Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Campaign Description
2.2. Chemicals and Reagents
2.3. BTEX Determination
2.4. BTEX Exposure Health Risk Assessment
3. Results and Discussion
3.1. Spatiotemporal Variations
Location, Time/Reference | Average ± SD or Range |
---|---|
Bolu, Turkey, January–February 2017 [40] | 1.75 ± 1.06 |
Arad, Romania, January–December 2016 [41] | 2.87 ± 0.58 |
Kolkata, India, March–June 2009 [46] | 25.0–79.2 |
Nairobi, Kenya (Traffic station), June 2019 [47] | 21.6 ± 7.09 |
Lagos, Nigeria (Traffic station), November–December 2019 [47] | 24.2 ± 7.29 |
Nairobi, Kenya (background), June 2019 [47] | 4.95 ± 1.74 |
Lagos, Nigeria (Background), November–December 2019 [47] | 4.20 ± 2.20 |
Berlin, Germany, 2015–2017 [48] | 0.82 ± 0.54 |
Budapest, Hungary, 2015–2017 [48] | 0.89 ± 0.67 |
Mons, France, 2015–2017 [48] | 0.57 ± 0.45 |
Torino, Italy, 2015–2017 [48] | 0.63 ± 0.57 |
Düzce, Turkey, October–November 2014 [49] | 4.64 ± 2.42 |
Düzce, Turkey, August 2015 [49] | 0.74 ± 0.24 |
Gdansk, Poland, January–December 2012 [51] | 0.75 ± 0.67 |
Gdynia, Poland, January–December 2012 [51] | 0.66 ± 0.51 |
Sopot, Hungary, January–December 2012 [51] | 0.63 ± 0.55 |
Yazd, Iran, July 2015 and January 2016 [52] | 21 ± 18 (2–108) |
Leon, Mexico, August and October 2018 [56] | 1.96 |
Bari, Italy, April and October 2008 [57] | 0.8–9 |
Haifa, Israel, August 2015–May 2021 [58] | 1.18–3.19 |
Jerusalem, Israel, August 2015–May 2021 [58] | 1.18–4.00 |
Tel-Aviv, August 2015–May 2021 [58] | 1.18–3.66 |
Dongbaituo, Hebei, China January 2013 [59] | 27.2 ± 16.0 |
Thissio, Greece, Winter 2017 [60] | 2.6 ± 3.4 |
Thissio, Greece, Summer 2016 [60] | 0.9 ± 0.8 |
Algiers, Algeria, Spring 2009 [61] | 16.7 |
3.2. Evaluation of BTEX Specific Ratios
3.3. Ozone Formation Potential (OFP)
3.4. Lifetime Cancer Risk (LTCR)
3.5. Hazard Quotient (HQ)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BTEX | Benzene, toluene, ethylbenzene, xylene |
GC-MS | Gas Chromatography—Mass Spectrometry |
HQ | Hazard Quotient |
LTCR | Lifetime Cancer Risk |
OFP | Ozone Formation Potential |
VOCs | Volatile Organic Compounds |
IARC | International Agency for Research on Cancer |
ATSDR | Agency for Toxic Substances and Disease Registry |
EI | Electron impact |
LOD | Limits Of Detection |
References
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Morawska, L.; Iii, C.A.P.; et al. Estimates and 25-Year Trends of the Global Burden of Disease Attributable to Ambient Air Pollution: An Analysis of Data from the Global Burden of Diseases Study 2015. Lancet 2018, 391, 1576. [Google Scholar] [CrossRef] [PubMed]
- WHO, World Health Organization. Ambient (Outdoor) Air Pollution, 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 25 May 2025).
- EEA, European Environment Agency. Air Quality Status Report 2025. ISBN: 978-92-9480-710-6; ISSN: 1977-8449. Available online: https://www.eea.europa.eu/en/analysis/publications/air-quality-status-report-2025 (accessed on 25 May 2025).
