Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Land Use/Land Cover Classification Scheme
2.3. Data Processing and Analysis
2.4. Quantitative Assessment of Temporal LULC Dynamics
3. Results
3.1. Land Use and Land Cover Classification
3.2. Accuracy Assessment of the Classified LULC
3.3. Multi-Decadal Land Use and Land Cover Change Dynamics
3.4. Statistical Evaluation of the Classified LULC
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Chen, C.; Zhang, Z.; Lu, C.; Wang, L.; He, X.; Chu, Y.; Chen, J. Changes of the Spatial and Temporal Characteristics of Land-Use Landscape Patterns Using Multi-Temporal Landsat Satellite Data: A Case Study of Zhoushan Island, China. Ocean Coast. Manag. 2021, 213, 105842. [Google Scholar] [CrossRef]
- Ewunetu, A.; Simane, B.; Teferi, E. Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River. Sustainability 2021, 13, 2244. [Google Scholar] [CrossRef]
- Arneth, A.; Denton, F.; Agus, F.; Elbehri, A.; Erb, K.; Elasha, B.O.; Rahimi, M.; Rounsevell, M.; Spence, A.; Valentini, R.; et al. Framing and Context. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019; Chapter 1. [Google Scholar]
- Luyssaert, S.; Jammet, M.; Pongratz, J.; Cescatti, A.; Bastos, A.; Scholze, M. Land Management and Land-Cover Change Have Impacts of Similar Magnitude on Surface Temperature. Nat. Clim. Change 2014, 4, 389–393. [Google Scholar] [CrossRef]
- Arneth, A.; Brown, C.; Rounsevell, M.D.A. Global Models of Human Decision-Making for Land-Based Mitigation and Adaptation Assessment. Nat. Clim. Change 2014, 4, 550–557. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global Land Use Change, Economic Globalization, and the Looming Land Scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andres, R.J.; Boden, T.; Conway, T.; Houghton, R.A.; House, J.I.; Marland, G.; Peters, G.P.; van der Werf, G.R.; Ahlström, A. The Global Carbon Budget 1959–2011. Earth Syst. Sci. Data 2013, 5, 165–185. [Google Scholar] [CrossRef]
- Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; et al. Land-Use Protection for Climate Change Mitigation. Nat. Clim. Change 2014, 4, 1095–1098. [Google Scholar] [CrossRef]
- Powers, R.P.; Jetz, W. Global Habitat Loss and Extinction Risk of Terrestrial Vertebrates under Future Land-Use-Change Scenarios. Nat. Clim. Change 2019, 9, 323–329. [Google Scholar] [CrossRef]
- Hertog, S.; Gerland, P.; Wilmoth, J. India Overtakes China as the World’s Most Populous Country; Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2023; Policy Brief No. 153. [Google Scholar]
- Sodhi, N.S.; Posa, M.R.C.; Lee, T.M.; David, B.; Koh, L.P.; Brook, B.W. The State and Conservation of Southeast Asian Biodiversity. Biodivers. Conserv. 2010, 19, 317–328. [Google Scholar] [CrossRef]
- Chowdhury, M.; Hasan, M.E.; Abdullah-Al-Mamun, M.M. Land Use/Land Cover Change Assessment of Halda Watershed Using Remote Sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2020, 23, 63–75. [Google Scholar] [CrossRef]
- Gaigbe-Togbe, V.; Bassarsky, L.; Gu, D.; Spoorenberg, T.; Zeifman, L. World Population Prospects; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022. [Google Scholar]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and Modelling of Urban Sprawl Using Remote Sensing and GIS Techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Mondal, I.; Thakur, S.; Ghosh, P.; De, T.K.; Bandyopadhyay, J. Land Use/Land Cover Modeling of Sagar Island, India Using Remote Sensing and GIS Techniques. In Emerging Technologies in Data Mining and Information Security: Proceedings of IEMIS 2018; Springer: Singapore, 2019; pp. 771–785. [Google Scholar]
