Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,010)

Search Parameters:
Keywords = GC–MS/MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5085 KB  
Article
Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential
by Panagiotis Georgios Kanellopoulos, Eirini Chrysochou and Evangelos Bakeas
Atmosphere 2025, 16(10), 1162; https://doi.org/10.3390/atmos16101162 (registering DOI) - 4 Oct 2025
Abstract
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed [...] Read more.
This study investigates the atmospheric concentrations, spatiotemporal distribution, the associated health risks and the ozone formation potential of benzene, toluene, ethylbenzene and xylenes (BTEX) across 33 monitoring sites of Greece over a one-year period. Samples were collected using passive diffusive samplers and analyzed by gas chromatography–mass spectrometry (GC-MS). The highest BTEX concentrations were detected during winter and autumn, particularly in urban and industrial areas such as in the Attica and Thessaloniki regions, likely due to enhanced emissions from combustion-related activities and reduced atmospheric dispersion. Health risk assessment revealed that hazard quotient (HQ) values for all compounds were within the acceptable limits. However, lifetime cancer risk (LTCR) for benzene exceeded the recommended limits in multiple regions during the colder seasons, indicating notable public health concern. Source apportionment using diagnostic ratios suggested varying seasonal emission sources, with vehicular emissions prevailing in winter and marine or industrial emissions in summer. Xylenes and toluene exhibited the highest ozone formation potential (OFP), underscoring their role in secondary pollutant formation. These findings demonstrate the need for seasonally adaptive air quality strategies, especially in Mediterranean urban and semi-urban environments. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Graphical abstract

21 pages, 3716 KB  
Article
A Synergistic Approach with Doxycycline and Spirulina Extracts in DNBS-Induced Colitis: Enhancing Remission and Controlling Relapse
by Meriem Aziez, Mohamed Malik Mahdjoub, Tahar Benayad, Ferroudja Abbas, Sarah Hamid, Hamza Moussa, Ibrahima Mamadou Sall, Hichem Tahraoui, Abdeltif Amrane and Noureddine Bribi
J. Xenobiot. 2025, 15(5), 160; https://doi.org/10.3390/jox15050160 - 3 Oct 2025
Abstract
Background: Chronic relapsing colitis involves immune dysregulation and oxidative stress, making monotherapies often insufficient. This study investigates a therapeutic strategy combining doxycycline (Dox), an immunomodulatory antibiotic, with Arthrospira platensis extracts to enhance anti-inflammatory and antioxidant effects, improving remission and controlling relapse. Methods: Ethanolic [...] Read more.
Background: Chronic relapsing colitis involves immune dysregulation and oxidative stress, making monotherapies often insufficient. This study investigates a therapeutic strategy combining doxycycline (Dox), an immunomodulatory antibiotic, with Arthrospira platensis extracts to enhance anti-inflammatory and antioxidant effects, improving remission and controlling relapse. Methods: Ethanolic (ES) and aqueous (AS) extracts of A. platensis were chemically characterized by GC-MS after derivatization. Colitis was induced in mice using two intrarectal DNBS administrations spaced 7 days apart, with oral treatments (Dox, ES, AS, or combinations) given daily between doses. Disease progression was evaluated through clinical monitoring, histological scoring, and biochemical analysis, including MPO and CAT activities, as well as NO, MDA, and GSH levels. Results: GC-MS identified 16 bioactive compounds in each extract. ES contained mainly fatty acids and amino acids, whereas AS was rich in polysaccharides and phytol. Combined doxycycline and A. platensis extracts significantly enhanced recovery in reactivated DNBS colitis compared to monotherapies. Each treatment alone reduced disease severity, but their combination showed synergistic effects, significantly reducing disease activity index (p < 0.001), restoring mucosal integrity, and modulating inflammatory and oxidative markers (p < 0.001). Conclusion: Doxycycline potentiates the anti-colitic effects of A. platensis extracts via complementary mechanisms, offering a promising combination for managing relapsing colitis. Full article
Show Figures