- Montero-Montoya, R.; López-Vargas, R.; Arellano-Aguilar, O. Volatile Organic Compounds in Air: Sources, Distribution, Exposure and Associated Illnesses in Children. Ann. Glob. Health 2018, 84, 225–238. [Google Scholar] [CrossRef]
- Fandi, N.F.M.; Jalaludin, J.; Latif, M.T.; Hamid, H.H.A.; Awang, M.F. BTEX Exposure Assessment and Inhalation Health Risks to Traffic Policemen in the Klang Valley Region, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1922–1937. [Google Scholar] [CrossRef]
- Afshari, A.; Schuch, F.; Marpu, P. Estimation of the Traffic Related Anthropogenic Heat Release Using BTEX Measurements—A Case Study in Abu Dhabi. Urban Clim. 2018, 24, 311–325. [Google Scholar] [CrossRef]
- Abbasi, F.; Pasalari, H.; Delgado-Saborit, J.M.; Rafiee, A.; Abbasi, A.; Hoseini, M. Characterization and Risk Assessment of BTEX in Ambient Air of a Middle Eastern City. Process Saf. Environ. Prot. 2020, 139, 98–105. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Kim, H.J.; Sohn, J.R.; Seo, J.H. Occupational exposure to VOCs and carbonyl compounds in beauty salons and health risks associated with it in South Korea. Ecotoxicol. Environ. Saf. 2023, 256, 114873. [Google Scholar] [CrossRef]
- Mohebbi, M.; Jafari, A.J.; Gholami, M.; Baghani, A.N.; Shahsavani, A.; Kermani, M. Measurement and health risks assessment of BTEX compounds exposure in beaty Lahijan City salons. Sci. Rep. 2024, 14, 23515. [Google Scholar] [CrossRef]
- IARC, International Agency for Research on Cancer. Benzene, Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2018; Volume 120, ISBN 9788578110796. [Google Scholar]
- IARC, International Agency for Research on Cancer. Chemical Agents and Related Occupations. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100F, pp. 423–428. [Google Scholar]
- Lu, P.C.W.; Shahbaz, S.; Winn, L.M. Benzene and Its Effects on Cell Signaling Pathways Related to Hematopoiesis and Leukemia. J. Appl. Toxicol. 2020, 40, 1018–1032. [Google Scholar] [CrossRef]
- North, C.M.; Schnatter, A.R.; Rooseboom, M.; Aygun Kocabas, N.; Dalzell, A.; Williams, S.D. Key Event-Informed Risk Models for Benzene-Induced Acute Myeloid Leukaemia. Toxicol. Lett. 2021, 340, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Khalade, A.; Jaakkola, M.S.; Pukkala, E.; Jaakkola, J.J.K. Exposure to Benzene at Work and the Risk of Leukemia: A Systematic Review and Meta-Analysis. Environ. Health A Glob. Access Sci. Source 2010, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Qiu, H.; Sun, S.; Yang, A.; Tian, L. Are Ambient Volatile Organic Compounds Environmental Stressors for Heart Failure? Environ. Pollut. 2018, 242, 1810–1816. [Google Scholar] [CrossRef] [PubMed]
- Zelko, I.N.; Dassanayaka, S.; Malovichko, M.V.; Howard, C.M.; Garrett, L.F.; Uchida, S.; Brittian, K.R.; Conklin, D.J.; Jones, S.P.; Srivastava, S. Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicol. Sci. 2022, 185, 64–76. [Google Scholar] [CrossRef]
- Tsai, D.H.; Wang, J.L.; Chuang, K.J.; Chan, C.C. Traffic-Related Air Pollution and Cardiovascular Mortality in Central Taiwan. Sci. Total Environ. 2010, 408, 1818–1823. [Google Scholar] [CrossRef]
- Villeneuve, P.J.; Jerrett, M.; Su, J.; Burnett, R.T.; Chen, H.; Brook, J.; Wheeler, A.J.; Cakmak, S.; Goldberg, M.S. A Cohort Study of Intra-Urban Variations in Volatile Organic Compounds and Mortality, Toronto, Canada. Environ. Pollut. 2013, 183, 30–39. [Google Scholar] [CrossRef] [PubMed]
- IARC, International Agency for Research on Cancer. Some Industrial Chemicals; ARC Monographs on the Evaluation of Carcinogenic Risks to Humans France; IARC: Lyon, France, 2000; Volume 77. [Google Scholar]
- Bolden, A.L.; Kwiatkowski, C.F.; Colborn, T. New Look at BTEX: Are Ambient Levels a Problem. Environ. Sci. Technol. 2015, 49, 5261–5276. [Google Scholar] [CrossRef]
- ATSDR, Agency for Toxic Substances and Disease Registry. Interaction Profile for: Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX); U.S. Department of Health and Human Services: Atlanta, GA, USA; Public Health Service: Hong Kong, 2004.
- ATSDR, Agency for Toxic Substances and Disease Registry. Minimal Risk Levels (MRLs) for Hazardous Substances. Available online: https://www.atsdr.cdc.gov/mrls/pdfs/ATSDR-MRLs-May-2025-H.pdf (accessed on 25 May 2025).