- Mushtaq, F.; Pandey, A.C. Assessment of Land Use/Land Cover Dynamics vis-à-vis Hydrometeorological Variability in Wular Lake Environs, Kashmir Valley, India Using Multitemporal Satellite Data. Arab. J. Geosci. 2014, 7, 4707–4715. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2019. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Turner, B.L. Ecological Succession in a Changing World. J. Ecol. 2019, 107, 503–509. [Google Scholar] [CrossRef]
- Perring, M.P.; Standish, R.J.; Hobbs, R.J. Incorporating Novelty and Novel Ecosystems into Restoration Planning and Practice in the 21st Century. Ecol. Process. 2013, 2, 18. [Google Scholar] [CrossRef]
- Arefin, R.; Meshram, S.G.; Seker, D.Z. River Channel Migration and Land-Use/Land-Cover Change for Padma River at Bangladesh: A RS- and GIS-Based Approach. Int. J. Environ. Sci. Technol. 2021, 18, 3109–3126. [Google Scholar] [CrossRef]
- Naha, S.; Rico-Ramirez, M.A.; Rosolem, R. Quantifying the Impacts of Land Cover Change on Hydrological Responses in the Mahanadi River Basin in India. Hydrol. Earth Syst. Sci. 2021, 25, 6339–6357. [Google Scholar] [CrossRef]
- Betts, M.G.; Wolf, C.; Pfeifer, M.; Banks-Leite, C.; Arroyo-Rodríguez, V.; Ribeiro, D.B.; Barlow, J.; Eigenbrod, F.; Faria, D.; Fletcher, R.J., Jr.; et al. Extinction Filters Mediate the Global Effects of Habitat Fragmentation on Animals. Science 2019, 366, 1236–1239. [Google Scholar] [CrossRef]
- Jiguet, F.; Gadot, A.-S.; Julliard, R.; Newson, S.E.; Couvet, D. Climate Envelope, Life History Traits and the Resilience of Birds Facing Global Change. Glob. Change Biol. 2007, 13, 1672–1684. [Google Scholar] [CrossRef]
- Kumar, M.; Arup, D.; Richa, S.; Supratik, S. Change Detection Analysis Using Multi-Temporal Satellite Data of Poba Reserve Forest, Assam and Arunachal Pradesh. Int. J. Geomat. Geosci. 2014, 4, 517–527. [Google Scholar]
- Rawat, J.S.; Biswas, V.; Kumar, M. Changes in Land Use/Cover Using Geospatial Techniques: A Case Study of Ramnagar Town Area, District Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar] [CrossRef]
- Adeel, M. Methodology for Identifying Urban Growth Potential Using Land Use and Population Data: A Case Study of Islamabad Zone IV. Procedia Environ. Sci. 2010, 2, 32–41. [Google Scholar] [CrossRef]
- Ayele, G.T.; Demessie, S.S.; Mengistu, K.T.; Tilahun, S.A.; Melesse, A.M. Multitemporal Land Use/Land Cover Change Detection for the Batena Watershed, Rift Valley Lakes Basin, Ethiopia. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Cham, Switzerland, 2016; pp. 51–72. [Google Scholar]
- Hassan, Z.; Rabia, S.; Sheikh, A.; Amir, H.M.; Neelam, A.; Amna, B.; Summra, E. Dynamics of Land Use and Land Cover Change (LULCC) Using Geospatial Techniques: A Case Study of Islamabad, Pakistan. SpringerPlus 2016, 5, 812. [Google Scholar] [CrossRef]
- Weng, Q.A. A Remote Sensing-GIS Evaluation of Urban Expansion and Its Impacts on the Temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Alemayehu, F.; Taha, N.; Nyssen, J.; Girma, A.; Zenebe, A.; Behailu, M.; Deckers, S.; Poesen, J. The Impacts of Watershed Management on Land Use and Land Cover Dynamics in Eastern Tigray (Ethiopia). Resour. Conserv. Recycl. 2009, 53, 192–198. [Google Scholar] [CrossRef]
