Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (217)

Search Parameters:
Keywords = Gate Than Change Unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7173 KiB  
Article
LiDAR Data-Driven Deep Network for Ship Berthing Behavior Prediction in Smart Port Systems
by Jiyou Wang, Ying Li, Hua Guo, Zhaoyi Zhang and Yue Gao
J. Mar. Sci. Eng. 2025, 13(8), 1396; https://doi.org/10.3390/jmse13081396 - 23 Jul 2025
Viewed by 133
Abstract
Accurate ship berthing behavior prediction (BBP) is essential for enabling collision warnings and support decision-making. Existing methods based on Automatic Identification System (AIS) data perform well in the task of ship trajectory prediction over long time-series and large scales, but struggle with addressing [...] Read more.
Accurate ship berthing behavior prediction (BBP) is essential for enabling collision warnings and support decision-making. Existing methods based on Automatic Identification System (AIS) data perform well in the task of ship trajectory prediction over long time-series and large scales, but struggle with addressing the fine-grained and highly dynamic changes in berthing scenarios. Therefore, the accuracy of BBP remains a crucial challenge. In this paper, a novel BBP method based on Light Detection and Ranging (LiDAR) data is proposed. To test its feasibility, a comprehensive dataset is established by conducting on-site collection of berthing data at Dalian Port (China) using a shore-based LiDAR system. This dataset comprises equal-interval data from 77 berthing activities involving three large ships. In order to find a straightforward architecture to provide good performance on our dataset, a cascading network model combining convolutional neural network (CNN), a bi-directional gated recurrent unit (BiGRU) and bi-directional long short-term memory (BiLSTM) are developed to serve as the baseline. Experimental results demonstrate that the baseline outperformed other commonly used prediction models and their combinations in terms of prediction accuracy. In summary, our research findings help overcome the limitations of AIS data in berthing scenarios and provide a foundation for predicting complete berthing status, therefore offering practical insights for safer, more efficient, and automated management in smart port systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2344 KiB  
Article
Life Cycle Assessment of Key Mediterranean Agricultural Products at the Farm Level Using GHG Measurements
by Georgios Bartzas, Maria Doula and Konstantinos Komnitsas
Agriculture 2025, 15(14), 1494; https://doi.org/10.3390/agriculture15141494 - 11 Jul 2025
Viewed by 195
Abstract
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes [...] Read more.
Agricultural greenhouse gas (GHG) emissions contribute significantly to climate change and underline the importance of reliable measurements and mitigation strategies. This life cycle assessment (LCA)-based study evaluates the environmental impacts of four key Mediterranean agricultural products, namely olives, sweet potatoes, corn, and grapes using GHG measurements at four pilot fields located in different regions of Greece. With the use of a cradle-to-gate approach six environmental impact categories, more specifically acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical ozone creation potential (POCP), and cumulative energy demand (CED) as energy-based indicator are assessed. The functional unit used is 1 ha of cultivated land. Any potential carbon offsets from mitigation practices are assessed through an integrated low-carbon certification framework and the use of innovative, site-specific technologies. In this context, the present study evaluates three life cycle inventory (LCI)-based scenarios: Baseline (BS), which represents a 3-year crop production period; Field-based (FS), which includes on-site CO2 and CH4 measurements to assess the effects of mitigation practices; and Inventoried (IS), which relies on comprehensive datasets. The adoption of carbon mitigation practices under the FS scenario resulted in considerable reductions in environmental impacts for all pilot fields assessed, with average improvements of 8% for olive, 5.7% for sweet potato, 4.5% for corn, and 6.5% for grape production compared to the BS scenario. The uncertainty analysis indicates that among the LCI-based scenarios evaluated, the IS scenario exhibits the lowest variability, with coefficient of variation (CV) values ranging from 0.5% to 7.3%. In contrast, the FS scenario shows slightly higher uncertainty, with CVs reaching up to 15.7% for AP and 14.7% for EP impact categories in corn production. The incorporation of on-site GHG measurements improves the precision of environmental performance and supports the development of site-specific LCI data. This benchmark study has a noticeable transferability potential and contributes to the adoption of sustainable practices in other regions with similar characteristics. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Graphical abstract