- Zahed, M.A.; Salehi, S.; Khoei, M.A.; Esmaeili, P.; Mohajeri, L. Risk Assessment of Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) in the Atmospheric Air around the World: A Review. Toxicol. Vitr. 2024, 98, 105825. [Google Scholar] [CrossRef]
- Alsbou, E.M.; Omari, K.W. BTEX Indoor Air Characteristic Values in Rural Areas of Jordan: Heaters and Health Risk Assessment Consequences in Winter Season. Environ. Pollut. 2020, 267, 115464. [Google Scholar] [CrossRef]
- Ghaffari, H.R.; Kamari, Z.; Hassanvand, M.S.; Fazlzadeh, M.; Heidari, M. Level of Air BTEX in Urban, Rural and Industrial Regions of Bandar Abbas, Iran; Indoor-Outdoor Relationships and Probabilistic Health Risk Assessment. Environ. Res. 2021, 200, 111745. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.H.; Yazdanirad, S.; Ducatman, A. Climatic Conditions and Concentrations of BTEX Compounds in Atmospheric Media. Environ. Res. 2024, 251, 118553. [Google Scholar] [CrossRef]
- Soupiadou, A.; Lolis, C.J.; Hatzianastassiou, N. On the Influence of the Prevailing Weather Regime on the Atmospheric Pollution Levels in the City of Ioannina. Environ. Sci. Proc. 2023, 28, 26028. [Google Scholar] [CrossRef]
- Pienaar, J.J.; Beukes, J.P.; Van Zyl, P.G.; Lehman, C.M.B.; Aherne, J. Chapter 2—Passive Diffusion Sampling Devices for Monitoring Ambient Air Concentrations. Compr. Anal. Chem. 2015, 70, 13–52. [Google Scholar] [CrossRef]
- Latif, M.T.; Abd Hamid, H.H.; Ahamad, F.; Khan, M.F.; Mohd Nadzir, M.S.; Othman, M.; Sahani, M.; Abdul Wahab, M.I.; Mohamad, N.; Uning, R.; et al. BTEX Compositions and Its Potential Health Impacts in Malaysia. Chemosphere 2019, 237, 124451. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA, United States Environmental Protection Agency. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities; EPA530-R-05-006; U.S. EPA: Washington, DC, USA, 2005.
- U.S. EPA, United States Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); U.S. EPA: Washington, DC, USA, 2009.
- Hazrati, S.; Rostami, R.; Fazlzadeh, M. BTEX in Indoor Air of Waterpipe Cafés: Levels and Factors Influencing Their Concentrations. Sci. Total Environ. 2015, 524–525, 347–353. [Google Scholar] [CrossRef]
- U.S. EPA, United States Environmental Protection Agency. USEPA IRIS: Integrated Risk Information System; U.S. EPA: Washington, DC, USA, 2017.
- Kanjanasiranont, N.; Prueksasit, T.; Morknoy, D. Inhalation Exposure and Health Risk Levels to BTEX and Carbonyl Compounds of Traffic Policeman Working in the Inner City of Bangkok, Thailand. Atmos. Environ. 2017, 152, 111–120. [Google Scholar] [CrossRef]
- Miri, M.; Rostami Aghdam Shendi, M.; Ghaffari, H.R.; Ebrahimi Aval, H.; Ahmadi, E.; Taban, E.; Gholizadeh, A.; Yazdani Aval, M.; Mohammadi, A.; Azari, A. Investigation of Outdoor BTEX: Concentration, Variations, Sources, Spatial Distribution, and Risk Assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Demirel, G.; Özden, Ö.; Döǧeroǧlu, T.; Gaga, E.O. Personal Exposure of Primary School Children to BTEX, NO2 and Ozone in Eskişehir, Turkey: Relationship with Indoor/Outdoor Concentrations and Risk Assessment. Sci. Total Environ. 2014, 473–474, 537–548. [Google Scholar] [CrossRef]
- Moolla, R.; Curtis, C.J.; Knight, J. Occupational Exposure of Diesel Station Workers to BTEX Compounds at a Bus Depot. Int. J. Environ. Res. Public Health 2015, 12, 4101–4115. [Google Scholar] [CrossRef]
- Tunsaringkarn, T.; Siriwong, W.; Rungsiyothin, A.; Nopparatbundit, S. Occupational Exposure of Gasoline Station Workers to BTEX Compounds in Bangkok, Thailand. Int. J. Occup. Environ. Med. 2012, 3, 117–125. [Google Scholar]