- Cheruto, M.C.; Kauti, M.K.; Kisangau, P.D.; Kariuki, P. Assessment of Land Use and Land Cover Change Using GIS and Remote Sensing Techniques: A Case Study of Makueni County, Kenya. J. Remote Sens. GIS 2016, 5, 175. [Google Scholar] [CrossRef]
- Ginblett, R. Modelling Human-Landscape Interactions in Spatially Complex Settings: Where Are We and Where Are We Going? In Proceedings of the MODSIM05, Melbourne, Australia, 12–15 December 2005; pp. 11–20. [Google Scholar]
- Lambin, E.F.; Geist, H.J. Global Land-Use and Land-Cover Change: What Have We Learned So Far? Glob. Change Newsl. 2001, 46, 27–30. [Google Scholar]
- Liang, S.; Fang, H.; Morisette, J.T.; Chen, M.; Shuey, C.J.; Walthall, C.L.; Daughtry, C.S. Atmospheric Correction of Landsat ETM+ Land Surface Imagery. II. Validation and Applications. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2736–2746. [Google Scholar] [CrossRef]
- Meshesha, T.W.; Tripathi, S.K.; Khare, D.M. Analyses of Land Use and Land Cover Change Dynamics Using GIS and Remote Sensing During 1984 and 2015 in the Beressa Watershed, Northern Central Highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Woldeamlak, B. Land Cover Dynamics Since the 1950s in Chemoga Watershed, Blue Nile Basin, Ethiopia. Mt. Res. Dev. 2002, 22, 263–269. [Google Scholar]
- Tiwari, M.K.; Saxena, A. Change Detection of Land Use/Land Cover Pattern in and around Mandideep and Obedullaganj Area, Using Remote Sensing and GIS. Int. J. Technol. Eng. Syst. 2011, 2, 398–402. [Google Scholar]
- Bunyangha, J.; Majaliwa, M.J.G.; Muthumbi, A.W.; Gichuki, N.N.; Egeru, A. Past and Future Land Use/Land Cover Changes from Multi-Temporal Landsat Imagery in Mpologoma Catchment, Eastern Uganda. Egypt. J. Remote Sens. Space Sci. 2021, 24, 675–685. [Google Scholar] [CrossRef]
- Chamling, M.; Bera, B. Spatio-Temporal Patterns of Land Use/Land Cover Change in the Bhutan–Bengal Foothill Region between 1987 and 2019: Study towards Geospatial Applications and Policy Making. Earth Syst. Environ. 2020, 4, 117–130. [Google Scholar] [CrossRef]
- Kafy, A.A.; Naim, M.N.H.; Subramanyam, G.; Ahmed, N.U.; Al Rakib, A.; Kona, M.A.; Sattar, G.S. Cellular Automata Approach in Dynamic Modelling of Land Cover Changes Using RapidEye Images in Dhaka, Bangladesh. Environ. Chall. 2021, 5, 100278. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Anders, J.; Schneider, C. Monitoring of Changes in Land Use/Land Cover in Syria from 2010 to 2018 Using Multitemporal Landsat Imagery and GIS. Land 2020, 9, 226. [Google Scholar] [CrossRef]
- Rafiq, M.; Mishra, A.K.; Meer, M.S. On Land-Use and Land-Cover Changes over Lidder Valley in Changing Environment. Ann. GIS 2018, 24, 275–285. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Halder, A.; Ghosh, A.; Ghosh, S. Supervised and unsupervised landuse map generation from remotely sensed images using ant-based systems. Appl. Soft Comput. 2011, 11, 5770–5781. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Dongmo, Z.N.; N’Goran, P.K.; Ekodeck, H.; Mengamenya, A.; Kuehl, H.; Sop, T.; Tracz, W.; Agunbiade, M.; Elvis, T. Effects of Land Cover Change on Great Apes Distribution at the Lobéké National Park and Its Surrounding Forest Management Units, South-East Cameroon: A 13-Year Time Series Analysis. Sci. Rep. 2019, 9, 1445. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Szuster, B.W.; Chen, Q.; Borger, M. A Comparison of Classification Techniques to Support Land Cover and Land Use Analysis in Tropical Coastal Zones. Appl. Geogr. 2011, 31, 525–532. [Google Scholar] [CrossRef]