24 pages, 5555 KiB  
Article
A Signal Processing-Guided Deep Learning Framework for Wind Shear Prediction on Airport Runways
by Afaq Khattak, Pak-wai Chan, Feng Chen, Hashem Alyami and Masoud Alajmi
Atmosphere 2025, 16(7), 802; https://doi.org/10.3390/atmos16070802 - 1 Jul 2025
Viewed by 324
Abstract
Wind shear at the Hong Kong International Airport (HKIA) poses a significant safety risk due to terrain-induced airflow disruptions near the runways. Accurate assessment is essential for safeguarding aircraft during take-off and landing, as abrupt changes in wind speed or direction can compromise [...] Read more.
Wind shear at the Hong Kong International Airport (HKIA) poses a significant safety risk due to terrain-induced airflow disruptions near the runways. Accurate assessment is essential for safeguarding aircraft during take-off and landing, as abrupt changes in wind speed or direction can compromise flight stability. This study introduces a hybrid framework for short-term wind shear prediction based on data collected from Doppler LiDAR systems positioned near the central and south runways of the HKIA. These systems provide high-resolution measurements of wind shear magnitude along critical flight paths. To predict wind shear more effectively, the proposed framework integrates a signal processing technique with a deep learning strategy. It begins with optimized variational mode decomposition (OVMD), which decomposes the wind shear time series into intrinsic mode functions (IMFs), each capturing distinct temporal characteristics. These IMFs are then modeled using bidirectional gated recurrent units (BiGRU), with hyperparameters optimized via the Tree-structured Parzen Estimator (TPE). To further enhance prediction accuracy, residual errors are corrected using Extreme Gradient Boosting (XGBoost), which captures discrepancies between the reconstructed signal and actual observations. The resulting OVMD–BiGRU–XGBoost framework exhibits strong predictive performance on testing data, achieving R2 values of 0.729 and 0.926, RMSE values of 0.931 and 0.709, and MAE values of 0.624 and 0.521 for the central and south runways, respectively. Compared with GRUs, LSTM, BiLSTM, and ResNet-based baselines, the proposed framework achieves higher accuracy and a more effective representation of multi-scale temporal dynamics. It contributes to improving short-term wind shear prediction and supports operational planning and safety management in airport environments. Full article
(This article belongs to the Special Issue Aviation Meteorology: Developments and Latest Achievements)
Show Figures

Figure 1

26 pages, 4843 KiB  
Article
Deep Learning Models and Their Ensembles for Robust Agricultural Yield Prediction in Saudi Arabia
by Zohra Sbai
Sustainability 2025, 17(13), 5807; https://doi.org/10.3390/su17135807 - 24 Jun 2025
Viewed by 520
Abstract
A crop yield prediction is critical to increase agricultural sustainability because it allows for the more effective use of natural resources, including water, fertilizers, and soil. Accurate yield estimates enable farmers and governments to more accurately manage resources, decreasing waste and minimizing adverse [...] Read more.
A crop yield prediction is critical to increase agricultural sustainability because it allows for the more effective use of natural resources, including water, fertilizers, and soil. Accurate yield estimates enable farmers and governments to more accurately manage resources, decreasing waste and minimizing adverse environmental effects such as the degradation of soil and water quality issues. In addition, predictive models serve to alleviate the consequences of climate change by promoting adaptable farming techniques and improving the availability of food by means of early decision-making. Thus, including a crop yield prediction into farming practices is critical for combining productivity and sustainability. In contrast to conventional machine learning models, which frequently require long feature engineering, deep learning may obtain complicated yield-related characteristics directly from initial or merely preprocessed data from different sources. This research paper aims to demonstrate the strength of deep learning models and their ensembles in agricultural yield prediction in Saudi Arabia, where agriculture faces issues such as scarce water resources and harsh climate conditions. We first define and evaluate a Multilayer Perceptron (MLP), a Gated Recurrent Unit (GRU), and a Convolutional Neural Network (CNN) as baseline deep models for the crop yield prediction. Then, we investigate combining these three models based on stacking, blending, and boosting ensemble methods. Finally, we study the uncertainty quantification for the proposed models, which involves a discussion of many enhancements’ techniques. As a result, this research shows that, by applying the right architectures with strong parametrization and optimization techniques, we obtain models that can explain 96% of the variance in the crop yield with a very low uncertainty rate (reaching an MPIW of 0.60), which proves the reliability and trustworthiness of the prediction. Full article
Show Figures

