HS-SPME-GC-MS Volatile Profile of “Aglio Rosso di Sulmona” (Sulmona Red Garlic) Floral Scape
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Volatile Profile of Sulmona Red Garlic Scapes and Cloves
3.2. Influence of Garlic Glove Origin and Cultivation Site on the Volatile Profile of Floral Scape
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Compound | Pairs of Groups with Significantly Different Means # |
|---|---|
| Allyl methyl sulfide | - |
| Dimethyl disulfide | BC, BG |
| Hexanal | AB, AC, AD, AE, AF, AG |
| (E)-2-Hexenal | AB, AC, AF, BE, BG |
| Diallyl sulfide | AB |
| Allyl (E)-1-propenyl sulfide | - |
| Methyl allyl disulfide | - |
| Methyl (Z)-1-propenyl disulfide | BC |
| Methyl (E)-1-propenyl disulfide | AG, BE, BG, CG, DG, FG |
| Dimethyl trisulfide | AB, BC, BG |
| β-Myrcene | AB, AF, AG, BC |
| Ethyl hexanoate | AB, AD, AF, AG |
| 2-Ethylhexenal | AB, AC, AF, BE, BG |
| o-Cymene | AB, AD, AF, AG, BC |
| Limonene | AB, AG, BC |
| β-Ocimene | AB |
| γ-Terpinene | AB, AD, AF, AG, BC |
| Diallyl disulfide | AB, BC, BE, BG |
| Allyl (E)-1-propenyl disulfide | AE, AG |
| Allyl (Z)-1-propenyl disulfide | AB, AE, AG, BC, BD, BF |
| Propyl (E)-1-propenyl disulfide | - |
| (E,Z)-di-1-propenyl disulfide | - |
| (E,E)-di-1-propenyl disulfide | - |
| cis-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | BE |
| Allyl methyl trisulfide | AE, AG, BE, BG, CE, CG, DG, EG, FG |
| Methyl (Z)-1-propenyl trisulfide | BC, CD, CF, DE |
| Methyl (E)-1-propenyl trisulfide | - |
| trans-2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | - |
| 2-Vinyl-4H-1,3-dithiine | - |
| Diallyl trisulfide | CE CF CG |
| Allyl (Z)-1-propenyl trisulfide | AE, AF, AG, BG |
| Allyl (E)-1-propenyl trisulfide | AE, AF, AG |
| Dimethyl pentasulfide | AF |
| β-Ionone | AB, AC, AD, AF, AG |
| Diallyl tetrasulfide | - |
References
- Sahidur, M.R.; Islam, S.; Jahurul, M.H.A. Garlic (Allium Sativum) as a Natural Antidote or a Protective Agent against Diseases and Toxicities: A Critical Review. Food Chem. Adv. 2023, 3, 100353. [Google Scholar] [CrossRef]
- Dhall, R.K.; Cavagnaro, P.F.; Singh, H.; Mandal, S. History, Evolution and Domestication of Garlic: A Review. Plant Syst. Evol. 2023, 309, 33. [Google Scholar] [CrossRef]
- Rakshit, D.; Nayak, S.; Kundu, S.; Angelopoulou, E.; Pyrgelis, E.-S.; Piperi, C.; Mishra, A. The Pharmacological Activity of Garlic (Allium sativum) in Parkinson’s Disease: From Molecular Mechanisms to the Therapeutic Potential. ACS Chem. Neurosci. 2023, 14, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, V.M.; Laurindo, L.F.; Manzan, B.; Guiguer, E.L.; Oshiiwa, M.; Otoboni, A.M.M.B.; Araujo, A.C.; Tofano, R.J.; Barbalho, S.M. Garlic: A Systematic Review of the Effects on Cardiovascular Diseases. Crit. Rev. Food Sci. Nutr. 2023, 63, 6797–6819. [Google Scholar] [CrossRef] [PubMed]