- Aplin, P.; Atkinson, P.M. Predicting Missing Field Boundaries to Increase Per-Field Classification Accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 141–149. [Google Scholar] [CrossRef]
- Talukdar, S.; Uddin, K.; Akhter, S.; Ziaul, S.; Reza, A.; Islam, T.; Mallick, J. Modeling Fragmentation Probability of Land-Use and Land-Cover Using the Bagging, Random Forest and Random Subspace in the Teesta River. Ecol. Indic. 2021, 132, 108341. [Google Scholar] [CrossRef]
- Bhattacharya, R.K.; Das Chatterjee, N.; Das, K. Land Use and Land Cover Change and Its Resultant Erosion Susceptible Level: An Appraisal Using RUSLE and Logistic Regression in a Tropical Plateau Basin of West Bengal, India. Environ. Dev. Sustain. 2021, 23, 1411–1446. [Google Scholar] [CrossRef]
- Thakkar, A.K.; Desai, V.R.; Patel, A.; Potdar, M.B. Post-Classification Corrections in Improving the Classification of Land Use/Land Cover of Arid Region Using RS and GIS: The Case of Arjuni Watershed, Gujarat, India. Egypt. J. Remote Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef]
- Nagendra, H.; Munroe, D.K.; Southworth, J. From Pattern to Process: Landscape Fragmentation and the Analysis of Land Use/Land Cover Change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [Google Scholar] [CrossRef]
- Dwivedi, K.K. Incredible Dibru-Saikhowa National Park; Dibru Saikhowa Conservation Society: Assam, India, 2009. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Rahmani, A.R. Threatened Birds of India: Their Conservation Requirements; Bombay Natural History Society, Oxford University Press: Mumbai, India, 2012. [Google Scholar]
- Gogoi, P.; Sharma, N. Spatio-Temporal Study of Morpho-Dynamics of the Brahmaputra River along Its Majuli Island Reach. Environ. Chall. 2021, 5, 100217. [Google Scholar]
- Sharma, M.; Devi, A.; Badola, R.; Sharma, R.K.; Hussain, S.A. Impact of Management Practices on the Tropical Riverine Grasslands of Brahmaputra Floodplains: Implications for Conservation. Ecol. Indic. 2023, 151, 110265. [Google Scholar] [CrossRef]
- Sinha, A.; Nath, A.; Lahkar, B.P.; Brahma, N.; Sarma, H.K.; Swargowari, A. Understanding the Efficacy of Different Techniques to Manage Chromolaena odorata L., an Invasive Alien Plant in the Sub-Himalayan Tall Grasslands: Toward Grassland Recovery. Ecol. Eng. 2022, 179, 106618. [Google Scholar] [CrossRef]
- BirdLife International. Houbaropsis bengalensis. The IUCN Red List of Threatened Species 2018, e.T22692015A130184896. Available online: https://www.iucnredlist.org/species/22692015/130184896 (accessed on 27 June 2025).
- Timmins, R.; Duckworth, J.W.; Samba Kumar, N.; Anwarul Islam, M.; Sagar Baral, H.; Long, B.; Maxwell, A.; Axis porcinus. The IUCN Red List of Threatened Species 2015, e.T41784A22157664. Available online: https://www.iucnredlist.org/species/41784/22157664 (accessed on 27 June 2025).
- BirdLife International. Laticilla cinerascens (Amended Version of 2016 Assessment). The IUCN Red List of Threatened Species 2017, e.T22735351A111366336. Available online: https://www.iucnredlist.org/species/22735351/111366336 (accessed on 27 June 2025).