- Dörter, M.; Odabasi, M.; Yenisoy-Karakaş, S. Source Apportionment of Biogenic and Anthropogenic VOCs in Bolu Plateau. Sci. Total Environ. 2020, 731, 139201. [Google Scholar] [CrossRef]
- Popitanu, C.; Cioca, G.; Copolovici, L.; Iosif, D.; Munteanu, F.D.; Copolovici, D. The Seasonality Impact of the BTEX Pollution on the Atmosphere of Arad City, Romania. Int. J. Environ. Res. Public Health 2021, 18, 4858. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Grosselin, B.; Daële, V.; Mellouki, A.; Mu, Y. Seasonal and Diurnal Variations of BTEX Compounds in the Semi-Urban Environment of Orleans, France. Sci. Total Environ. 2017, 574, 1659–1664. [Google Scholar] [CrossRef]
- Sarmiento, H.; Potgieter-Vermaak, S.; Borillo, G.C.; Godoi, A.F.L.; Reis, R.A.; Yamamoto, C.I.; Pauliquevis, T.; Polezer, G.; Godoi, R.H.M. BTEX Profile and Health Risk at the Largest Bulk Port in Latin America, Paranaguá Port. Environ. Sci. Pollut. Res. 2023, 30, 63084–63095. [Google Scholar] [CrossRef] [PubMed]
- Sahu, L.K.; Yadav, R.; Pal, D. Source identification of VOCs at an urban site of western India: Effect of marathon events and anthropogenic emissions. J. Geophys. Res. Atmos. 2016, 121, 2416–2433. [Google Scholar] [CrossRef]
- Breton, R.M.C.; Breton, J.G.C.; de la Luz Espinosa Fuentes, M.; Guzman, A.A.E.; Martinez, R.G.; Ucan, C.A.A.; Romero, C.M.; del Carmen Lara Severino, R.; Lozada, S.E.C.; Chi, M.P.U.; et al. Health Risk Assessment by Exposure to BTEX Ambient Levels in the Metropolitan Area of Monterrey During Two Climatic Seasons. Atmosphere 2025, 16, 183. [Google Scholar] [CrossRef]
- Dutta, C.; Som, D.; Chatterjee, A.; Mukherjee, A.K.; Jana, T.K.; Sen, S. Mixing Ratios of Carbonyls and BTEX in Ambient Air of Kolkata, India and Their Associated Health Risk. Environ. Monit. Assess. 2009, 148, 97–107. [Google Scholar] [CrossRef]
- Cordell, R.L.; Panchal, R.; Bernard, E.; Gatari, M.; Waiguru, E.; Ng’ang’a, M.; Nyang’aya, J.; Ogot, M.; Wilde, M.J.; Wyche, K.P.; et al. Volatile Organic Compound Composition of Urban Air in Nairobi, Kenya and Lagos, Nigeria. Atmosphere 2021, 12, 1329. [Google Scholar] [CrossRef]
- Dimitriou, K.; Kassomenos, P. Background Concentrations of Benzene, Potential Long Range Transport Influences and Corresponding Cancer Risk in Four Cities of Central Europe, in Relation to Air Mass Origination. J. Environ. Manage. 2020, 262, 110374. [Google Scholar] [CrossRef]
- Bozkurt, Z.; Üzmez, Ö.Ö.; Döğeroğlu, T.; Artun, G.; Gaga, E.O. Atmospheric Concentrations of SO2, NO2, Ozone and VOCs in Düzce, Turkey Using Passive Air Samplers: Sources, Spatial and Seasonal Variations and Health Risk Estimation. Atmos. Pollut. Res. 2018, 9, 1146–1156. [Google Scholar] [CrossRef]
- Doornkamp, J.L.; James, N.A.; Ori, S.; Bent, G.A. Preliminary Assessment of BTEX Exposure Levels in Urban Ambient Air and Public Buses: A Pilot Study Conducted in Paramaribo, Suriname. Case Stud. Chem. Environ. Eng. 2021, 4, 100112. [Google Scholar] [CrossRef]
- Marć, M.; Namieśnik, J.; Zabiegała, B. BTEX Concentration Levels in Urban Air in the Area of the Tri-City Agglomeration (Gdansk, Gdynia, Sopot), Poland. Air Qual. Atmos. Health 2014, 7, 489–504. [Google Scholar] [CrossRef]
- Hajizadeh, Y.; Mokhtari, M.; Faraji, M.; Mohammadi, A.; Nemati, S.; Ghanbari, R.; Abdolahnejad, A.; Fard, R.F.; Nikoonahad, A.; Jafari, N.; et al. Trends of BTEX in the Central Urban Area of Iran: A Preliminary Study of Photochemical Ozone Pollution and Health Risk Assessment. Atmos. Pollut. Res. 2018, 9, 220–229. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Wang, X.; Lü, S.; Huang, Z.; Huang, X.; Yang, W.; Wang, Y.; Zhang, Q. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China’s developed coastal regions. J. Geophys. Res. Atmos. 2016, 121, 6669–6687. [Google Scholar] [CrossRef]
