Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = GISs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4446 KiB  
Article
Counter-Cartographies of Extraction: Mapping Socio-Environmental Changes Through Hybrid Geographic Information Technologies
by Mitesh Dixit, Nataša Danilović Hristić and Nebojša Stefanović
Land 2025, 14(8), 1576; https://doi.org/10.3390/land14081576 (registering DOI) - 1 Aug 2025
Abstract
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice [...] Read more.
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice zone”—an area deliberately subjected to harm for broader economic interests. Employing a hybrid methodology that combines ethnographic fieldwork with Geographic Information Systems (GISs), this study spatializes narratives of extractive violence collected from residents through walking interviews, field sketches, and annotated aerial imagery. By integrating satellite data, legal documents, environmental sensors, and lived testimonies, it uncovers the concept of “slow violence,” where incremental harm occurs through bureaucratic neglect, ambient pollution, and legal ambiguity. Critiquing the abstraction of Planetary Urbanization theory, this research employs countertopography and forensic spatial analysis to propose a counter-cartographic framework that integrates geospatial analysis with local narratives. It demonstrates how global mining finance manifests locally through tangible experiences, such as respiratory illnesses and disrupted community relationships, emphasizing the potential of counter-cartography as a tool for visualizing and contesting systemic injustice. Full article
16 pages, 1873 KiB  
Systematic Review
A Systematic Review of GIS Evolution in Transportation Planning: Towards AI Integration
by Ayda Zaroujtaghi, Omid Mansourihanis, Mohammad Tayarani, Fatemeh Mansouri, Moein Hemmati and Ali Soltani
Future Transp. 2025, 5(3), 97; https://doi.org/10.3390/futuretransp5030097 (registering DOI) - 1 Aug 2025
Abstract
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data [...] Read more.
Previous reviews have examined specific facets of Geographic Information Systems (GIS) in transportation planning, such as transit-focused applications and open source geospatial tools. However, this study offers the first systematic, PRISMA-guided longitudinal evaluation of GIS integration in transportation planning, spanning thematic domains, data models, methodologies, and outcomes from 2004 to 2024. This study addresses this gap through a longitudinal analysis of GIS-based transportation research from 2004 to 2024, adhering to PRISMA guidelines. By conducting a mixed-methods analysis of 241 peer-reviewed articles, this study delineates major trends, such as increased emphasis on sustainability, equity, stakeholder involvement, and the incorporation of advanced technologies. Prominent domains include land use–transportation coordination, accessibility, artificial intelligence, real-time monitoring, and policy evaluation. Expanded data sources, such as real-time sensor feeds and 3D models, alongside sophisticated modeling techniques, enable evidence-based, multifaceted decision-making. However, challenges like data limitations, ethical concerns, and the need for specialized expertise persist, particularly in developing regions. Future geospatial innovations should prioritize the responsible adoption of emerging technologies, inclusive capacity building, and environmental justice to foster equitable and efficient transportation systems. This review highlights GIS’s evolution from a supplementary tool to a cornerstone of data-driven, sustainable urban mobility planning, offering insights for researchers, practitioners, and policymakers to advance transportation strategies that align with equity and sustainability goals. Full article
Show Figures