- Farhat, Z.; Hershberger, P.A.; Freudenheim, J.L.; Mammen, M.J.; Hageman Blair, R.; Aga, D.S.; Mu, L. Types of Garlic and Their Anticancer and Antioxidant Activity: A Review of the Epidemiologic and Experimental Evidence. Eur. J. Nutr. 2021, 60, 3585–3609. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Alvarenga, L.; Cardozo, L.F.M.F.; Chermut, T.R.; Sequeira, J.; de Souza Gouveia Moreira, L.; Teixeira, K.T.R.; Shiels, P.G.; Stenvinkel, P.; Mafra, D. From the Distinctive Smell to Therapeutic Effects: Garlic for Cardiovascular, Hepatic, Gut, Diabetes and Chronic Kidney Disease. Clin. Nutr. 2021, 40, 4807–4819. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological Properties and Therapeutic Applications of Garlic and Its Components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef]
- Iwar, K.; Ochar, K.; Seo, Y.A.; Ha, B.K.; Kim, S.H. Alliums as Potential Antioxidants and Anticancer Agents. Int. J. Mol. Sci. 2024, 25, 8079. [Google Scholar] [CrossRef]
- Corzo-Martínez, M.; Corzo, N.; Villamiel, M. Biological Properties of Onions and Garlic. Trends Food Sci. Technol. 2007, 18, 609–625. [Google Scholar] [CrossRef]
- Lanzotti, V. The Analysis of Onion and Garlic. J. Chromatogr. A 2006, 1112, 3–22. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Locatelli, D.A.; González, R.E.; Cavagnaro, P.F.; Camargo, A.B. Analytical Methods for Bioactive Sulfur Compounds in Allium: An Integrated Review and Future Directions. J. Food Compos. Anal. 2017, 61, 4–19. [Google Scholar] [CrossRef]
- Horníčková, J.; Velíšek, J.; Ovesná, J.; Stavělíková, H. Distribution of S-Alk(En)Yl-L-Cysteine Sulfoxides in Garlic (Allium sativum L.). Czech J. Food Sci. 2009, 27, S232–S235. [Google Scholar] [CrossRef]
- Baky, M.H.; Shamma, S.N.; Khalifa, M.R.; Farag, M.A. How Does Allium Leafy Parts Metabolome Differ in Context to Edible or Inedible Taxa? Case Study in Seven Allium Species as Analyzed Using MS-Based Metabolomics. Metabolites 2023, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E.; Fadel, H.M. Investigation of the Volatile Aroma Components of Garlic Leaves Essential Oil. Possibility of Utilization to Enrich Garlic Bulb Oil. Eur. Food Res. Technol. 2002, 214, 105–107. [Google Scholar] [CrossRef]
- Nasim, S.A.; Dhir, B.; Samar, F.; Rashmi, K.; Mahmooduzzafar; Mujib, A. Sulphur Treatment Alters the Therapeutic Potency of Alliin Obtained from Garlic Leaf Extract. Food Chem. Toxicol. 2009, 47, 888–892. [Google Scholar] [CrossRef]
- Kurnia, D.; Ajiati, D.; Heliawati, L.; Sumiarsa, D. Potential of Flavonol and Sulfur Compounds from Allium Leaves as an Antioxidant and Xanthine Oxidase Inhibition in Silico Study. Food Chem. Adv. 2023, 3, 100383. [Google Scholar] [CrossRef]
- Liu, P.; Weng, R.; Xu, Y.; Feng, Y.; He, L.; Qian, Y.; Qiu, J. Metabolic Changes in Different Tissues of Garlic Plant during Growth. J. Agric. Food Chem. 2020, 68, 12467–12475. [Google Scholar] [CrossRef]
- Lasalvia, A.; Cairone, F.; Cesa, S.; Maccelli, A.; Crestoni, M.E.; Menghini, L.; Carradori, S.; Marinacci, B.; Gallorini, M.; Elsallabi, O.; et al. Characterization and Valorization of ‘Sulmona Red Garlic’ Peels and Small Bulbs. Antioxidants 2022, 11, 2088. [Google Scholar] [CrossRef]
- Didonna, A.; Renna, M.; Santamaria, P. Traditional Italian Agri-Food Products: A Unique Tool with Untapped Potential. Agriculture 2023, 13, 1313. [Google Scholar] [CrossRef]
- Slow Food Foundation for Biodiversity. Available online: https://www.fondazioneslowfood.com/en/ark-of-taste-slow-food/sulmona-red-garlic/ (accessed on 25 June 2025).