- Das, R.K. Diversity, Distribution and Density of Tropical Grassland Birds in Dibru-Saikhowa Biosphere Reserve, Assam. Ph.D. Thesis, Department of Geography, Gauhati University, Assam, India, 2011. [Google Scholar]
- Abebe, G.; Getachew, D.; Ewunetu, A. Analysing land use/land cover changes and its dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Appl. Sci. 2022, 4, 30. [Google Scholar] [CrossRef]
- Mukherjee, T.; Sharma, L.K.; Thakur, M.; Saha, G.K.; Chandra, K. Changing landscape configuration demands ecological planning: Retrospect and prospect for megaherbivores of North Bengal. PLoS ONE 2019, 14, e0225398. [Google Scholar] [CrossRef] [PubMed]
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land Use/Land Cover Changes and Their Causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Ewunetu, A.; Simane, B.; Teferi, E.; Zaitchik, B.F. Land Cover Change in the Blue Nile River Headwaters: Farmers’ Perceptions, Pressures, and Satellite-Based Mapping. Land 2021, 10, 68. [Google Scholar] [CrossRef]
- Xie, H.; Huang, H. Classification of Land Cover Remote-Sensing Images Based on Pattern Recognition. Sci. Program. 2022, 2022, 8319692. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E. Resolution Dependent Errors in Remote Sensing of Cultivated Areas. Remote Sens. Environ. 2006, 103, 203–217. [Google Scholar] [CrossRef]
- Adhiambo, M.P.; Kironchi, G.; Mureithi, S.; Kathumo, V. Assessing Land Use and Land Cover Change Using Participatory Geographical Information System (PGIS) Approach in Nguruman Sub-Catchment, Kajiado North Subcounty, Kenya. J. Geogr. Reg. Plan. 2017, 10, 219–228. [Google Scholar]
- Gaur, S.; Singh, R. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability 2023, 15, 903. [Google Scholar] [CrossRef]
- Afuye, G.A.; Nduku, L.; Kalumba, A.M.; Santos, C.A.G.; Orimoloye, I.R.; Ojeh, V.N.; Thamaga, K.H.; Sibandze, P. Global Trend Assessment of Land Use and Land Cover Changes: A Systematic Approach to Future Research Development and Planning. J. King Saud Univ. Sci. 2024, 36, 103262. [Google Scholar] [CrossRef]
- Buyadi, S.N.A.; Mohd, W.M.N.W.; Misni, A. Green Space’s Growth Impact on the Urban Microclimate. Procedia Soc. Behav. Sci. 2013, 105, 547–557. [Google Scholar] [CrossRef]
- Fedderke, J.W.; Goldschmidt, M. Does Massive Funding Support of Researchers Work? Evaluating the Impact of the South African Research Chair Funding Initiative. Res. Policy 2015, 44, 467–482. [Google Scholar] [CrossRef]
- BirdLife International. Site Factsheet: Dibru-Saikhowa Complex. Available online: https://datazone.birdlife.org/site/factsheet/dibru-saikhowa-complex (accessed on 5 June 2025).
- Bhatt, C.M.; Srinivasa Rao, G.; Begum, A.; Sree, P.M.; Shivaprasadsharma, S.; Prasanna, L.; Veerubhotla, B. Satellite Images for Extraction of Flood Disaster Footprints and Assessing the Disaster Impact: Brahmaputra Floods of June–July 2012, Assam, India. Curr. Sci. 2013, 104, 1692–1700. [Google Scholar]
- Bhuyan, N.; Sajjad, H.; Sharma, Y.; Sharma, A.; Ahmed, R. Assessing Socio-Economic Vulnerability to Riverbank Erosion in the Middle Brahmaputra Floodplains of Assam, India. Environ. Dev. 2024, 51, 101027. [Google Scholar] [CrossRef]
- Abedin, I.; Mukherjee, T.; Kang, H.E.; Yoon, T.H.; Kim, H.W.; Kundu, S. Unraveling the Unknown: Adaptive Spatial Planning to Enhance Climate Resilience for the Endangered Swamp Grass-Babbler (Laticilla cinerascens) with Habitat Connectivity and Complexity Approach. Heliyon 2024, 10, e30273. [Google Scholar] [CrossRef]