- Dehghani, M.; Fazlzadeh, M.; Sorooshian, A.; Tabatabaee, H.R.; Miri, M.; Baghani, A.N.; Delikhoon, M.; Hossein, A.; Rashidi, M. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol. Environ. Saf. 2018, 155, 133–143. [Google Scholar] [CrossRef]
- Cruz, L.P.S.; Santos, D.F.; dos Santos, I.F.; Gomes, Í.V.S.; Santos, A.V.S.; Souza, K.S.P.P. Exploratory Analysis of the Atmospheric Levels of BTEX, Criteria Air Pollutants and Meteorological Parameters in a Tropical Urban Area in Northeastern Brazil. Microchem. J. 2020, 152, 104265. [Google Scholar] [CrossRef]
- Bretón, J.G.C.; Bretón, R.M.C.; Morales, S.M.; Kahl, J.D.W.; Guarnaccia, C.; del Carmen Lara Severino, R.; Marrón, M.R.; Lara, E.R.; de la Luz Espinosa Fuentes, M.; Chi, M.P.U.; et al. Health Risk Assessment of the Levels of BTEX in Ambient Air of One Urban Site Located in Leon, Guanajuato, Mexico during Two Climatic Seasons. Atmosphere 2020, 11, 165. [Google Scholar] [CrossRef]
- Caselli, M.; de Gennaro, G.; Marzocca, A.; Trizio, L.; Tutino, M. Assessment of the Impact of the Vehicular Traffic on BTEX Concentration in Ring Roads in Urban Areas of Bari (Italy). Chemosphere 2010, 81, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Dayan, U.; Koch, J.; Agami, S. Atmospheric Conditions Leading to Buildup of Benzene Concentrations in Urban Areas in Israel. Atmos. Environ. 2023, 300, 119678. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, C.; Cheng, Y.; Liu, C.; Zhang, H.; Zhang, G.; Sun, X.; Mu, Y. Serious BTEX Pollution in Rural Area of the North China Plain during Winter Season. J. Environ. Sci. 2015, 30, 186–190. [Google Scholar] [CrossRef]
- Panopoulou, A.; Liakakou, E.; Sauvage, S.; Gros, V.; Locoge, N.; Bonsang, B.; Salameh, T.; Gerasopoulos, E.; Mihalopoulos, N. Variability and Sources of Non-Methane Hydrocarbons at a Mediterranean Urban Atmosphere: The Role of Biomass Burning and Traffic Emissions. Sci. Total Environ. 2021, 800, 149389. [Google Scholar] [CrossRef]
- Kerchich, Y.; Kerbachi, R. Measurement of BTEX (Benzene, Toluene, Ethybenzene, and Xylene) Levels at Urban and Semirural Areas of Algiers City Using Passive Air Samplers. J. Air Waste Manag. Assoc. 2012, 62, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.T.; Yang, H.H.; Chen, H.W. Ambient BTEX and MTBE in the Neighborhoods of Different Industrial Parks in Southern Taiwan. J. Hazard. Mater. 2006, 128, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Masih, A.; Lall, A.S.; Taneja, A.; Singhvi, R. Inhalation Exposure and Related Health Risks of BTEX in Ambient Air at Different Microenvironments of a Terai Zone in North India. Atmos. Environ. 2016, 147, 55–66. [Google Scholar] [CrossRef]
- Miller, L.; Lemke, L.D.; Xu, X.; Molaroni, S.M.; You, H.; Wheeler, A.J.; Booza, J.; Grgicak-Mannion, A.; Krajenta, R.; Graniero, P.; et al. Intra-Urban Correlation and Spatial Variability of Air Toxics across an International Airshed in Detroit, Michigan (USA) and Windsor, Ontario (Canada). Atmos. Environ. 2012, 46, 683–686. [Google Scholar] [CrossRef]