Figure 1

15 pages, 1190 KB  
Article
Tropical Weathering Effects on Neat Gasoline: An Analytical Study of Volatile Organic Profiles
by Khairul Osman, Naadiah Ahmad Mazlani, Gina Francesca Gabriel, Noor Hazfalinda Hamzah, Rogayah Abu Hassan, Dzulkiflee Ismail and Wan Nur Syuhaila Mat Desa
Chemosensors 2025, 13(10), 363; https://doi.org/10.3390/chemosensors13100363 - 3 Oct 2025
Abstract
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most [...] Read more.
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most research on gasoline weathering has been conducted in controlled laboratory settings in temperate climates. However, the effects of tropical conditions on the rate of gasoline weathering and the resulting chemical composition of volatiles remain largely unexplored. Understanding how tropical environmental factors alter gasoline weathering is essential for accurate fire debris interpretation in such regions. This study investigates how tropical climates impact gasoline weathering indoors and outdoors. Weathered samples were prepared by volume reduction method, gradually evaporating gasoline from 10% to 95%. Indoor samples were exposed to room temperature, while outdoor samples were left in open space under natural tropical conditions. Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed chromatographic shifts in heavier compounds (C3–C4 alkylbenzenes) compared to lighter ones like toluene as weathering progressed. Correlation between indoor and outdoor samples was high (>0.970) at 10–50% weathering but declined (<0.600) at 90–95%, indicating differing patterns. All target compounds remained detectable across all samples. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

16 pages, 1349 KB  
Article
Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars
by Yucheng Zheng, Yuping Zhang, Yun Zou, Yutao Shi, Jianming Zhang, Huili Deng, Zhanhua Ji, Zhenying Liang and Xinlei Li
Horticulturae 2025, 11(10), 1196; https://doi.org/10.3390/horticulturae11101196 - 3 Oct 2025
Abstract
White tea quality is primarily determined by its chemical composition, which varies significantly among cultivars. This study aimed to elucidate the chemical basis underlying quality differentiation in Baimudan white tea produced from three major Fujian tea cultivars: “Zhenghe Dabaicha” (ZHDB), “Fuan Dabaicha” (FADB), [...] Read more.
White tea quality is primarily determined by its chemical composition, which varies significantly among cultivars. This study aimed to elucidate the chemical basis underlying quality differentiation in Baimudan white tea produced from three major Fujian tea cultivars: “Zhenghe Dabaicha” (ZHDB), “Fuan Dabaicha” (FADB), and “Fuding Dahaocha” (FDDH). Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), liquid chromatography–mass spectrometry (LC-MS), and quantitative descriptive analysis (QDA) were employed to characterize volatile compounds, amino acids, and saccharides. Odor Activity Values (OAVs) and Taste Activity Values (TAVs) were calculated to identify key contributors to sensory perception. Results showed that theanine, glutamic acid, asparagine, and serine were the primary contributors to umami taste, especially in ZHDB and FADB. Sweetness differences were largely due to sucrose, serine, and asparagine. OAV analysis further identified 22 critical aroma compounds: methyl salicylate, linalool, and β-ionone predominantly imparted floral notes, while β-ocimene, benzaldehyde, and geraniol enhanced sweet and fruity aromas. In contrast, (Z)-3-hexenol, (Z)-3-hexenal, and (E)-2-hexenal contributed grassy and refreshing characteristics, together defining the unique aroma profiles of each cultivar. This study provides an integrated chemical and sensory framework for understanding white tea quality variation, offering a theoretical basis for targeted flavor modulation. Full article
Show Figures