- Pianezze, S.; Perini, M.; Bontempo, L.; Ziller, L.; D’Archivio, A.A. Geographical Discrimination of Garlic (Allium sativum L.) Based on Stable Isotope Ratio Analysis Coupled with Statistical Methods: The Italian Case Study. Food Chem. Toxicol. 2019, 134, 110862. [Google Scholar] [CrossRef]
- D’Archivio, A.A.; Foschi, M.; Aloia, R.; Maggi, M.A.; Rossi, L.; Ruggieri, F. Geographical Discrimination of Red Garlic (Allium sativum L.) Produced in Italy by Means of Multivariate Statistical Analysis of ICP-OES Data. Food Chem. 2019, 275, 333–338. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; D’Archivio, A.A. Geographical Discrimination of Red Garlic (Allium sativum L.) Using Fast and Non-Invasive Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy Combined with Chemometrics. J. Food Compos. Anal. 2020, 86, 103351. [Google Scholar] [CrossRef]
- Biancolillo, A.; Aloia, R.; Rossi, L.; D’Archivio, A.A. Organosulfur Volatile Profiles in Italian Red Garlic (Allium sativum L.) Varieties Investigated by HS-SPME/GC-MS and Chemometrics. Food Control 2022, 131, 108477. [Google Scholar] [CrossRef]
- Tocmo, R.; Wang, C.; Liang, D.; Huang, D. Organosulphide Profile and Hydrogen Sulphide-Releasing Capacity of Garlic (Allium sativum L.) Scape Oil: Effects of PH and Cooking. J. Funct. Foods 2015, 17, 410–421. [Google Scholar] [CrossRef]
- Naheed, Z.; Cheng, Z.; Wu, C.; Wen, Y.; Ding, H. Total Polyphenols, Total Flavonoids, Allicin and Antioxidant Capacities in Garlic Scape Cultivars during Controlled Atmosphere Storage. Postharvest Biol. Technol. 2017, 131, 39–45. [Google Scholar] [CrossRef]
- Ferioli, F.; Giambanelli, E.; D’Alessandro, V.; D’Antuono, L.F. Comparison of Two Extraction Methods (High Pressure Extraction vs. Maceration) for the Total and Relative Amount of Hydrophilic and Lipophilic Organosulfur Compounds in Garlic Cloves and Stems. An Application to the Italian Ecotype “Aglio Rosso Di Sulmona” (Sulmona Red Garlic). Food Chem. 2020, 312, 125086. [Google Scholar] [CrossRef]
- Chiavaroli, A.; Masciulli, F.; Ingallina, C.; Mannina, L.; Maria Loreta, L.; Di Simone, S.C.; Acquaviva, A.; Nilofar; Recinella, L.; Leone, S.; et al. Comprehensive Metabolite and Biological Profile of “Sulmona Red Garlic” Ecotype’s Aerial Bulbils. Food Res Int. 2024, 175, 113654. [Google Scholar] [CrossRef]
- NIST14: Mass Spectral Database; NIST: Gaithersburg, MD, USA. Available online: https://www.nist.gov/news-events/news/2014/07/latest-nist-mass-spectral-library-expanded-coverage-features/ (accessed on 7 January 2025).
- Vasavada, N. Online Web Statistical Calculators. Available online: http://astatsa.com/ (accessed on 12 January 2025).