- Buczynska, A.J.; Krata, A.; Stranger, M.; Locateli Godoi, A.F.; Kontozova-Deutsch, V.; Bencs, L.; Naveau, I.; Roekens, E.; Van Grieken, R. Atmospheric BTEX-Concentrations in an Area with Intensive Street Traffic. Atmos. Environ. 2009, 43, 311–318. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Dufresne, M.; Wang, T.; Wu, L.; Lara, R.; Seco, R.; Monge, M.; Yáñez-Serrano, A.M.; Gohy, M.; et al. Measurement Report: Exploring the Variations in Ambient BTEX in Urban Europe and their environmental health implications. Atmos. Chem. Phys. 2025, 25, 625–638. [Google Scholar] [CrossRef]
- Mentese, S.; Akca, B. Hot-Spot Summertime Levels and Potential Sources of Volatile Organic Compounds (VOC) on Roads around Çanakkale and Kilitbahir Harbors across Dardanelles Strait. Atmos. Pollut. Res. 2020, 11, 2297–2307. [Google Scholar] [CrossRef]
- Lan, T.T.N.; Minh, P.A. BTEX Pollution Caused by Motorcycles in the Megacity of HoChiMinh. J. Environ. Sci. 2013, 25, 348–356. [Google Scholar] [CrossRef]
- Phuc, N.H.; Kim Oanh, N.T. Determining Factors for Levels of Volatile Organic Compounds Measured in Different Microenvironments of a Heavy Traffic Urban Area. Sci. Total Environ. 2018, 627, 290–303. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Khoder, M.; Abdelmaksoud, A.S.; Harrison, R.M.; Hussein, T.; Lihavainen, H.; Al-Jeelani, H.; Goknil, M.H.; Shabbaj, I.I.; Almehmadi, F.M.; et al. Seasonal and Diurnal Variations of BTEX and Their Potential for Ozone Formation in the Urban Background Atmosphere of the Coastal City Jeddah, Saudi Arabia. Air Qual. Atmos. Health 2014, 7, 467–480. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Y.; Duan, X.; Chai, J.; Li, R.; Xu, Y.; Li, Z.; Peng, L. Sources and Seasonal Variance of Ambient Volatile Organic Compounds in the Typical Industrial City of Changzhi, Northern China. Atmosphere 2022, 13, 393. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, D.; Kumar, K.; Singh, B.B.; Jain, V.K. Distribution of VOCs in Urban and Rural Atmospheres of Subtropical India: Temporal Variation, Source Attribution, Ratios, OFP and Risk Assessment. Sci. Total Environ. 2018, 613–614, 492–501. [Google Scholar] [CrossRef]
- Baek, D.H.; Seo, Y.B.; Gil, J.S.; Lee, M.H.; Lee, J.S.; Lee, G.W.; Thepnuan, D.; Choi, I.Y.; Lee, S.W.; Dinh, T.V.; et al. An Investigation of Benzene, Toluene, Ethylbenzene, m,p-Xylene; Biogenic Volatile Organic Compounds; and Carbonyl Compounds in Chiang Mai’s Atmosphere and Estimation of Their Emission Sources During the Episode Period. Atmosphere 2025, 16, 342. [Google Scholar] [CrossRef]
- Pinthong, N.; Thepanondh, S.; Kultan, V.; Keawboonchu, J. Characteristics and Impact of VOCs on Ozone Formation Potential in a Petrochemical Industrial Area, Thailand. Atmosphere 2022, 13, 732. [Google Scholar] [CrossRef]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 2019, 650, 2337–2354. [Google Scholar] [CrossRef]
- Grivas, G.; Cheristanidis, S.; Chaloulakou, A.; Koutrakis, P.; Mihalopoulos, N. Elemental Composition and Source Apportionment of Fine and Coarse Particles at Traffic and Urban Background Locations in Athens, Greece. Aerosol Air Qual. Res. 2018, 18, 1642–1659. [Google Scholar] [CrossRef]
- Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, T.; Saraga, D.; Grigoratos, T.; Argyropoulos, G.; Voutsa, D.; Samara, C.; et al. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece. Atmos. Environ. 2017, 164, 416–430. [Google Scholar] [CrossRef]
- Betsou, C.; Diapouli, E.; Tsakiri, E.; Papadopoulou, L.; Frontasyeva, M.; Eleftheriadis, K.; Ioannidou, A. First-Time Source Apportionment Analysis of Deposited Particulate Matter from a Moss Biomonitoring Study in Northern Greece. Atmosphere 2021, 12, 208. [Google Scholar] [CrossRef]
