Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China
Abstract
1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Results
3.1. Comparison of Spatial Distribution and Trend of Summer Tmax Variability over China
3.2. Evaluation of CMIP6 Models in Simulating Summer Tmax Variability over China
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
MME | Multi-model ensemble |
Tmax | Maximum temperature |
WCRP | The World Climate Research Programme |
IPCC | The Intergovernmental Panel on Climate Change |
References
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896. [Google Scholar]
- Ambadan, J.T.; Berg, A.A.; Merryfield, W.J.; Lee, W.-S. Influence of Snowmelt on Soil Moisture and on near Surface Air Temperature during Winter–Spring Transition Season. Clim. Dyn. 2018, 51, 1295–1309. [Google Scholar] [CrossRef]
- Wu, R.; Chen, S. Regional Change in Snow Water Equivalent–Surface Air Temperature Relationship over Eurasia during Boreal Spring. Clim. Dyn. 2016, 47, 2425–2442. [Google Scholar] [CrossRef]
- Herring, S.C.; Christidis, N.; Hoell, A.; Hoerling, M.P.; Stott, P.A. Explaining Extreme Events of 2018 from a Climate Perspective. Bull. Am. Meteorol. Soc. 2020, 101, S1–S140. [Google Scholar] [CrossRef]
- van der Wiel, K.; Bintanja, R. Contribution of Climatic Changes in Mean and Variability to Monthly Temperature and Precipitation Extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Li, X.; Sun, J. Atmospheric Circulation Patterns Conducive to Summer Extreme Temperature, Precipitation, and Vapor Pressure Deficit Events over Northeast China. J. Clim. 2025, 38, 835–853. [Google Scholar] [CrossRef]
- Akter, M.Y.; Islam, A.R.M.T.; Mallick, J.; Alam, M.M.; Alam, E.; Shahid, S.; Biswas, J.C.; Alam, G.M.; Pal, S.C.; Oliver, M.M.H. Temperature Extremes Projections over Bangladesh from CMIP6 Multi-Model Ensemble. Theor. Appl. Climatol. 2024, 155, 8843–8869. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, J.; Wang, D. Comparative Analysis of High-Resolution CMIP6 GCM and CMIP5 RCM: Unveiling Biases and Advancements in Simulating Compound Extreme Events in China. Clim. Dyn. 2025, 63, 91. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Al-Ghamdi, S.G. Global Hotspots for Future Absolute Temperature Extremes from CMIP6 Models. Earth Space Sci. 2021, 8, e2021EA001817. [Google Scholar] [CrossRef]
- Roldán-Gómez, P.J.; De Luca, P.; Bernardello, R.; Donat, M.G. Regional Irreversibility of Mean and Extreme Surface Air Temperature and Precipitation in CMIP6 Overshoot Scenarios Associated with Interhemispheric Temperature Asymmetries. Earth Syst. Dyn. 2025, 16, 1–27. [Google Scholar] [CrossRef]
- Collazo, S.; Barrucand, M.; Rusticucci, M. Evaluation of CMIP6 Models in the Representation of Observed Extreme Temperature Indices Trends in South America. Clim. Change 2022, 172, 21. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Das, P.; Zhang, Z.; Ghosh, S.; Lu, J.; Ayugi, B.; Ojara, M.A.; Guo, X. Historical and Projected Changes in Extreme High Temperature Events over East Africa and Associated with Meteorological Conditions Using CMIP6 Models. Glob. Planet. Change 2023, 222, 104068. [Google Scholar] [CrossRef]
- Ali, Z.; Hamed, M.M.; Muhammad, M.K.I.; Shahid, S. A Novel Approach for Evaluation of CMIP6 GCMs in Simulating Temperature and Precipitation Extremes of Pakistan. Int. J. Climatol. 2024, 44, 592–612. [Google Scholar] [CrossRef]
- Samuel, S.; Mengistu Tsidu, G.; Dosio, A.; Mphale, K. Assessment of Historical and Future Mean and Extreme Precipitation Over Sub-Saharan Africa Using NEX-GDDP-CMIP6: Part I—Evaluation of Historical Simulation. Int. J. Climatol. 2025, 45, e8672. [Google Scholar] [CrossRef]