Figure 1

20 pages, 5025 KB  
Article
Characterization of Bulgarian Rosehip Oil by GC-MS, UV-VIS Spectroscopy, Colorimetry, FTIR Spectroscopy, and 3D Excitation–Emission Fluorescence Spectra
by Krastena Nikolova, Tinko Eftimov, Natalina Panova, Veselin Vladev, Samia Fouzar and Kristian Nikolov
Molecules 2025, 30(19), 3964; https://doi.org/10.3390/molecules30193964 - 2 Oct 2025
Abstract
We report the study of seven commercially available rosehip oils (Rosa canina L.) using GC-MS, colorimetry (CIELab), UV-VIS, FTIR, and 3D EEM fluorescence spectroscopy, including using a smartphone spectrometer. GC-MS revealed two groups of oil samples with different chemical constituents: ω-6-dominant [...] Read more.
We report the study of seven commercially available rosehip oils (Rosa canina L.) using GC-MS, colorimetry (CIELab), UV-VIS, FTIR, and 3D EEM fluorescence spectroscopy, including using a smartphone spectrometer. GC-MS revealed two groups of oil samples with different chemical constituents: ω-6-dominant with 45–51% α-linolenic acid (samples S1, S2, and S5–S7) and ω-3-dominant with 47–49% α-linolenic, 7.3–19.1% oleic, 1.9–2.8% palmitic, 1.0–1.8% stearic, and 0.1–0.72% arachidic acid (S3, S4). In S1 PUFA content was found to be ~75% with ω-6/ω-3 ≈ 2:1. Favorable lipid indices of AI 0.0197–0.0302, TI 0.0208–0.0304, and h/H 33.0–50.6 were observed. The highest h/H (50.55) was observed in S5 and the lowest TI (0.0208) in S3. FTIR showed characteristic lines at ~3021, 2929/2853, 1749, and ~1370 cm−1, and PCA yielded 60–80% variation and separated S1 from the rest of the samples, while the clusters grouped S5 and S6. The smartphone spectrometer also reproduced the individual differences in sample volumes ≤ 1 µL under 355–395 nm UV excitation. The non-destructive optical markers reflect the fatty acid profile and allow fast low-cost identification and quality control. An integrated control method including routine optical screening, periodic CG-MS verification, and chemometric models to trace oxidation and counterfeiting is suggested. Full article
(This article belongs to the Special Issue Advances in Food Analytical Methods)
12 pages, 980 KB  
Article
HS-SPME-GC-MS Volatile Profile of “Aglio Rosso di Sulmona” (Sulmona Red Garlic) Floral Scape
by Samantha Reale, Rossella Ferretti, Alessandra Biancolillo, Valter Di Cecco, Luciano Di Martino, Marco Di Santo and Angelo Antonio D’Archivio
Chemosensors 2025, 13(10), 361; https://doi.org/10.3390/chemosensors13100361 - 2 Oct 2025
Abstract
Garlic (Allium Sativum L.) is a source of organosulphur compounds with well-known sensorial and biological activity. Organosulphur precursors of garlic aroma are also detected in the plant leaves, but limited literature on this subject is available. This study is aimed at the [...] Read more.
Garlic (Allium Sativum L.) is a source of organosulphur compounds with well-known sensorial and biological activity. Organosulphur precursors of garlic aroma are also detected in the plant leaves, but limited literature on this subject is available. This study is aimed at the characterization of the volatile profile of the floral scapes of Sulmona red garlic (aglio rosso di Sulmona) cultivated in the Abruzzo region (Italy). Floral scapes are manually removed from the plant before flowering and used as an ingredient of local gastronomy. The organosulphur volatile profile of the scapes is investigated by HS-SPME-GC-MS and compared to that provided by the clove. The GC-MS chromatogram of garlic clove, which is characterized by the predominant contribution of a few organosulphur organic compounds, is significantly more intense than that of the scapes. Almost all the organosulphur compounds contributing to the clove aroma were detected in the scape volatile profile, which, however, exhibits a more balanced contribution of major and minor organo sulphur compounds. Moreover, a significantly higher relative abundance of terpenes and aldehydes is observed in the scape aroma. The geographical/varietal origin of clove seeds (Sulmona versus Spain or France) and cultivation area interactively influence the aroma profile of Sulmona red garlic scapes. Full article
Show Figures