- Bro, R.; Smilde, A.K. Principal Component Analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Xiao, Z.; Niu, Y. Characterization of the Key Aroma Compounds in Mulberry Fruits by Application of Gas Chromatography–Olfactometry (GC-O), Odor Activity Value (OAV), Gas Chromatography-Mass Spectrometry (GC–MS) and Flame Photometric Detection (FPD). Food Chem. 2018, 245, 775–785. [Google Scholar] [CrossRef]
- Zhang, B.; Zhai, Y.; Wu, Z.; Wang, C.; Zhang, J. Dynamic Characterization of Volatile and Non-Volatile Profiles during Toona Sinensis Microgreens Growth in Combination with Chemometrics. Food Res Int. 2025, 206, 116013. [Google Scholar] [CrossRef]
- Das, A.; Lee, S.H.; Hyun, T.K.; Kim, S.W.; Kim, J.Y. Plant Volatiles as Method of Communication. Plant Biotechnol. Rep. 2013, 7, 9–26. [Google Scholar] [CrossRef]
- Boncan, D.A.T.; Tsang, S.S.K.; Li, C.; Lee, I.H.T.; Lam, H.-M.; Chan, T.-F.; Hui, J.H.L. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int. J. Mol. Sci. 2020, 21, 7382. [Google Scholar] [CrossRef]
- Aguiar, J.; Gonçalves, J.L.; Alves, V.L.; Câmara, J.S. Relationship between Volatile Composition and Bioactive Potential of Vegetables and Fruits of Regular Consumption—an Integrative Approach. Molecules 2021, 26, 3653. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Perestrelo, R.; Ferreira, R.; Berenguer, C.V.; Pereira, J.A.M.; Castilho, P.C. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications—A Comprehensive Overview. Molecules 2024, 29, 3861. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Bi, S.; Lao, F.; Wu, J. Factors Affecting Aroma Compounds in Orange Juice and Their Sensory Perception: A Review. Food Res Int. 2023, 169, 112835. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Coll, L.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Volatile Composition of Prickly Pear Fruit Pulp from Six Spanish Cultivars. J. Food Sci. 2020, 85, 358–363. [Google Scholar] [CrossRef]
- Luo, Z.; Ma, L.; Zhang, Y.; Liu, Y.; Yang, R.; Dai, X.; Wang, T.; Lv, C.; Zuo, L.; Liu, Y.; et al. Effect of Drying Methods on Aroma Profiling of Large-Leaf Green Tea (Camellia sinensis var. Assamica) Determined by HS-SPME-GC-MS. Foods 2025, 14, 1275. [Google Scholar] [CrossRef]