- Bora, S.S.; Sharma, K.K.; Borah, K.; Saud, R.K. Opportunities and Challenges of Forage Cultivation in Assam—A Review. Forage Res. 2020, 45, 251–257. [Google Scholar]
- Tamang, W.; Ghosh, A.; Sarkar, S.; Gurung, N.; Subba, S.; Sahu, S. Broom Grass: A Valuable Yet Overlooked Crop in Sikkim and Darjeeling Himalayas. Agri-India Today 2024, 4, 148–153. [Google Scholar]
- Das, D.; Kalita, J.; Rajbongshi, K.; Saikia, H. Assessing the Impact of Domestic Cattle Influx on Grassland Habitat Using Remote Sensing and Soil Physical Parameters: A Study in Manas National Park. Indian For. 2024, 150, 17. [Google Scholar]
- Lahiri, S.; Roy, A.; Fleischman, F. Grassland Conservation and Restoration in India: A Governance Crisis. Restor. Ecol. 2022, 31, e13858. [Google Scholar] [CrossRef]
- Birken, A.S.; Cooper, D.J. Processes of Tamarix Invasion and Floodplain Development along the Lower Green River, Utah. Ecol. Appl. 2006, 16, 1103–1120. [Google Scholar] [CrossRef]
- Flood and Erosion Management Agency of Assam. India: Climate Resilient Brahmaputra Integrated Flood and Riverbank Erosion Risk Management Project in Assam; Project No. 56283-001; Asian Development Bank: Manila, Philippines, 2025. [Google Scholar]
- Nath, S.K. Concern and Conservation Perspective in Laokhowa Wildlife Sanctuary of Nagaon District, Assam, India. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 6295. [Google Scholar]
- Nongmaithem, R.; Lodhi, M.S.; Samal, P.K.; Dhyani, P.P.; Sharma, S. Faunal Diversity and Threats of the Dibru-Saikhowa Biosphere Reserve: A Study from Assam, India. Int. J. Conserv. Sci. 2016, 7, 523–532. [Google Scholar]
- Saeed, U.; Das, R.; Ali, S.Z.; Mani, A.; Badola, R.; Hussain, S.A. Evolving Landscapes: Long-Term Land Use and Climate-Induced Changes in the Brahmaputra Floodplain, India. Front. Environ. Sci. 2025, 13, 1550450. [Google Scholar] [CrossRef]
Year | Satellite | Sensor | Path/Row | Date of Acquisition | Cloud Cover (%) |
---|---|---|---|---|---|
2024 | Landsat 8 | OLI/TIRS | 135/041 | 24 December 2024 | 4.60 |
Landsat 8 | OLI/TIRS | 134/041 | 24 December 2024 | 4.53 | |
2013 | Landsat 8 | OLI/TIRS | 135/041 | 26 December 2013 | 28.76 |
Landsat 8 | OLI/TIRS | 134/041 | 26 December 2013 | 8.38 | |
2000 | Landsat 5 | TM | 135/041 | 22 December 2000 | 6.00 |
Landsat 5 | TM | 134/041 | 22 December 2000 | 6.00 |
Category | 2000 (in km2) | Proportion in 2000 (in %) | 2013 (in km2) | Proportion in 2013 (in %) | 2024 (in km2) | Proportion in 2024 (in %) |
---|---|---|---|---|---|---|
Grasslands | 97.88 | 28.78 | 16.69 | 4.90 | 35.29 | 10.38 |
Degraded Forests | 50.19 | 14.76 | 75.56 | 22.18 | 80.52 | 23.67 |
Semi-Evergreen Forest | 87 | 25.58 | 69.78 | 20.49 | 59.8 | 17.58 |
Shrubland | 8.27 | 2.43 | 81.31 | 23.87 | 27.84 | 8.18 |
Cropland | 5.21 | 1.53 | 8.51 | 2.50 | 13.61 | 4.00 |
Built-up | 15.6 | 4.59 | 7.19 | 2.11 | 4.72 | 1.39 |
Bareland | 42.39 | 12.46 | 47.24 | 13.87 | 65.23 | 19.18 |
Water Areas | 33.54 | 9.86 | 34.33 | 10.08 | 53.13 | 15.62 |
Category | 2000 | 2013 | 2024 | Δ from 2000 to 2013 | Δ from 2013 to 2024 |
---|---|---|---|---|---|
Grasslands | 97.88 | 16.69 | 35.29 | −81.19 | 18.6 |
Degraded Forests | 50.19 | 75.56 | 80.52 | 25.37 | 4.96 |
Semi-Evergreen Forest | 87 | 69.78 | 59.8 | −17.22 | −9.98 |
Shrubland | 8.27 | 81.31 | 27.84 | 73.04 | −53.47 |
Cropland | 5.21 | 8.51 | 13.61 | 3.3 | 5.1 |
Built-Up | 15.6 | 7.19 | 4.72 | −8.41 | −2.47 |
Bareland | 42.39 | 47.24 | 65.23 | 4.85 | 17.99 |
Water Areas | 33.54 | 34.33 | 53.13 | 0.79 | 18.8 |