Figure 1

20 pages, 2560 KB  
Article
Secretory Structures and Essential Oil Composition in Santolina chamaecyparissus L. Cultivated in Northern Italy
by Claudia Giuliani, Fabrizia Milani, Sara Falsini, Alberto Spada, Piero Bruschi, Alessio Papini, Laura Santagostini, Martina Bottoni and Gelsomina Fico
Horticulturae 2025, 11(10), 1184; https://doi.org/10.3390/horticulturae11101184 - 2 Oct 2025
Abstract
Santolina chamaecyparissus L. (Asteraceae), cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, Brescia, Northern Italy) of the University of Milan, was investigated adopting a multidisciplinary research approach: micromorphological and histochemical, with special attention on the secretory structures producing secondary metabolites; phytochemical, with the [...] Read more.
Santolina chamaecyparissus L. (Asteraceae), cultivated at the Ghirardi Botanic Garden (Toscolano Maderno, Brescia, Northern Italy) of the University of Milan, was investigated adopting a multidisciplinary research approach: micromorphological and histochemical, with special attention on the secretory structures producing secondary metabolites; phytochemical, with the analysis of the essential oil (EO) composition from the air-dried, flowered aerial parts gathered once per year across two consecutive years (2021 and 2022); bio-ecological, focusing, based on literature data, on the biological activity and ecology of the main EO compounds; didactic–educational, with the ex novo realization of an interpretative apparatus at the study site. Two distinct types of secretory structures were described: biseriate glandular trichomes and secretory ducts, both producing an oleoresin rich in flavonoids. Phytochemical analysis revealed stable EO profiles across the two years with regards to the total number of compounds (39 vs. 40), the main chemical classes (oxygenated monoterpenes (72.67% vs. 78.61%) and monoterpenes hydrocarbons (15.06% vs. 10.48%) and the key single components (artemisia ketone, 52.74% vs. 55.67%; camphor, 13.00% vs. 16.18%). The literature data on the bio-ecology of the main compounds allowed us to confirm antimicrobial, antioxidant, and anti-inflammatory properties. Concerning the dissemination actions, the outcomes of this multidisciplinary work were integrated into a new interpretive apparatus for S. chamaecyparissus at the Ghirardi Botanic Garden. The research results enhance our understanding of this species, supporting its potential EO application in medicine and agriculture. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
18 pages, 1975 KB  
Article
Solvent-Assisted Vapor Condensation: A Strategy to Enhance Bio-Oil Yield and Quality from the Pyrolysis of Agro-Industrial Waste
by Jelena Isailović, Emilija Vukićević, Jan Schwarzbauer, Steva Lević, Mališa Antić, Ilija Brčeski, Branimir Jovančićević and Vesna Antić
Molecules 2025, 30(19), 3945; https://doi.org/10.3390/molecules30193945 - 1 Oct 2025
Abstract
The paper presents the effect of an organic solvent on the efficiency of vapor condensation from pyrolysis processes applied to agricultural waste, with the intention of optimizing the trapping procedure for more volatile components. Therefore, the effect of the use of acetone in [...] Read more.
The paper presents the effect of an organic solvent on the efficiency of vapor condensation from pyrolysis processes applied to agricultural waste, with the intention of optimizing the trapping procedure for more volatile components. Therefore, the effect of the use of acetone in the vapor trapping system on the yield and composition of liquid fractions (bio-oils) obtained from the pyrolysis of selected agricultural waste, including corn, tomato, and tobacco, was investigated. The focus was placed on evaluating how solvents influence the quality, yield, and composition of bio-oil, as well as whether they are necessary in the pyrolysis process. Acetone, a polar solvent with low human toxicity and the possibility of regeneration after pyrolysis, was selected for bio-oil condensation due to its effectiveness in dissolving polar compounds formed during the pyrolysis of lignocellulosic biomass. Pyrolysis was conducted at 400 and 500 °C for 30 min, to collect light and heavy fractions, which were subsequently analyzed to assess acetone’s influence. The results showed that acetone positively affected corn bio-oil yield (from 44.57% without acetone to 52.13% with acetone) and improved quality by reducing moisture (from 61.82% to 12.83%) and oxygen content (from 86.50% to 47.10%). An increase in calorific value was also observed in both corn varieties, while the effect was minimal in tobacco and nearly negligible in tomato. The obtained parameter values indicated that satisfactory results can also be achieved without the use of a solvent, representing a step toward simplified pyrolysis. GC-MS analysis confirmed that phenols and their derivatives were the dominant compounds, while FTIR analysis verified the presence of functional groups of the identified compounds. Increasing the temperature generally increased both the yield and calorific value of most samples. Light and heavy fractions were separated during condensation to improve collection efficiency and enable better quality control. Although this step adds complexity and potential contamination risks, it allows more effective utilization of the fractions. These results provide a valuable foundation for optimizing the valorization of agricultural waste through pyrolysis-based biofuel production. Full article
(This article belongs to the Special Issue Advances in Lignocellulosic Biomass)
Show Figures