- Evagelopoulos, V.; Begou, P.; Zoras, S. In-Depth Study of PM2.5 and PM10 Concentrations over a 12-Year Period and their Elemental Composition in the Lignite Center of Western Macedonia, Greece. Atmosphere 2022, 13, 1900. [Google Scholar] [CrossRef]
- Garg, A.; Gupta, N.C. A Comprehensive Study on Spatio-Temporal Distribution, Health Risk Assessment and Ozone Formation Potential of BTEX Emissions in Ambient Air of Delhi, India. Sci. Total Environ. 2019, 659, 1090–1099. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of Ozone Reactivity Scales for Volatile Organic Compounds. J. Air Waste Manag. Assoc. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Kong, L.; Luo, T.; Jiang, X.; Zhou, S.; Huang, G.; Chen, D.; Lan, Y.; Yang, F. Seasonal Variation Characteristics of VOCs and Their Influences on Secondary Pollutants in Yibin, Southwest China. Atmosphere 2022, 13, 1389. [Google Scholar] [CrossRef]
- Bauri, N.; Bauri, P.; Kumar, K.; Jain, V.K. Evaluation of seasonal variations in abundance of BTXE hydrocarbons and their ozone forming potential in ambient urban atmosphere of Dehradun (India). Air Qual. Atmos. Health 2016, 9, 95–106. [Google Scholar] [CrossRef]
- An, T.; Li, J.; Lin, Q.; Li, G. Ozone formation potential related to the release of volatile organic compounds (VOCs) and nitrogen oxide (NOX) from a typical industrial park in the Pearl River Delta. Environ. Sci. Atmos. 2024, 4, 1229–1238. [Google Scholar] [CrossRef]
- Gong, Y.; Wei, Y.; Cheng, J.; Jiang, T.; Chen, L.; Xu, B. Health Risk Assessment and Personal Exposure to Volatile Organic Compounds (VOCs) in Metro Carriages—A Case Study in Shanghai, China. Sci. Total Environ. 2017, 574, 1432–1438. [Google Scholar] [CrossRef]
- Fourtziou, L.; Liakakou, E.; Stavroulas, I.; Theodosi, C.; Zarmpas, P.; Psiloglou, B.; Sciare, J.; Maggos, T.; Bairachtari, K.; Bougiatioti, A.; et al. Multi-Tracer Approach to Characterize Domestic Wood Burning in Athens (Greece) during Wintertime. Atmos. Environ. 2017, 148, 89–101. [Google Scholar] [CrossRef]
- Gratsea, M.; Liakakou, E.; Mihalopoulos, N.; Adamopoulos, A.; Tsilibari, E.; Gerasopoulos, E. The Combined Effect of Reduced Fossil Fuel Consumption and Increasing Biomass Combustion on Athens’ Air Quality, as Inferred from Long Term CO Measurements. Sci. Total Environ. 2017, 592, 115–123. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Sources of Atmospheric Aerosol from Long-Term Measurements (5 years) of Chemical Composition in Athens, Greece. Sci. Total Environ. 2015, 527–528, 165–178. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M.M.; et al. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci. Technol. 2013, 47, 13313–13320. [Google Scholar] [CrossRef]
- Loonsamrong, W.; Taneepanichskul, N.; Puangthongthub, S.; Tungsaringkarn, T. Health Risk Assessment and Btex Exposure Among Car Park Workers At a Parking Structure in Bangkok, Thailand. J. Health Res. 2015, 29, 285–292. [Google Scholar] [CrossRef]
- Nabizadeh, R.; Sorooshia, A.; Baghani, A.N.; Ashournejad, Q. On the nature of airborne aldehydes in a middle eastern megacity: Tehran, Iran. Sustain. Cities Soc. 2020, 53, 101895. [Google Scholar] [CrossRef]
Location/Reference | Benzene LTCR | Ethylbenzene LTCR |
---|---|---|
Kuala Lumpur, Malaisia [30] | 1.59 × 10−5 | 1.63 × 10−6 |
Tehran, Iran [36] | 3.93 × 10−7 | not included |
Arad, Romania [41] | 4.6 × 10−5 (max) 6.13 × 10−6 (min) | not included |
Shiraz, Iran [54] | 1.96 × 10−4 (morning) 2.49 × 10−4 (afternoon) | not included |
Dongbaituo, Hebei, China [59] | 7.59 × 10−5 | not included |
Gorakhpur, India [63] | 1.0 × 10−5 | 4.6 × 10−6 |
Changzhi, China [71] | 3.8 × 10−5 (average) | 2.9 × 10−6 |
