytochemical Composition of Licorice Root Extract Using LC-MS/MS in Combination with In Vitro and Computational Evaluations. Applied Sciences, 15(10), 5276. https://doi.org/10.3390/app15105276