Figure 1

20 pages, 1798 KB  
Article
Analysis of Toxic Components in Secondary Metabolites of Entomopathogenic Fungi Clonostachys rosea (Hipocreales: Bionectriaceae) from Cephalcia chuxiongica (Hymenoptera: Pamphiliidae)
by Junjia Lu, Jian Liu, Huali Li, Yajiao Sun, Yunqiang Ma and Yonghe Li
Microorganisms 2025, 13(10), 2289; https://doi.org/10.3390/microorganisms13102289 - 1 Oct 2025
Abstract
Clonostachys rosea, an entomopathogenic fungus that infects Cephalcia chuxiongica, is highly pathogenic and has significant potential for controlling the damage this pest causes to pine forests. To investigate the role of C. rosea secondary metabolites in fungal pathogenicity, we conducted toxicity [...] Read more.
Clonostachys rosea, an entomopathogenic fungus that infects Cephalcia chuxiongica, is highly pathogenic and has significant potential for controlling the damage this pest causes to pine forests. To investigate the role of C. rosea secondary metabolites in fungal pathogenicity, we conducted toxicity assays using crude metabolite extracts. These assays evaluated the effects of different concentrations, larval developmental stages, and exposure methods on larval mortality. Gas chromatography–mass spectrometry (GC–MS) was subsequently employed to identify the chemical constituents of the crude extracts, and the toxicity of the identified compounds was assessed. The results showed that the crude extract at a concentration of 7.5 μg/mL exhibited the highest toxicity. Two hours post-treatment, the mortality rate of non-diapause larvae reached 65%, which was significantly higher than that of the diapause group. Moreover, contact toxicity was more lethal to C. chuxiongica larvae than oral exposure. A total of 23 compounds were identified from the crude extract, of which nine exhibited toxicity: 2-piperidone, hydrocinnamic acid, phenethyl alcohol, oleic acid, tryptophol, stearic acid methyl ester, myristic acid, dodecanoic acid, and benzeneacetic acid. Except for 2-piperidone, which showed low toxicity, the other eight compounds demonstrated notable contact toxicity against C. chuxiongica larvae. These findings confirm the insecticidal potential of C. rosea secondary metabolites and provide a valuable reference for the biological control of C. chuxiongica and other chewing insect pests. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