Figure 1

26 pages, 13250 KiB  
Article
Wind Speed Forecasting in the Greek Seas Using Hybrid Artificial Neural Networks
by Lateef Adesola Afolabi, Takvor Soukissian, Diego Vicinanza and Pasquale Contestabile
Atmosphere 2025, 16(7), 763; https://doi.org/10.3390/atmos16070763 - 21 Jun 2025
Viewed by 392
Abstract
The exploitation of renewable energy is essential for mitigating climate change and reducing fossil fuel emissions. Wind energy, the most mature technology, is highly dependent on wind speed, and the accurate prediction of the latter substantially supports wind power generation. In this work, [...] Read more.
The exploitation of renewable energy is essential for mitigating climate change and reducing fossil fuel emissions. Wind energy, the most mature technology, is highly dependent on wind speed, and the accurate prediction of the latter substantially supports wind power generation. In this work, various artificial neural networks (ANNs) were developed and evaluated for their wind speed prediction ability using the ERA5 historical reanalysis data for four potential Offshore Wind Farm Organized Development Areas in Greece, selected as suitable for floating wind installations. The training period for all the ANNs was 80% of the time series length and the remaining 20% of the dataset was the testing period. Of all the ANNs examined, the hybrid model combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks demonstrated superior forecasting performance compared to the individual models, as evaluated by standard statistical metrics, while it also exhibited a very good performance at high wind speeds, i.e., greater than 15 m/s. The hybrid model achieved the lowest root mean square errors across all the sites—0.52 m/s (Crete), 0.59 m/s (Gyaros), 0.49 m/s (Patras), 0.58 m/s (Pilot 1A), and 0.55 m/s (Pilot 1B)—and an average coefficient of determination (R2) of 97%. Its enhanced accuracy is attributed to the integration of the LSTM and GRU components strengths, enabling it to better capture the temporal patterns in the wind speed data. These findings underscore the potential of hybrid neural networks for improving wind speed forecasting accuracy and reliability, contributing to the more effective integration of wind energy into the power grid and the better planning of offshore wind farm energy generation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

26 pages, 2845 KiB  
Article
Short-Term Energy Consumption Forecasting Analysis Using Different Optimization and Activation Functions with Deep Learning Models
by Mehmet Tahir Ucar and Asim Kaygusuz
Appl. Sci. 2025, 15(12), 6839; https://doi.org/10.3390/app15126839 - 18 Jun 2025
Viewed by 618
Abstract
Modelling events that change over time is one of the most difficult problems in data analysis. Forecasting of time-varying electric power values is also an important problem in data analysis. Regression methods, machine learning, and deep learning methods are used to learn different [...] Read more.
Modelling events that change over time is one of the most difficult problems in data analysis. Forecasting of time-varying electric power values is also an important problem in data analysis. Regression methods, machine learning, and deep learning methods are used to learn different patterns from data and develop a consumption prediction model. The aim of this study is to determine the most successful models for short-term power consumption prediction with deep learning and to achieve the highest prediction accuracy. In this study, firstly, the data was evaluated and organized with exploratory data analysis (EDA) on a ready dataset and the features of the data were extracted. Studies were carried out on long short-term memory (LSTM), gated recurrent unit (GRU), simple recurrent neural networks (SimpleRNN) and bidirectional long short-term memory (BiLSTM) architectures. First, four architectures were used with 11 different optimization methods. In this study, it was seen that a high success rate of 0.9972 was achieved according to the R2 score index. In the following, the first study was tried with different epoch numbers. Afterwards, this study was carried out with 264 separate models produced using four architectures, 11 optimization methods, and six activation functions in order. The results of all these studies were obtained according to the root mean square error (RMSE), mean absolute error (MAE), and R2_score indexes. The R2_score indexes graphs are presented. Finally, the 10 most successful applications are listed. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 1266 KiB  
Article
Research on Aircraft Control System Fault Risk Assessment Based on Composite Framework
by Tongyu Shi, Yi Gao, Long Xu and Yantao Wang
Aerospace 2025, 12(6), 532; https://doi.org/10.3390/aerospace12060532 - 12 Jun 2025
Viewed by 414
Abstract
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods [...] Read more.
The air transportation system is composed of multiple elements and belongs to a complex socio-technical system. It is difficult to assess the risk of an aircraft fault because it could constantly change during operation and is influenced by numerous factors. Although traditional methods such as Failure Mode, Effects, and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) can reflect the degree of fault risk to a certain extent, they cannot accurately quantify and evaluate the fault risk under the multiple influences of human factors, random faults, and external environment. In order to solve these problems, this article proposes a fault risk assessment method for aircraft control systems based on a fault risk composite assessment framework using the Improved Risk Priority Number (IRPN) as the basis for the fault risk assessment. Firstly, a Bayesian network (BN) and Gated Recurrent Unit (GRU) are introduced into the traditional evaluation framework, and a hybrid prediction model combining static and dynamic failure probability is constructed. Subsequently, this paper uses the functional resonance analysis method (FRAM) by introducing a risk damping coefficient to analyze the propagation and evolution of fault risks and accurately evaluate the coupling effects between different functional modules in the system. Finally, taking the fault of a jammed flap/slat drive mechanism as an example, the risk of the fault is evaluated by calculating the IRPN. The calculation results show that the comprehensive failure probability of the aircraft control system in this case is 3.503 × 10−4. Taking into account the severity, the detection, and the risk damping coefficient, the calculation result of IRPN is 158.00. According to the classification standard of the risk level, the failure risk level of the aircraft belongs to a controlled risk, and emergency measures need to be taken, which is consistent with the actual disposal decision in this case. Therefore, the evaluation framework proposed in this article not only supports a quantitative assessment of system safety and provides a new method for fault risk assessments in aviation safety management but also provides a theoretical basis and practical guidance for optimizing fault response strategies. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