- Shan, Q.; Wan, Y.; Liang, J.; He, W.; Zeng, J.; Liang, W.; Xiong, S.; Zhang, M.; Wang, B.; Zou, X.; et al. HS–SPME Combined with GC–MS and GC–O for Characterization of Key Aroma-Active Compounds in Fruity and Grassy Peppers (Capsicum chinense Jacq.). Food Chem.: X 2024, 24, 101944. [Google Scholar] [CrossRef]
- Paparella, A.; Shaltiel-harpaza, L.; Ibdah, M. Β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering. Plants 2021, 10, 754. [Google Scholar] [CrossRef]



| Compound | RT (min) | RI (exp) | RI (lit)a |
|---|---|---|---|
| Allyl methyl sulfide | 2.94 | - | 697 ± 0 |
| Dimethyl disulfide | 3.77 | - | 746 ± 6 |
| Hexanal | 5.09 | 802 | 800 ± 2 |
| (E)-2-Hexenal | 6.34 | 847 | 844b |
| Diallyl sulfide | 6.63 | 857 | 861 ± 4 |
| Allyl (E)-1-propenyl sulfide | 7.52 | 889 | 891 |
| Methyl allyl disulfide | 8.24 | 915 | 920 ± 4 |
| Methyl (Z)-1-propenyl disulfide | 8.62 | 928 | 932 |
| Methyl (E)-1-propenyl disulfide | 8.88 | 938 | 940 |
| Dimethyl trisulfide | 9.73 | 968 | 970 ± 7 |
| β-Myrcene | 10.35 | 990 | 991 ± 2 |
| Ethyl hexanoate | 10.61 | 1000 | 1000 ± 2 |
| 2-Ethylhexenal | 10.77 | 1006 | 999 ± 30 |
| o-Cymene | 11.31 | 1026 | 1025 ± 2 |
| Limonene | 11.44 | 1030 | 1031 ± 4 |
| β-Ocimene | 11.63 | 1037 | 1037 ± 7 |
| γ-Terpinene | 12.23 | 1060 | 1060 ± 3 |
| Diallyl disulfide | 12.83 | 1082 | 1081 ± 6 |
| Allyl (E)-1-propenyl disulfide | 13.18 | 1095 | 1103 |
| Allyl (Z)-1-propenyl disulfide | 13.37 | 1102 | 1107 ± 5 |
| Propyl (E)-1-propenyl disulfide | 13.76 | 1117 | 1118 |
| (E,Z)-di-1-propenyl disulfide | 13.87 | 1122 | 1124 |
| (E,E)-di-1-propenyl disulfide | 14.00 | 1127 | 1129 |
| cis-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | 14.20 | 1135 | 1138 |
| Allyl methyl trisulfide | 14.34 | 1140 | 1142 ± 9 |
| Methyl (Z)-1-propenyl trisulfide | 14.88 | 1162 | 1164 |
| Methyl (E)-1-propenyl trisulfide | 15.02 | 1167 | 1169 ± 1 |
| trans-2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | 15.39 | 1182 | 1185c |
| 3-Vinyl-4H-1,2-dithiine | 15.60 | 1190 | 1192 ± 14 |
| 2-Vinyl-4H-1,3-dithiine | 16.27 | 1218 | 1206 ± 11 |
| Diallyl trisulfide | 18.32 | 1304 | 1297 ± 7 |
| Allyl (Z)-1-propenyl trisulfide | 18.80 | 1326 | 1329 |
| Allyl (E)-1-propenyl trisulfide | 18.90 | 1330 | 1346 ± 14 |