Transition Matrix of Change Detection from 2000 to 2013 | |||||||||
---|---|---|---|---|---|---|---|---|---|
2013 | Grassland | Degraded Forest | Semi-Evergreen Forest | Shrubland | Cropland | Built-Up | Bareland | Water Areas | |
2000 | |||||||||
Grassland | 8.15 | 29.56 | 5.29 | 29.94 | 3.17 | 2.63 | 9.63 | 10.78 | |
Degraded Forest | 1.16 | 16.92 | 13.00 | 10.87 | 2.02 | 0.25 | 0.93 | 1.57 | |
Semi-Evergreen Forest | 0.55 | 21.99 | 51.43 | 12.33 | 1.14 | 0.17 | 1.56 | 1.84 | |
Shrubland | 1.01 | 1.29 | 0.20 | 2.90 | 0.36 | 0.16 | 0.60 | 1.38 | |
Cropland | 0.24 | 0.80 | 0.07 | 2.73 | 0.40 | 0.11 | 0.27 | 0.32 | |
Built-Up | 1.06 | 1.64 | 0.21 | 6.35 | 1.07 | 0.47 | 2.25 | 1.81 | |
Bareland | 2.19 | 1.82 | 0.00 | 10.50 | 0.15 | 2.11 | 17.35 | 8.26 | |
Water Areas | 1.93 | 1.38 | 0.01 | 5.69 | 0.03 | 1.03 | 14.88 | 8.40 | |
Transition Matrix of Change Detection from 2013 to 2024 | |||||||||
2024 | Grassland | Degraded Forest | Semi-Evergreen Forest | Shrubland | Cropland | Built-Up | Bareland | Water Areas | |
2013 | |||||||||
Grassland | 4.97 | 2.40 | 0.58 | 3.60 | 1.25 | 0.45 | 3.66 | 3.19 | |
Degraded Forest | 3.24 | 37.78 | 17.85 | 4.85 | 1.04 | 0.57 | 2.40 | 3.58 | |
Semi-Evergreen Forest | 1.77 | 27.48 | 38.58 | 0.05 | 0.16 | 0.02 | 0.07 | 1.08 | |
Shrubland | 17.67 | 11.46 | 2.88 | 11.91 | 8.37 | 2.19 | 15.20 | 15.11 | |
Cropland | 0.57 | 0.09 | 0.00 | 2.85 | 1.42 | 0.30 | 0.93 | 1.18 | |
Built-Up | 0.99 | 0.45 | 0.02 | 2.33 | 0.24 | 0.30 | 1.68 | 0.92 | |
Bareland | 3.74 | 0.12 | 0.00 | 1.74 | 0.77 | 0.47 | 24.24 | 15.41 | |
Water Areas | 2.78 | 1.02 | 0.03 | 0.54 | 0.30 | 0.24 | 16.91 | 12.57 |
Strengths | Weaknesses |
---|---|
-Designated as both a national park and a biosphere reserve. -High biodiversity, including several threatened and endemic species. -Presence of community-based governance structures and local conservation groups | -Limited enforcement capacity and inadequate staff presence for monitoring. -Insufficient logistical support, equipment, and surveillance infrastructure. -Limited scientific research and ecological monitoring. |
Opportunities | Threats |
-Targeted habitat restoration and invasive species management -Improving collaboration between local communities and the forest department through training, awareness, and trust-building initiatives -Development of ecotourism and sustainable livelihood opportunities | -Delayed rehabilitation of forest villages outside of the national park. -Continued erosion and siltation due to the dynamic riverine processes of Brahmaputra and its tributaries. -Logging and unregulated fishing within and around its boundary. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedin, I.; Mukherjee, T.; Kundu, S.; Baruah, S.; Narzary, P.K.; Abedin, J.; Singha, H. Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains. Earth 2025, 6, 78. https://doi.org/10.3390/earth6030078
Abedin I, Mukherjee T, Kundu S, Baruah S, Narzary PK, Abedin J, Singha H. Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains. Earth. 2025; 6(3):78. https://doi.org/10.3390/earth6030078
Chicago/Turabian StyleAbedin, Imon, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin, and Hilloljyoti Singha. 2025. "Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains" Earth 6, no. 3: 78. https://doi.org/10.3390/earth6030078
APA StyleAbedin, I., Mukherjee, T., Kundu, S., Baruah, S., Narzary, P. K., Abedin, J., & Singha, H. (2025). Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains. Earth, 6(3), 78. https://doi.org/10.3390/earth6030078