29 pages, 2096 KiB  
Article
Dual-GRU Perception Accumulation Model for Linear Beam Smoke Detector
by Zhuofu Wang, Boning Li, Li Wang, Zhen Cao and Xi Zhang
Fire 2025, 8(6), 229; https://doi.org/10.3390/fire8060229 - 11 Jun 2025
Viewed by 520
Abstract
Due to the complex structure of high-rise space buildings, traditional point fire detectors are not effective in terms of detection range and installation difficulty. Although linear beam smoke detectors are widely adopted, they still face problems such as low accuracy and false alarms [...] Read more.
Due to the complex structure of high-rise space buildings, traditional point fire detectors are not effective in terms of detection range and installation difficulty. Although linear beam smoke detectors are widely adopted, they still face problems such as low accuracy and false alarms caused by interference. To address these limitations, we constructed a 120 m experimental platform for analyzing smoke–light interactions. Through systematic investigation of spectral scattering phenomena, optimal operational wavelengths were identified for beam-type detection. By improving the gated recurrent unit (GRU) neural network, an algorithm combining dual-wavelength information fusion and an attention mechanism was designed. The algorithm integrates dual-wavelength information and introduces the cross-attention mechanism into the GRU network to achieve collaborative modeling of microscale scattering characteristics and macroscale concentration changes of smoke particles. The alarm strategy based on time series accumulation effectively reduces false alarms caused by instantaneous interference. The experiment shows that our method is significantly better than traditional algorithms in terms of accuracy (96.8%), false positive rate (2.1%), and response time (6.7 s). Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 2nd Edition)
Show Figures

Figure 1

15 pages, 2211 KiB  
Article
Dynamic Modeling of a Kaplan Hydroturbine Using Optimal Parametric Tuning and Real Plant Operational Data
by Hong Wang, Sunil Subedi and Wenbo Jia
Dynamics 2025, 5(2), 20; https://doi.org/10.3390/dynamics5020020 - 2 Jun 2025
Viewed by 609
Abstract
To address grid variability caused by renewable energy integration and to maintain grid reliability and resilience, hydropower must quickly adjust its power generation over short time periods. This changing energy generation landscape requires advance technology integration and adaptive parameter optimization for hydropower systems [...] Read more.
To address grid variability caused by renewable energy integration and to maintain grid reliability and resilience, hydropower must quickly adjust its power generation over short time periods. This changing energy generation landscape requires advance technology integration and adaptive parameter optimization for hydropower systems via digital twin effort. However, this is difficult owing to the lack of characterization and modeling for the nonlinear nature of hydroturbines. To solve this issue, this paper first formulates a six-coefficient Kaplan hydroturbine model and then proposes a parametric optimization tuning framework based on the Nelder–Mead algorithm for adaptive dynamic learning of the six-coefficients so as to build models that describe the turbine. To assess the performance of the proposed optimal parametric tuning technique, operational data from a real-world Kaplan hydroturbine unit are collected and used to model the relationship between the gate opening and the generated power production. The findings show that the proposed technique can effectively and adaptively learn the unknown dynamics of the Kaplan hydroturbine while optimally tune the unknown coefficients to match the generated power output from the real hydroturbine unit with an inaccuracy of less than 5%. The method can be used to provides optimal tuning of parameters critical for controller design, operational optimization and daily maintenance for hydroturbines in general. Full article
Show Figures