| Dimethyl pentasulfide | 20.11 | 1384 | 1415 |
| β-Ionone | 22.18 | 1482 | 1491 ± 2 |
| Diallyl tetrasulfide | 23.34 | 1550 | 1538 ± 13 |
| Compound | ST | SC | SB | C | ANOVA # |
|---|---|---|---|---|---|
| Allyl methyl sulfide | 0.47 ± 0.04a | 0.28 ± 0.03b | 0.55 ± 0.08a | 0.11 ± 0.01b | *** |
| Dimethyl disulfide | 0.51 ± 0.06a | 0.44 ± 0.09a | 0.21 ± 0.03b | 0.12 ± 0.02b | *** |
| Hexanal | 6.06 ± 0.24a | 2.41 ± 0.48ac | 13.79 ± 2.57b | 0.11 ± 0.03c | *** |
| (E)-2-Hexenal | 8.98 ± 0.89a | 7.04 ± 1.37ab | 4.54 ± 0.95b | 0.00 ± 0.00c | *** |
| Diallyl sulfide | 0.28 ± 0.02a | 0.19 ± 0.02ab | 0.18 ± 0.04ab | 0.36 ± 0.03ac | *** |
| Allyl (E)-1-propenyl sulfide | 0.32 ± 0.03ab | 0.23 ± 0.05a | 0.26 ± 0.04a | 0.12 ± 0.01ac | ** |
| Methyl allyl disulfide | 5.62 ± 0.34a | 5.93 ± 1.03a | 1.47 ± 0.13b | 5.84 ± 0.35a | *** |
| Methyl (Z)-1-propenyl disulfide | 0.23 ± 0.02a | 0.25 ± 0.02a | 0.18 ± 0.02a | 0.06 ± 0.01b | *** |
| Methyl (E)-1-propenyl disulfide | 0.48 ± 0.05a | 1.24 ± 0.25b | 0.64 ± 0.07a | 0.41 ± 0.03a | ** |
| Dimethyl trisulfide | 0.24 ± 0.03a | 0.37 ± 0.05c | 0.08 ± 0.02b | 0.07 ± 0.01b | *** |
| β-Myrcene | 2.60 ± 0.37a | 2.16 ± 0.45a | 1.49 ± 0.24a | 0.05 ± 0.01b | *** |
| Ethyl hexanoate | 2.94 ± 0.48a | 0.47 ± 0.13ac | 3.53 ± 1.17ab | 0.00 ± 0.00c | ** |
| 2-Ethylhexenal | 1.67 ± 0.26a | 0.76 ± 0.21bc | 0.30 ± 0.05b | 0.00 ± 0.00bd | *** |
| o-Cymene | 1.27 ± 0.15a | 1.12 ± 0.29a | 1.52 ± 0.25a | 0.04 ± 0.01b | *** |
| Limonene | 6.45 ± 0.90a | 7.01 ± 1.54a | 6.54 ± 1.20a | 0.04 ± 0.00b | *** |
| β-Ocimene | 1.57 ± 0.21a | 1.75 ± 0.39a | 1.21 ± 0.25a | 0.03 ± 0.01b | *** |
| γ-Terpinene | 0.85 ± 0.09a | 0.88 ± 0.23a | 1.48 ± 0.26a | 0.00 ± 0.00b | *** |
| Diallyl disulfide | 35.88 ± 1.98a | 26.93 ± 3.08b | 18.60 ± 1.90b | 51.89 ± 1.39c | *** |
| Allyl (E)-1-propenyl disulfide | 2.88 ± 0.12a | 3.86 ± 0.13b | 2.79 ± 0.25a | 1.47 ± 0.09c | *** |
| Allyl (Z)-1-propenyl disulfide | 7.94 ± 0.36a | 17.74 ± 2.45c | 32.50 ± 3.49b | 12.22 ± 0.44ac | *** |
| Propyl (E)-1-propenyl disulfide | 0.17 ± 0.04a | 0.34 ± 0.06ab | 0.62 ± 0.16b | 0.11 ± 0.01a | ** |
| (E,Z)-di-1-propenyl disulfide | 0.09 ± 0.01 | 0.26 ± 0.09 | 0.22 ± 0.03 | 0.08 ± 0.01 | - |
| (E,E)-di-1-propenyl disulfide | 0.15 ± 0.02a | 0.72 ± 0.28ab | 1.15 ± 0.11b | 0.22 ± 0.02a | *** |