23 pages, 1535 KB  
Article
Investigating the Volatiles of Kombucha During Storage Under Refrigerated Conditions
by Massimo Mozzon, Luigi Rinaldi, Abdelhakam Esmaeil Mohamed Ahmed, Béla Kovács and Roberta Foligni
Beverages 2025, 11(5), 143; https://doi.org/10.3390/beverages11050143 - 1 Oct 2025
Abstract
This study investigates the evolution of the chemical components of kombucha aroma during refrigerated storage. Two preparation methods (MT1 and MT2) were used to produce kombucha from a 1:1 mixture of black and green tea. The bottled beverages were stored at 4 °C [...] Read more.
This study investigates the evolution of the chemical components of kombucha aroma during refrigerated storage. Two preparation methods (MT1 and MT2) were used to produce kombucha from a 1:1 mixture of black and green tea. The bottled beverages were stored at 4 °C for three months, and changes in headspace (HS) volatiles were monitored at different time points using solid-phase microextraction (SPME) and GC-MS. A total of 68 volatile substances were identified, with alcohols, acids, and esters dominating the aroma profile. The study revealed significant changes in flavor composition during cold storage, particularly in the first two weeks, with an increase in the number of esters, acids, ketones and terpenoids, as well as the total amount of esters and alkanols. While some changes contribute to the desirable “cider-like” characteristics, others, like certain volatile acids, aliphatic aldehydes and ketones, are associated with off-flavors. These findings suggest that refrigeration alone is not sufficient to completely inhibit microbial activity in freshly prepared kombucha, highlighting the need for further research to correlate chemical changes with sensory properties to establish optimal organoleptic standards and shelf life. Full article
Show Figures

Figure 1

35 pages, 1628 KB  
Review
Production Systems and Feeding Strategies in the Aromatic Fingerprinting of Animal-Derived Foods: Invited Review
by Eric N. Ponnampalam, Gauri Jairath, Ishaya U. Gadzama, Long Li, Sarusha Santhiravel, Chunhui Ma, Mónica Flores and Hasitha Priyashantha
Foods 2025, 14(19), 3400; https://doi.org/10.3390/foods14193400 - 1 Oct 2025
Abstract
Aroma and flavor are central to consumer perception, product acceptance, and market positioning of animal-derived foods such as meat, milk, and eggs. These sensory traits arise from volatile organic compounds (VOCs) formed via lipid oxidation (e.g., hexanal, nonanal), Maillard/Strecker chemistry (e.g., pyrazines, furans), [...] Read more.
Aroma and flavor are central to consumer perception, product acceptance, and market positioning of animal-derived foods such as meat, milk, and eggs. These sensory traits arise from volatile organic compounds (VOCs) formed via lipid oxidation (e.g., hexanal, nonanal), Maillard/Strecker chemistry (e.g., pyrazines, furans), thiamine degradation (e.g., 2-methyl-3-furanthiol, thiazoles), and microbial metabolism, and are modulated by species, diet, husbandry, and post-harvest processing. Despite extensive research on food volatiles, there is still no unified framework spanning meat, milk, and eggs that connects production factors with VOC pathways and links them to sensory traits and consumer behavior. This review explores how production systems, feeding strategies, and processing shape VOC profiles, creating distinct aroma “fingerprints” in meat, milk, and eggs, and assesses their value as markers of quality, authenticity, and traceability. We have also summarized the advances in analytical techniques for aroma fingerprinting, with emphasis on GC–MS, GC–IMS, and electronic-nose approaches, and discuss links between key VOCs and sensory patterns (e.g., grassy, nutty, buttery, rancid) that influence consumer perception and willingness-to-pay. These patterns reflect differences in production and processing and can support regulatory claims, provenance verification, and label integrity. In practice, such markers can help producers tailor feeding and processing for flavor outcomes, assist regulators in verifying claims such as “organic” or “free-range,” and enable consumers to make informed choices. Integrating VOC profiling with production data and chemometric/machine learning pipelines can enable robust traceability tools and sensory-driven product differentiation, supporting transparent, value-added livestock products. Thus, this review integrates production variables, biochemical pathways, and analytical platforms to outline a research agenda toward standardized, transferable VOC-based tools for authentication and label integrity. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Figure 1