Figure 1

21 pages, 8812 KiB  
Article
A Three-Channel Improved SE Attention Mechanism Network Based on SVD for High-Order Signal Modulation Recognition
by Xujia Zhou, Gangyi Tu, Xicheng Zhu, Di Zhao and Luyan Zhang
Electronics 2025, 14(11), 2233; https://doi.org/10.3390/electronics14112233 - 30 May 2025
Viewed by 381
Abstract
To address the issues of poor differentiation capability for high-order signals and low average recognition rates in existing communication modulation recognition techniques, this paper first performs denoising using an entropy-based dynamic Singular Value Decomposition (SVD) method and proposes a three-channel convolutional gated recurrent [...] Read more.
To address the issues of poor differentiation capability for high-order signals and low average recognition rates in existing communication modulation recognition techniques, this paper first performs denoising using an entropy-based dynamic Singular Value Decomposition (SVD) method and proposes a three-channel convolutional gated recurrent units (GRU) model combined with an improved SE attention mechanism for automatic modulation recognition.The model denoises in-phase/quadrature (I/Q) signals using the SVD method to enhance signal quality. By combining one-dimensional (1D) convolutional and two-dimensional (2D) convolutional, it employs a three-channel approach to extract spatial features and capture local correlations. GRU is utilized to capture temporal sequence features so as to enhance the perception of dynamic changes. Additionally, an improved SE block is introduced to optimize feature representation, adaptively adjust channel weights, and improve classification performance. Experiments on the RadioML2016.10a dataset show that the model has a maximum classification recognition rate of 92.54%. Compared with traditional CNN, ResNet, CLDNN, GRU2, DAE, and LSTM2, the average recognition accuracy is improved by 5.41% to 8.93%. At the same time, the model significantly enhances the differentiation capability between 16QAM and 64QAM, reducing the average confusion probability by 27.70% to 39.40%. Full article
Show Figures

Figure 1

17 pages, 9097 KiB  
Article
Dimensional Analysis of Hydrological Response of Sluice Gate Operations in Water Diversion Canals
by Hengchang Li, Zhenyong Cui, Jieyun Wang, Chunping Ning, Xiangyu Xu and Xizhi Nong
Water 2025, 17(11), 1662; https://doi.org/10.3390/w17111662 - 30 May 2025
Viewed by 418
Abstract
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial [...] Read more.
The hydrodynamics characteristics of artificial water diversion canals with long-distance and inter-basin multi-stage sluice gate regulations are prone to sudden increases and decreases, and sluice gate discharge differs from that of natural rivers. Research on the change characteristics of hydrological elements in artificial canals under the control of sluice gates is lacking, as are scientifically accurate calculations of sluice gate discharge. Therefore, addressing these gaps in long-distance artificial water transfer is of great importance. In this study, real-time operation data of 61 sluice gates, pertaining to the period from May 2019 to July 2021, including data on water levels, flow discharge, velocity, and sluice gate openings in the main canal of the Middle Route of the South-to-North Water Diversion Project of China, were analyzed. The discharge coefficient of each sluice gate was calculated by the dimensional analysis method, and the unit-width discharge was modeled as a function of gate opening (e), gravity acceleration (g), and energy difference (H). Through logarithmic transformation of the Buckingham Pi theorem-derived equation, a linear regression model was used. Data within the relative opening orifice flow regime were selected for fitting, yielding the discharge coefficients and stage–discharge relationships. The results demonstrate that during the study period, the water level, discharge, and velocity of the main canal showed an increasing trend year by year. The dimensional analysis results indicate that the stage–discharge response relationship followed a power function (Q(He)constant) and that there was a good linear relationship between lg(He) and lg(Ke) (R2 > 0.95, K=(q2/g)1/3). By integrating geometric, operational, and hydraulic parameters, the proposed method provides a practical tool and a scientific reference for analyzing sluice gates’ regulation and hydrological response characteristics, optimizing water allocation, enhancing ecological management, and improving operational safety in long-distance inter-basin water diversion projects. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