| cis-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | 0.08 ± 0.01 | 0.22 ± 0.07 | 0.18 ± 0.03 | 0.09 ± 0.02 | - |
| Allyl methyl trisulfide | 2.30 ± 0.25a | 4.10 ± 0.46c | 0.54 ± 0.05b | 0.73 ± 0.05b | *** |
| Methyl (Z)-1-propenyl trisulfide | 0.17 ± 0.02a | 0.26 ± 0.04ab | 0.28 ± 0.02b | 0.08 ± 0.02ac | *** |
| Methyl (E)-1-propenyl trisulfide | 0.11 ± 0.04a | 0.20 ± 0.03ac | 0.06 ± 0.01ab | 0.13 ± 0.03a | * |
| trans-2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | 0.12 ± 0.03a | 0.38 ± 0.18ab | 0.73 ± 0.10b | 0.19 ± 0.01ab | ** |
| 3-Vinyl-4H-1,2-dithiine | n.d. | n.d. | n.d. | 5.26 ± 0.43 | |
| 2-Vinyl-4H-1,3-dithiine | 0.35 ± 0.09a | 0.30 ± 0.07a | 0.37 ± 0.06a | 13.76 ± 1.20b | *** |
| Diallyl trisulfide | 6.64 ± 0.98a | 9.72 ± 0.79c | 2.83 ± 0.58b | 5.21 ± 0.28ab | *** |
| Allyl (Z)-1-propenyl trisulfide | 0.31 ± 0.07a | 0.96 ± 0.12b | 0.39 ± 0.04a | 0.54 ± 0.06a | *** |
| Allyl (E)-1-propenyl trisulfide | 0.29 ± 0.05a | 0.91 ± 0.11b | 0.53 ± 0.09a | 0.50 ± 0.08a | ** |
| Dimethyl pentasulfide | 0.10 ± 0.01a | 0.14 ± 0.01ad | 0.07 ± 0.02ac | 0.00 ± 0.00b | *** |
| β-Ionone | 0.57 ± 0.07a | 0.20 ± 0.03bc | 0.09 ± 0.02b | 0.00 ± 0.00bd | *** |
| Diallyl tetrasulfide | 0.16 ± 0.03a | 0.24 ± 0.02ac | 0.08 ± 0.02ab | 0.15 ± 0.04a | * |
| Compound | Sulmona- WS (n = 10) | Sulmona- ES (n = 5) | Sulmona- S (n = 5) | Spain- ES (n = 5) | Spain- WS (n = 5) | Spain- S (n = 5) | France-WS (n = 5) | ANOVA # |
|---|---|---|---|---|---|---|---|---|
| Allyl methyl sulfide | 0.47 ± 0.25 | n.d. | n.d. | 0.26 ± 0.04 | 0.33 ± 0.06 | 0.35 ± 0.05 | 0.28 ± 0.33 | - |
| Dimethyl disulfide | n.d. | 0.11 ± 0.03 | 0.50 ± 0.06 | 0.33 ± 0.06 | 0.33 ± 0.07 | 0.34 ± 0.05 | 0.44 ± 0.09 | ** |
| Hexanal | 4.91 ± 0.57 | 0.84 ± 0.16 | 2.76 ± 0.25 | 2.02 ± 0.29 | 2.03 ± 0.57 | 1.12 ± 0.05 | 2.41 ± 0.48 | *** |
| (E)-2-Hexenal | 8.79 ± 1.02 | 0.60 ± 0.15 | 4.04 ± 0.31 | 5.18 ± 0.71 | 6.42 ± 1.94 | 2.92 ± 0.65 | 7.04 ± 1.37 | *** |
| Diallyl sulfide | 0.63 ± 0.10 | 0.17 ± 0.05 | 0.57 ± 0.24 | 0.32 ± 0.02 | 0.34 ± 0.05 | 0.42 ± 0.05 | 0.19 ± 0.02 | * |
| Allyl (E)-1-propenyl sulfide | 0.31 ± 0.12 | 0.13 ± 0.02 | 0.45 ± 0.06 | 0.24 ± 0.03 | 0.28 ± 0.03 | 0.19 ± 0.05 | 0.23 ± 0.05 | - |