Bangkok, Thailand [90] | 4.37 × 10−6 | 1.47 × 10−6 |
Location | Benzene | Toluene | Ethylbenzene | m+p-Xylene | o-Xylene |
---|---|---|---|---|---|
Agrinio | 0.10 | 8.0 × 10−4 | 1.0 × 10−3 | 1.9 × 10−2 | 1.0 × 10−2 |
Alexandroupolis | 8 × 10−2 | 7.1 × 10−4 | 1.4 × 10−3 | 1.9 × 10−2 | 1.2 × 10−2 |
Attica Region—(Greater Athens Area) | |||||
Aristotelous | 8.0 × 10−2 | 7.6 × 10−4 | 2.5 × 10−3 | 2.6 × 10−2 | 1.8 × 10−2 |
Aspropirgos | 5.0 × 10−2 | 6.4 × 10−4 | 1.9 × 10−3 | 2.4 × 10−2 | 1.4 × 10−2 |
Elefsina | 5.0 × 10−2 | 5.4 × 10−4 | 1.1 × 10−3 | 1.7 × 10−2 | 1.2 × 10−2 |
Kifisos | 0.10 | 8.3 × 10−4 | 2.0 × 10−3 | 3.4 × 10−2 | 1.7 × 10−2 |
L. Kifisias | 0.11 | 8.7 × 10−4 | 1.9 × 10−3 | 3.3 × 10−2 | 1.7 × 10−2 |
Nea Smirni | 7.0 × 10−2 | 6.1 × 10−4 | 1.3 × 10−3 | 2.3 × 10−2 | 1.3 × 10−2 |
Palaio Faliro | 0.11 | 9.6 × 10−4 | 1.9 × 10−3 | 3.6 × 10−2 | 1.9 × 10−2 |
Peristeri | 8.0 × 10−2 | 6.6 × 10−4 | 1.5 × 10−3 | 3.0 × 10−2 | 1.6 × 10−2 |
Piraeus | 0.11 | 9.1 × 10−4 | 2.0 × 10−3 | 3.4 × 10−2 | 1.9 × 10−2 |
Chania | 6.0 × 10−2 | 5.9 × 10−4 | 1.4 × 10−3 | 2.0 × 10−2 | 1.1 × 10−2 |
Florina | 9.0 × 10−2 | 7.8 × 10−4 | 1.7 × 10−3 | 2.7 × 10−2 | 1.7 × 10−2 |
Heraklion | 6.0 × 10−2 | 5.5 × 10−4 | 1.4 × 10−3 | 1.8 × 10−2 | 1.3 × 10−2 |
Ioannina | 9.0 × 10−2 | 7.8 × 10−4 | 1.8 × 10−3 | 1.7 × 10−2 | 1.3 × 10−2 |
Kalamata | 4.0 × 10−2 | 4.5 × 10−4 | 7.3 × 10−4 | 1.2 × 10−2 | 8.7 × 10−3 |
Kavala | 3.0 × 10−2 | 5.4 × 10−4 | 8.5 × 10−4 | 1.3 × 10−2 | 7.9 × 10−3 |
Kerkira | 8.0 × 10−2 | 7.2 × 10−4 | 1.4 × 10−3 | 1.8 × 10−2 | 1.3 × 10−2 |
Lamia | 7.0 × 10−2 | 6.3 × 10−4 | 1.2 × 10−3 | 1.8 × 10−2 | 1.3 × 10−2 |
Larisa | 0.10 | 8.4 × 10−4 | 1.9 × 10−3 | 1.9 × 10−2 | 1.4 × 10−2 |
Megalopolis | 5.0 × 10−2 | 5.1 × 10−4 | 9.0 × 10−4 | 1.0 × 10−2 | 6.3 × 10−3 |
Mytilene | 9.0 × 10−2 | 6.9 × 10−4 | 1.6 × 10−3 | 2.5 × 10−2 | 1.6 × 10−2 |
Patra1 | 0.11 | 8.7 × 10−4 | 1.9 × 10−3 | 3.6 × 10−2 | 2.2 × 10−2 |
Patra2 | 9.0 × 10−2 | 8.4 × 10−4 | 1.7 × 10−3 | 2.0 × 10−2 | 1.6 × 10−2 |
Ptolemaida | 5.0 × 10−2 | 4.9 × 10−4 | 1.1 × 10−3 | 1.5 × 10−2 | 9.7 × 10−3 |
Syros | 3.0 × 10−2 | 3.8 × 10−4 | 5.8 × 10−4 | 1.0 × 10−2 | 4.4 × 10−3 |
Thiba | 5.0 × 10−2 | 4.7 × 10−4 | 9.0 × 10−4 | 1.4 × 10−2 | 1.1 × 10−2 |
Thessaloniki Region | |||||
Agia Sofia | 7.0 × 10−2 | 7.1 × 10−4 | 1.2 × 10−3 | 2.4 × 10−2 | 1.5 × 10−2 |
Kalamaria | 4.0 × 10−2 | 4.4 × 10−4 | 1.0 × 10−3 | 1.6 × 10−2 | 1.1 × 10−2 |
Kordelio | 6.0 × 10−2 | 5.9 × 10−4 | 1.0 × 10−3 | 2.1 × 10−2 | 1.3 × 10−2 |
Inner ring road | 4.0 × 10−2 | 6.3 × 10−4 | 5.7 × 10−4 | 1.8 × 10−2 | 1.3 × 10−2 |
Plateia Dimokratias | 7.0 × 10−2 | 7.2 × 10−4 | 1.4 × 10−3 | 2.3 × 10−2 | 1.2 × 10−2 |
Volos | 0.10 | 8.1 × 10−4 | 1.7 × 10−3 | 2.1 × 10−2 | 1.7 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanellopoulos, P.G.; Chrysochou, E.; Bakeas, E. Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential. Atmosphere 2025, 16, 1162. https://doi.org/10.3390/atmos16101162
Kanellopoulos PG, Chrysochou E, Bakeas E. Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential. Atmosphere. 2025; 16(10):1162. https://doi.org/10.3390/atmos16101162
Chicago/Turabian StyleKanellopoulos, Panagiotis Georgios, Eirini Chrysochou, and Evangelos Bakeas. 2025. "Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential" Atmosphere 16, no. 10: 1162. https://doi.org/10.3390/atmos16101162
APA StyleKanellopoulos, P. G., Chrysochou, E., & Bakeas, E. (2025). Investigating BTEX Emissions in Greece: Spatiotemporal Distribution, Health Risk Assessment and Ozone Formation Potential. Atmosphere, 16(10), 1162. https://doi.org/10.3390/atmos16101162