27 pages, 78121 KiB  
Article
Graph-Based Stock Volatility Forecasting with Effective Transfer Entropy and Hurst-Based Regime Adaptation
by Sangheon Lee and Poongjin Cho
Fractal Fract. 2025, 9(6), 339; https://doi.org/10.3390/fractalfract9060339 - 24 May 2025
Viewed by 844
Abstract
This study proposes a novel hybrid model for stock volatility forecasting by integrating directional and temporal dependencies among financial time series and market regime changes into a unified modeling framework. Specifically, we design a novel Hurst Exponent Effective Transfer Entropy Graph Neural Network [...] Read more.
This study proposes a novel hybrid model for stock volatility forecasting by integrating directional and temporal dependencies among financial time series and market regime changes into a unified modeling framework. Specifically, we design a novel Hurst Exponent Effective Transfer Entropy Graph Neural Network (H-ETE-GNN) model that captures directional and asymmetric interactions based on Effective Transfer Entropy (ETE), and incorporates regime change detection using the Hurst exponent to reflect evolving global market conditions. To assess the effectiveness of the proposed approach, we compared the forecast performance of the hybrid GNN model with GNN models constructed using Transfer Entropy (TE), Granger causality, and Pearson correlation—each representing different measures of causality and correlation among time series. The empirical analysis was based on daily price data of 10 major country-level ETFs over a 19-year period (2006–2024), collected via Yahoo Finance. Additionally, we implemented recurrent neural network (RNN)-based models such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) under the same experimental conditions to evaluate their performance relative to the GNN-based models. The effect of incorporating regime changes was further examined by comparing the model performance with and without Hurst-exponent-based detection. The experimental results demonstrated that the hybrid GNN-based approach effectively captured the structure of information flow between time series, leading to substantial improvements in the forecast performance for one-day-ahead realized volatility. Furthermore, incorporating regime change detection via the Hurst exponent enhanced the model’s adaptability to structural shifts in the market. This study highlights the potential of H-ETE-GNN in jointly modeling interactions between time series and market regimes, offering a promising direction for more accurate and robust volatility forecasting in complex financial environments. Full article
Show Figures

Figure 1

33 pages, 2298 KiB  
Review
Recent Advances in Remote Sensing and Artificial Intelligence for River Water Quality Forecasting: A Review
by Daiwei Pan, Ying Deng, Simon X. Yang and Bahram Gharabaghi
Environments 2025, 12(5), 158; https://doi.org/10.3390/environments12050158 - 10 May 2025
Cited by 2 | Viewed by 2007
Abstract
Rapid population growth and climate change have created challenges for managing water quality. Protecting water sources and devising practical solutions are essential for restoring impaired inland rivers. Traditional water quality monitoring and forecasting methods rely on labor-intensive sampling and analysis, which are often [...] Read more.
Rapid population growth and climate change have created challenges for managing water quality. Protecting water sources and devising practical solutions are essential for restoring impaired inland rivers. Traditional water quality monitoring and forecasting methods rely on labor-intensive sampling and analysis, which are often costly. In recent years, real-time monitoring, remote sensing, and machine learning have significantly improved the accuracy of water quality forecasting. This paper categorizes machine learning approaches into traditional, deep learning, and hybrid models, evaluating their performance in forecasting water quality parameters. In recent years, the long short-term memory (LSTMs), gated recurrent units (GRUs) and LSTM- and GRU-based hybrid models have been widely used in forecasting inland river water quality. Combining remote sensing with a real-time water quality monitoring network has enhanced data collection efficiency by capturing spatial variability within the river network, complementing the high temporal resolution of in situ measurements, and improving the overall robustness of predictive deep learning models. Additionally, leveraging weather prediction models can further enhance the accuracy of water quality forecasting and better decision-making for water resource management. Full article
Show Figures