- Song, S.; Yan, X. Evaluation of Events of Extreme Temperature Change between Neighboring Days in CMIP6 Models over China. Theor. Appl. Climatol. 2022, 150, 53–72. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. J. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- Zhao, Y.; Qian, C.; Zhang, W.; He, D.; Qi, Y. Extreme temperature indices in Eurasia in a CMIP6 multi-model ensemble: Evaluation and projection. Int. J. Climatol. 2021, 41, 5368–5385. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Sun, Y.; AghaKouchak, A.; Shen, C.; Fan, X. Global Observations and CMIP6 Simulations of Compound Extremes of Monthly Temperature and Precipitation. GeoHealth 2021, 5, e2021GH000390. [Google Scholar] [CrossRef]
- Di Luca, A.; Pitman, A.J.; de Elía, R. Decomposing Temperature Extremes Errors in CMIP5 and CMIP6 Models. Geophys. Res. Lett. 2020, 47, e2020GL088031. [Google Scholar] [CrossRef]
- Deng, X.; Perkins-Kirkpatrick, S.E.; Lewis, S.C.; Ritchie, E.A. Evaluation of Extreme Temperatures Over Australia in the Historical Simulations of CMIP5 and CMIP6 Models. Earth’s Future 2021, 9, e2020EF001902. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Gao, Z.; Pan, Z.; Zhang, X. Historical and Projected Changes in Temperature Extremes Over China and the Inconsistency Between Multimodel Ensembles and Individual Models from CMIP5 and CMIP6. Earth Space Sci. 2023, 10, e2022EA002514. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Simolo, C.; Corti, S. Quantifying the Role of Variability in Future Intensification of Heat Extremes. Nat. Commun. 2022, 13, 7930. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, X.; Giorgi, F.; Chen, D. Changes of Effective Temperature and Cold/Hot Days in Late Decades over China Based on a High Resolution Gridded Observation Dataset. Int. J. Climatol. 2017, 37, 788–800. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wang, A.; Kong, X.; Chen, Y.; Ma, X. Evaluation of Soil Moisture in CMIP6 Multimodel Simulations Over Conterminous China. J. Geophys. Res. Atmos. 2022, 127, e2022JD037072. [Google Scholar] [CrossRef]
- Ali, S.; Cheema, M.J.M.; Waqas, M.M.; Waseem, M.; Awan, U.K.; Khaliq, T. Changes in Snow Cover Dynamics over the Indus Basin: Evidences from 2008 to 2018 MODIS NDSI Trends Analysis. Remote Sens. 2020, 12, 2782. [Google Scholar] [CrossRef]
- van den Hurk, B.; Kim, H.; Krinner, G.; Seneviratne, S.I.; Derksen, C.; Oki, T.; Douville, H.; Colin, J.; Ducharne, A.; Cheruy, F.; et al. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project—Aims, Setup and Expected Outcome. Geosci. Model Dev. 2016, 9, 2809–2832. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Xu, L.; Dirmeyer, P. Snow-Atmosphere Coupling Strength in a Global Atmospheric Model. Geophys. Res. Lett. 2011, 38, L13401. [Google Scholar] [CrossRef]
- Benson, D.O.; Dirmeyer, P.A. The Soil Moisture–Surface Flux Relationship as a Factor for Extreme Heat Predictability in Subseasonal to Seasonal Forecasts. J. Clim. 2023, 36, 6375–6392. [Google Scholar] [CrossRef]
Model Name | Resolution | Country |
---|---|---|
AWI-CM-1-1-MR | 384 × 192 | Germany |
CanESM5 | 128 × 64 | Canada |
CNRM-CM6-1 | 256 × 128 | France |
EC-Earth3 | 512 × 256 | Sweden and 9 other European countries |
GISS-E2-1-G | 144 × 90 | USA |
IPSL-CM6A-LR | 144 × 143 | France |
MIROC6 | 256 × 128 | Japan |
MPI-ESM1-2-HR | 384 × 192 | Germany |
MRI-ESM2-0 | 320 × 160 | Japan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhou, J.; Wen, J.; Yang, G.; Chen, Y.; Li, X.; Li, X. Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China. Atmosphere 2025, 16, 925. https://doi.org/10.3390/atmos16080925
Liu S, Zhou J, Wen J, Yang G, Chen Y, Li X, Li X. Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China. Atmosphere. 2025; 16(8):925. https://doi.org/10.3390/atmos16080925
Chicago/Turabian StyleLiu, Sikai, Juan Zhou, Jun Wen, Guobin Yang, Yangruixue Chen, Xing Li, and Xiao Li. 2025. "Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China" Atmosphere 16, no. 8: 925. https://doi.org/10.3390/atmos16080925
APA StyleLiu, S., Zhou, J., Wen, J., Yang, G., Chen, Y., Li, X., & Li, X. (2025). Performance of CMIP6 Models in Capturing Summer Maximum Temperature Variability over China. Atmosphere, 16(8), 925. https://doi.org/10.3390/atmos16080925