Figure 1

13 pages, 4029 KiB  
Article
Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China
by Sikai Liu, Juan Zhou, Jun Wen, Guobin Yang, Yangruixue Chen, Xing Li and Xiao Li
Atmosphere 2025, 16(8), 925; https://doi.org/10.3390/atmos16080925 - 30 Jul 2025
Viewed by 151
Abstract
Previous research has primarily focused on assessing seasonal mean or annual extreme climate events, whereas intraseasonal variability in extreme climate has received comparatively little attention, despite its importance for understanding short-term climate dynamics and associated risks. This study evaluates the performance of nine [...] Read more.
Previous research has primarily focused on assessing seasonal mean or annual extreme climate events, whereas intraseasonal variability in extreme climate has received comparatively little attention, despite its importance for understanding short-term climate dynamics and associated risks. This study evaluates the performance of nine climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing summer maximum temperature (Tmax) variability across China during 1979–2014, with the variability defined as the standard deviation of daily Tmax anomalies for each summer. Results show that most CMIP6 models fail to reproduce the observed north–south gradient of Tmax variability with significant regional biases and limited agreement on temporal trends. The multi-model ensemble (MME) outperforms most individual models in terms of root-mean-square error and spatial correlation, but it still under-represents the observed temporal trends, especially over southeastern and central China. Taylor diagram analysis reveals that EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR, and the MME perform relatively well in capturing the spatial characteristics of Tmax variability, whereas MIROC6 shows the poorest performance. These findings highlight the persistent limitations in simulating intraseasonal Tmax variability and underscore the need for improved model representations of regional climate dynamics over China. Full article
(This article belongs to the Special Issue Extreme Climate Events: Causes, Risk and Adaptation)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 165
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 1016 KiB  
Article
Harnessing Intelligent GISs for Educational Innovation: A Bibliometric Analysis of Real-Time Data Models
by Eloy López-Meneses, Irene-Magdalena Palomero-Ilardia, Noelia Pelícano-Piris and María-Belén Morales-Cevallos
Educ. Sci. 2025, 15(8), 976; https://doi.org/10.3390/educsci15080976 - 29 Jul 2025
Viewed by 257
Abstract
This study explores the potential of Intelligent Geographic Information Systems (GISs) in advancing educational practices through the integration of real-time data models. The objective is to investigate how GIS technology can enhance teaching and learning by providing interactive and dynamic learning environments. The [...] Read more.
This study explores the potential of Intelligent Geographic Information Systems (GISs) in advancing educational practices through the integration of real-time data models. The objective is to investigate how GIS technology can enhance teaching and learning by providing interactive and dynamic learning environments. The research employs a bibliometric analysis based on the Scopus database, covering the period from 2000 to 2024, to identify key trends, the evolution of GIS applications in education, and their pedagogical impact. Findings reveal that GISs, particularly when incorporating real-time data, enable a more immersive learning experience, facilitate data-driven decision-making, and promote student engagement through project-based learning. However, challenges such as the lack of specialized training for educators and limitations in technological infrastructure remain significant barriers to widespread adoption. The study concludes that Intelligent GISs have the potential to transform education by fostering personalized, interdisciplinary learning and enhancing educational management. It emphasizes the need for further research aimed at developing user-friendly systems and addressing ethical concerns to ensure the benefits of GIS technology are accessible to all students. Future studies should examine the long-term effects of GISs on student outcomes and explore their integration into diverse educational contexts. Full article
Show Figures

Figure 1

20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 (registering DOI) - 28 Jul 2025
Viewed by 348
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

29 pages, 1682 KiB  
Article
Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection
by Anna Kochanek, Józef Ciuła, Mariusz Cembruch-Nowakowski and Tomasz Zacłona
Energies 2025, 18(15), 3981; https://doi.org/10.3390/en18153981 - 25 Jul 2025
Viewed by 232
Abstract
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological [...] Read more.
In the past decade, agricultural biogas plants have become one of the key tools driving the energy transition in rural areas. Nevertheless, their development in Poland still lags behind that in Western European countries, suggesting the existence of barriers that go beyond technological or regulatory issues. This study aims to examine how Polish farmers perceive the risks and expected benefits associated with investing in biogas plants and which of these perceptions influence their willingness to invest. The research was conducted in the second quarter of 2025 among farmers planning to build micro biogas plants as well as owners of existing biogas facilities. Geographic Information System (GIS) tools were also used in selecting respondents and identifying potential investment sites, helping to pinpoint areas with favorable spatial and environmental conditions. The findings show that both current and prospective biogas plant operators view complex legal requirements, social risk, and financial uncertainty as the main obstacles. However, both groups are primarily motivated by the desire for on-farm energy self-sufficiency and the environmental benefits of improved agricultural waste management. Owners of operational installations—particularly small and medium-sized ones—tend to rate all categories of risk significantly lower than prospective investors, suggesting that practical experience and knowledge-sharing can effectively alleviate perceived risks related to renewable energy investments. Full article
(This article belongs to the Special Issue Green Additive for Biofuel Energy Production)
Show Figures

Figure 1

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 328
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 337
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