Figure 1

28 pages, 7533 KiB  
Article
TeaNet: An Enhanced Attention Network for Climate-Resilient River Discharge Forecasting Under CMIP6 SSP585 Projections
by Prashant Parasar, Poonam Moral, Aman Srivastava, Akhouri Pramod Krishna, Richa Sharma, Virendra Singh Rathore, Abhijit Mustafi, Arun Pratap Mishra, Fahdah Falah Ben Hasher and Mohamed Zhran
Sustainability 2025, 17(9), 4230; https://doi.org/10.3390/su17094230 - 7 May 2025
Viewed by 822
Abstract
The accurate prediction of river discharge is essential in water resource management, particularly under variability due to climate change. Traditional hydrological models commonly struggle to capture the complex, nonlinear relationships between climate variables and river discharge, leading to uncertainties in long-term projections. To [...] Read more.
The accurate prediction of river discharge is essential in water resource management, particularly under variability due to climate change. Traditional hydrological models commonly struggle to capture the complex, nonlinear relationships between climate variables and river discharge, leading to uncertainties in long-term projections. To mitigate these challenges, this research integrates machine learning (ML) and deep learning (DL) techniques to predict discharge in the Subernarekha River Basin (India) under future climate scenarios. Global climate models (GCMs) from the Coupled Model Intercomparison Project 6 (CMIP6) are assessed for their ability to reproduce historical discharge trends. The selected CNRM-M6-1 model is bias-corrected and downscaled before being used to simulate future discharge patterns under SSP585 (a high-emission scenario). Various AI-driven models, such as a temporal convolutional network (TCN), a gated recurrent unit (GRU), a support vector regressor (SVR), and a novel DL network named the Temporal Enhanced Attention Network (TeaNet), are implemented by integrating the maximum and minimum daily temperatures and precipitation as key input parameters. The performance of the models is evaluated using the mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), and coefficient of determination (R2). Among the evaluated models, TeaNet demonstrates the best performance, with the lowest error rates (RMSE: 2.34–3.04; MAE: 1.13–1.52 during training) and highest R2 (0.87–0.95), outperforming the TCN (R2: 0.79–0.88), GRU (R2: 0.75–0.84), SVR (R2: 0.68–0.80), and RF (R2: 0.72–0.82) by 8–15% in accuracy across four gauge stations. The efficacy of the proposed model lies in its enhanced attention mechanism, which successfully identifies temporal relationships in hydrological information. In determining the most relevant predictors of river discharge, the feature importance is analyzed using the proposed TeaNet model. The findings of this research strengthen the role of DL architectures in improving long-term discharge prediction, providing valuable knowledge for climate adaptation and strategic planning in the Subernarekha region. Full article
Show Figures

Figure 1

27 pages, 4152 KiB  
Article
A Hybrid Model Integrating Variational Mode Decomposition and Intelligent Optimization for Vegetable Price Prediction
by Gao Wang, Shuang Xu, Zixu Chen and Youzhu Li
Agriculture 2025, 15(9), 919; https://doi.org/10.3390/agriculture15090919 - 23 Apr 2025
Viewed by 656
Abstract
In recent years, China’s vegetable market has faced frequent and drastic price fluctuations due to factors such as supply–demand relationships and climate change, which significantly affect government bodies, farmers, consumers, and other participants in the vegetable industry and supply chain. Traditional forecasting methods [...] Read more.
In recent years, China’s vegetable market has faced frequent and drastic price fluctuations due to factors such as supply–demand relationships and climate change, which significantly affect government bodies, farmers, consumers, and other participants in the vegetable industry and supply chain. Traditional forecasting methods demonstrate evident limitations in capturing the nonlinear characteristics and complex volatility patterns of price series, underscoring the necessity of developing high-precision prediction models. This study proposes a hybrid forecasting model integrating variational mode decomposition (VMD), the Fruit Fly Optimization Algorithm (FOA), and a gated recurrent unit (GRU). The model employs VMD for multi-scale decomposition of original price series and utilizes the FOA for adaptive optimization of the GRU’s critical parameters, effectively addressing the challenges of high volatility and nonlinearity in agricultural price forecasting. Empirical analysis conducted on daily price data of six major vegetables, specifically, Chinese cabbage, cucumber, beans, tomato, chili, and radish, from 2014 to 2024 reveals that the proposed model significantly outperforms traditional methods, single deep learning models, and other hybrid models in predictive performance. Experimental results indicate substantial improvements in key metrics including the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2), with R2 values consistently exceeding 99.4% and achieving over 5% enhancement compared to the baseline GRU model. This research establishes a novel methodological framework for analyzing agricultural price forecasting while providing reliable technical support for market monitoring and policy regulation. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

Back to TopTop