22 pages, 3137 KB  
Article
Materials in Water Supply Systems: Migration of Organic Compounds from Rubber Materials
by Cristina M. M. Almeida, Ana Penetra, Rui Neves Carneiro and Vitor Vale Cardoso
Water 2025, 17(19), 2864; https://doi.org/10.3390/w17192864 - 1 Oct 2025
Abstract
It is just as important to produce high-quality drinking water as it is to distribute it throughout the water supply system without compromising chemical or microbiological quality. Therefore, it is essential to study the migration of substances in contact with water to assess [...] Read more.
It is just as important to produce high-quality drinking water as it is to distribute it throughout the water supply system without compromising chemical or microbiological quality. Therefore, it is essential to study the migration of substances in contact with water to assess potential chemical contamination under the conditions usually found in distribution systems, which is critical for potential toxicity studies. This initial characterization of the material allows for the assessment of its suitability for contact with drinking water. The rubber material used in the water supply system was selected and subjected to migration tests for 29 days using demineralized water. The potential organic contaminants from migration waters were extracted using liquid–liquid extraction (LLE) and quantified using gas chromatography–mass spectrometry (GC-MS). More than 50 organic compounds were quantified in migration waters. Most of the organic compounds were considered unexpected substances. Benzothiazole, 2-benzothiazole, and 2-mercaptobenzothiazole were dominant compounds. The unknowns showed a lower estimated concentration at the consumer tap (CTap) than the maximum tolerable concentration at the tap (MTCTap), and their sum was less than 5.0 µg/L. The studied rubber material is suitable for use in the water distribution system, as it satisfies the criteria of the migration tests. Full article
(This article belongs to the Special Issue Groundwater for Health and Well-Being)
Show Figures

Graphical abstract

31 pages, 3962 KB  
Review
Field Explosives Detectors—Current Status and Development Prospects
by Dariusz Augustyniak and Mateusz Szala
Sensors 2025, 25(19), 6024; https://doi.org/10.3390/s25196024 - 1 Oct 2025
Abstract
This review critically evaluates the performance of approximately 80 commercially available mobile detectors for explosive identification. The majority of devices utilize Ion Mobility Spectrometry (IMS), Fourier Transform Infrared Spectroscopy (FTIR), or Raman Spectroscopy (RS). IMS-based instruments, such as the M-ION (Inward Detection), typically [...] Read more.
This review critically evaluates the performance of approximately 80 commercially available mobile detectors for explosive identification. The majority of devices utilize Ion Mobility Spectrometry (IMS), Fourier Transform Infrared Spectroscopy (FTIR), or Raman Spectroscopy (RS). IMS-based instruments, such as the M-ION (Inward Detection), typically achieve sensitivities at the ppt level, while other IMS implementations demonstrate detection ranges from low ppb to ppm. Gas Chromatography–Mass Spectrometry (GC–MS) systems, represented by the Griffin™ G510 (Teledyne FLIR Detection), provide detection limits in the ppb range. Transportable Mass Spectrometers (Bay Spec) operate at ppb to ppt levels, whereas Laser-Induced Fluorescence (LIF) devices, such as the Fido X4 (Teledyne FLIR Detection), achieve detection at the nanogram level. Quartz Crystal Microbalance (QCM) sensors, exemplified by the EXPLOSCAN (MS Technologies Inc. 8609 Westwood Center Drive Suite 110, Tysons Corner, VA, USA), typically reach the ppb range. Only four devices employ two orthogonal analytical techniques, enhancing detection reliability and reducing false alarms. Traditional colorimetric tests based on reagent–analyte reactions remain in use, demonstrating the continued relevance of simple yet effective methods. By analyzing the capabilities, limitations, and technological trends of current detection systems, this study underscores the importance of multi-technique approaches to improve accuracy, efficiency, and operational effectiveness in real-world applications. The findings provide guidance for the development and selection of mobile detection technologies for security, defense, and emergency response. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