33 pages, 39261 KiB  
Article
Assessing Geohazards on Lefkas Island, Greece: GIS-Based Analysis and Public Dissemination Through a GIS Web Application
by Eleni Katapodi and Varvara Antoniou
Appl. Sci. 2025, 15(14), 7935; https://doi.org/10.3390/app15147935 - 16 Jul 2025
Viewed by 324
Abstract
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety [...] Read more.
This research paper presents an assessment of geohazards on Lefkas Island, Greece, using Geographic Information System (GIS) technology to map risk and enhance public awareness through an interactive web application. Natural hazards such as landslides, floods, wildfires, and desertification threaten both the safety of residents and the island’s tourism-dependent economy, particularly due to its seismic activity and Mediterranean climate. By combining the Sendai Framework for Disaster Risk Reduction with GIS capabilities, we created detailed hazard maps that visually represent areas of susceptibility and provide critical insights for local authorities and the public. The web application developed serves as a user-friendly platform for disseminating hazard information and educational resources, thus promoting community preparedness and resilience. The findings highlight the necessity for proactive land management strategies and community engagement in disaster risk reduction efforts. This study underscores GIS’s pivotal role in fostering informed decision making and enhancing the safety of Lefkas Island’s inhabitants and visitors in the face of environmental challenges. Full article
(This article belongs to the Special Issue Emerging GIS Technologies and Their Applications)
Show Figures

Figure 1

21 pages, 1415 KiB  
Review
Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment
by Su-Ok Hwang, Byeong-Hun Han, Hyo-Gyeom Kim and Baik-Ho Kim
Hydrobiology 2025, 4(3), 19; https://doi.org/10.3390/hydrobiology4030019 - 16 Jul 2025
Viewed by 462
Abstract
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system [...] Read more.
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system was applied to four representative river basins—the Mississippi, Amazon, Yangtze, and Danube—demonstrating enhanced predictive accuracy (up to 94%), spatial pollution mapping precision (85–95%), and species detection sensitivity (+18–30%) compared to conventional methods. Furthermore, the framework reduces operational costs by up to 40%, highlighting its potential for cost-effective deployment in low-resource regions. Despite its strengths, challenges persist in the areas of regulatory acceptance, data standardization, and digital infrastructure. We recommend legal recognition of AI and eDNA indicators, investment in explainable AI (XAI), and global data harmonization initiatives. The integrated AI-GIS-eDNA framework offers a scalable and policy-relevant tool for adaptive freshwater governance in the Anthropocene. Full article
(This article belongs to the Special Issue Ecosystem Disturbance in Small Streams)
Show Figures

Figure 1

31 pages, 5716 KiB  
Article
Quantitative Assessment of Flood Risk Through Multi Parameter Morphometric Analysis and GeoAI: A GIS-Based Study of Wadi Ranuna Basin in Saudi Arabia
by Maram Hamed AlRifai, Abdulla Al Kafy and Hamad Ahmed Altuwaijri
Water 2025, 17(14), 2108; https://doi.org/10.3390/w17142108 - 15 Jul 2025
Viewed by 439
Abstract
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced [...] Read more.
The integration of traditional geomorphological approaches with advanced artificial intelligence techniques represents a promising frontier in flood risk assessment for arid regions. This study presents a comprehensive analysis of the Wadi Ranuna basin in Medina, Saudi Arabia, combining detailed morphometric parameters with advanced Geospatial Artificial Intelligence (GeoAI) algorithms to enhance flood susceptibility modeling. Using digital elevation models (DEMs) and geographic information systems (GISs), we extracted 23 morphometric parameters across 67 sub-basins and applied XGBoost, Random Forest, and Gradient Boosting (GB) models to predict both continuous flood susceptibility indices and binary flood occurrences. The machine learning models utilize morphometric parameters as input features to capture complex non-linear interactions, including threshold-dependent relationships where the stream frequency impact intensifies above 3.0 streams/km2, and the compound effects between the drainage density and relief ratio. The analysis revealed that the basin covers an area of 188.18 km2 with a perimeter of 101.71 km and contains 610 streams across six orders. The basin exhibits an elongated shape with a form factor of 0.17 and circularity ratio of 0.23, indicating natural flood-moderating characteristics. GB emerged as the best-performing model, achieving an RMSE of 6.50 and an R2 value of 0.9212. Model validation through multi-source approaches, including field verification at 35 locations, achieved 78% spatial correspondence with documented flood events and 94% accuracy for very high susceptibility areas. SHAP analysis identified the stream frequency, overland flow length, and drainage texture as the most influential predictors of flood susceptibility. K-Means clustering uncovered three morphometrically distinct zones, with Cluster 1 exhibiting the highest flood risk potential. Spatial analysis revealed 67% of existing infrastructure was located within high-risk zones, with 23 km of major roads and eight critical facilities positioned in flood-prone areas. The spatial distribution of GBM-predicted flood susceptibility identified high-risk zones predominantly in the central and southern parts of the basin, covering 12.3% (23.1 km2) of the total area. This integrated approach provides quantitative evidence for informed watershed management decisions and demonstrates the effectiveness of combining traditional morphometric analysis with advanced machine learning techniques for enhanced flood risk assessment in arid regions. Full article
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 286
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