18 pages, 1555 KB  
Article
Alternative Yeast Strains in Beer Production: Impacts on Quality and Nutritional Value
by Loránd Alexa, Hajnalka Csoma, Diána Ungai, Béla Kovács, Nikolett Czipa, Ida Miklós, Zoltán Kállai, László Attila Papp and Szonja Takács
Beverages 2025, 11(5), 142; https://doi.org/10.3390/beverages11050142 - 1 Oct 2025
Abstract
Discovering new yeast species can be crucial for creating new types of beers. In this study, we investigated three new yeast species, Saccharomyces bayanus, Schizosaccharomyces japonicus and Schizosaccharomyces pombe var. malidevorans, which have not been previously used in the brewing industry. [...] Read more.
Discovering new yeast species can be crucial for creating new types of beers. In this study, we investigated three new yeast species, Saccharomyces bayanus, Schizosaccharomyces japonicus and Schizosaccharomyces pombe var. malidevorans, which have not been previously used in the brewing industry. Colour, total acidity, bitterness, aroma profile, total phenolic, flavonoid, mineral content and organoleptic characteristics of beers fermented by these strains were analysed to discover their applicability in the brewing industry. They did not significantly affect the nutritional value and colour of the beers, but showed increased acidity compared to the control Saccharomyces cerevisiae. GC-MS (Gas Chromatography-Mass Spectrometry) analysis revealed 33 aroma compounds, some of which were identical and some unique. S. cerevisiae and S. bayanus produced a similar number (19–20) of aroma compounds, while S. japonicus produced the fewest, including some undesirable compounds. Isobutyl alcohol, isoamyl alcohol, acetol, dimethylpyrazine, acetic acid, 4-cyclopentene-1,3-dione, butyrolactone, 2-furanmethanol, phenylethyl alcohol, maltol and pyranone that provide desired aromas in beers could be found in every sample. The new yeasts significantly increased polyphenols and decreased flavonoid content. Based on the results above and the taste scores, the strains S. bayanus and S. pombe var. malidevorans may be suitable for brewing, while S. japonicus is less or only suitable for combined fermentation. Full article
Show Figures

Graphical abstract

27 pages, 3117 KB  
Article
Iridoids from Himatanthus sucuuba Modulate Feeding Behavior of Lutzomyia longipalpis: Integrated Experimental and Computational Approaches
by Maíra M. H. Almeida, Jefferson D. da Cruz, Maria Athana M. Silva, Samara G. Costa-Latgé, Bruno Gomes, Fernando A. Genta, Jefferson R. A. Silva and Ana Claudia F. Amaral
Molecules 2025, 30(19), 3937; https://doi.org/10.3390/molecules30193937 - 1 Oct 2025
Abstract
Control strategies for leishmaniasis increasingly target sand fly vectors through sugar feeding approaches containing bioactive compounds. This study investigated the behavioral and toxicological effects of the iridoids plumericin and isoplumericin, isolated from Himatanthus sucuuba, on Lutzomyia longipalpis by integrating computational and experimental [...] Read more.
Control strategies for leishmaniasis increasingly target sand fly vectors through sugar feeding approaches containing bioactive compounds. This study investigated the behavioral and toxicological effects of the iridoids plumericin and isoplumericin, isolated from Himatanthus sucuuba, on Lutzomyia longipalpis by integrating computational and experimental approaches focused on gustatory system interactions. The iridoids were purified by column chromatography and characterized by GC-MS. The gustatory receptor A0A1B0CHD5 was structurally characterized through homology modeling, followed by molecular docking and 100 ns molecular dynamics simulations. Behavioral assays evaluated survival, repellency, and feeding preferences using sugar solutions supplemented with an iridoid mixture. Toxicity was assessed in Drosophila melanogaster as a non-target organism model. Molecular docking results revealed comparable binding affinities between sucrose (ChemPLP score 57.96) and the iridoids plumericin (49.08) and isoplumericin (47.75). Molecular dynamics simulations confirmed the stability of the ligand–receptor complexes and revealed distinct conformational changes. The iridoids did not affect L. longipalpis survival, showed no repellency, and did not reduce sugar feeding acceptance. Preference for the control diet was observed only after continuous exposure (48 h), suggesting involvement of post-ingestive sensory processing. No acute toxicity was observed in D. melanogaster (96% survival). These findings demonstrate that iridoids preserve vector feeding behavior and survival while exhibiting low toxicity to non-target organisms, supporting their potential use in gustatory modulation strategies in leishmaniasis vector control without compromising ecological safety. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

Back to TopTop