33 pages, 725 KiB  
Review
Individual and Synergistic Contributions of GIS, Remote Sensing, and AI in Advancing Climate-Resilient Agriculture
by Cristian-Dumitru Mălinaș, Florica Matei, Ioana Delia Pop, Tudor Sălăgean and Anamaria Mălinaș
AgriEngineering 2025, 7(7), 230; https://doi.org/10.3390/agriengineering7070230 - 10 Jul 2025
Viewed by 585
Abstract
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial [...] Read more.
Agriculture faces a dual challenge in the context of climate change, serving as both a significant contributor to greenhouse gas (GHG) emissions and a sector highly vulnerable to its impacts. Addressing this requires a transition toward climate-resilient agriculture (CRA). Emerging technologies, including geospatial tools (e.g., Geographic Information Systems (GISs) and remote sensing (RS)), as well as artificial intelligence (AI), offer promising methods to support this transition. However, their individual capabilities, limitations, and appropriate applications are not always well understood or clearly delineated in the literature. A common issue is the frequent overlap between GISs and RS, with many studies assessing GIS contributions while concurrently employing RS techniques, without explicitly distinguishing between the two (or vice versa). In this sense, the objective of this review is to conduct a critical analysis of the existing state of the art in terms of the distinct roles, limitations, and complementarities of GISs, RS, and AI in advancing CRA, guided by an original definition we propose for CRA (structured around three key dimensions and their corresponding targets). Furthermore, this review introduces a synthesis matrix that integrates both the individual contributions and the synergistic potential of these technologies. This synergy-focused matrix offers not just a summary, but a practical decision support matrix that could be used by researchers, practitioners, and policymakers in selecting the most appropriate technological configuration for their objectives in CRA-related work. Such support is increasingly needed, especially considering that RS and AI have experienced exponential growth in the past five years, while GISs, despite being the more established “big brother” among these technologies, remain underutilized and is often insufficiently understood in agricultural applications. Full article
Show Figures

Graphical abstract

28 pages, 10581 KiB  
Article
A Textual Semantic Analysis Framework Integrating Geographic Metaphors and GIS-Based Spatial Analysis Methods
by Yu Liu, Zhen Ren, Kaifeng Wang, Qin Tian, Xi Kuai and Sheng Li
Symmetry 2025, 17(7), 1064; https://doi.org/10.3390/sym17071064 - 4 Jul 2025
Viewed by 420
Abstract
Geographic information systems (GISs) have shown considerable promise in enhancing textual semantic analysis. Current textual semantic analysis methods face significant limitations in accurately delineating semantic boundaries, identifying semantic clustering patterns, and representing knowledge evolution. To address these issues, this study proposes a framework [...] Read more.
Geographic information systems (GISs) have shown considerable promise in enhancing textual semantic analysis. Current textual semantic analysis methods face significant limitations in accurately delineating semantic boundaries, identifying semantic clustering patterns, and representing knowledge evolution. To address these issues, this study proposes a framework that innovatively introduces GIS methods into textual semantic analysis and aligns them with the conceptual foundation of geographical metaphor theory. Specifically, word embedding models are employed to endow semantic primitives with comprehensive, high-dimensional semantic representations. GIS methods and geographical metaphors are subsequently utilized to project both semantic primitives and their relationships into a low-dimensional geospatial analog, thereby constructing a semantic space model that facilitates accurate delineation of semantic boundaries. On the basis of this model, spatial correlation measurements are adopted to reveal underlying semantic patterns, while knowledge evolution is represented using ArcGIS 10.7-based visualization techniques. Experiments on social media data validate the effectiveness of the framework in semantic boundary delineation and clustering pattern identification. Moreover, the framework supports dynamic three-dimensional visualization of topic evolution. Importantly, by employing specialized visualization methods, the proposed framework enables the intuitive representation of semantic symmetry and asymmetry within semantic spaces. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Data Mining)
Show Figures

Figure 1

Back to TopTop