| Methyl allyl disulfide | 2.77 ± 1.16 | 2.34 ± 0.32 | 3.71 ± 0.49 | 2.77 ± 0.58 | 2.88 ± 0.48 | 2.55 ± 0.57 | 5.93 ± 1.03 | - |
| Methyl (Z)-1-propenyl disulfide | 0.41 ± 0.07 | 0.10 ± 0.04 | 0.60 ± 0.08 | 0.53 ± 0.17 | 0.52 ± 0.28 | 0.43 ± 0.05 | 0.25 ± 0.02 | * |
| Methyl (E)-1-propenyl disulfide | 0.36 ± 0.07 | 0.23 ± 0.02 | 0.60 ± 0.06 | 0.44 ± 0.09 | 0.78 ± 0.08 | 0.36 ± 0.07 | 1.24 ± 0.25 | *** |
| Dimethyl trisulfide | 0.30 ± 0.05 | 0.04 ± 0.02 | 0.32 ± 0.44 | 0.17 ± 0.02 | 0.23 ± 0.10 | 0.18 ± 0.03 | 0.37 ± 0.05 | *** |
| β-Myrcene | 5.48 ± 0.72 | 0.79 ± 0.19 | 4.34 ± 0.44 | 3.13 ± 0.31 | 3.09 ± 1.02 | 2.63 ± 0.24 | 2.16 ± 0.45 | *** |
| Ethyl hexanoate | 1.90 ± 0.35 | 0.22 ± 0.06 | 1.27 ± 0.12 | 0.80 ± 0.11 | 1.00 ± 0.40 | 0.67 ± 0.06 | 0.47 ± 0.13 | *** |
| 2-Ethylhexenal | 1.00 ± 0.13 | 0.11 ± 0.02 | 0.45 ± 0.07 | 0.53 ± 0.04 | 0.79 ± 0.25 | 0.38 ± 0.02 | 0.76 ± 0.21 | *** |
| o-Cymene | 3.16 ± 0.43 | 0.44 ± 0.11 | 2.52 ± 0.23 | 1.69 ± 0.20 | 1.73 ± 0.59 | 1.40 ± 0.17 | 1.12 ± 0.29 | *** |
| Limonene | 16.59 ± 2.66 | 2.57 ± 0.64 | 12.82 ± 1.52 | 9.88 ± 1.09 | 8.86 ± 2.56 | 8.00 ± 1.14 | 7.01 ± 1.54 | *** |
| β-Ocimene | 3.93 ± 0.64 | 0.75 ± 0.17 | 3.39 ± 0.88 | 2.27 ± 0.30 | 2.39 ± 0.83 | 2.08 ± 0.27 | 1.75 ± 0.39 | ** |
| γ-Terpinene | 2.17 ± 0.29 | 0.38 ± 0.08 | 1.80 ± 0.13 | 1.16 ± 1.09 | 1.19 ± 0.42 | 1.01 ± 0.13 | 0.88 ± 0.23 | *** |
| Diallyl disulfide | 28.43 ± 4.15 | 52.57 ± 3.04 | 33.74 ± 4.03 | 37.74 ± 4.07 | 26.77 ± 4.04 | 41.44 ± 2.29 | 26.93 ± 3.08 | *** |
| Allyl (E)-1-propenyl disulfide | 2.08 ± 0.31 | 2.60 ± 0.26 | 3.47 ± 0.45 | 3.28 ± 0.36 | 3.84 ± 1.12 | 3.42 ± 0.11 | 3.86 ± 0.13 | ** |
| Allyl (Z)-1-propenyl disulfide | 6.28 ± 1.06 | 25.22 ± 3.29 | 13.69 ± 1.59 | 13.04 ± 2.17 | 16.54 ± 3.52 | 13.09 ± 1.43 | 17.74 ± 2.45 | *** |
| Propyl (E)-1-propenyl disulfide | n.d. | 0.22 ± 0.05 | 0.53 ± 0.16 | 0.31 ± 0.09 | 0.61 ± 0.04 | 0.50 ± 0.07 | 0.34 ± 0.06 | - |
| (E,Z)-di-1-propenyl disulfide | n.d. | 0.10 ± 0.03 | 0.33 ± 0.09 | 0.12 ± 0.02 | 0.37 ± 0.08 | 0.23 ± 0.12 | 0.26 ± 0.08 | - |
| (E,E)-di-1-propenyl disulfide | n.d. | 0.63 ± 0.19 | 0.17 ± 0.02 | 0.30 ± 0.08 | 0.66 ± 0.30 | 0.32 ± 0.06 | 0.72 ± 0.28 | - |
| cis-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | n.d. | 0.06 ± 0.01 | 0.09 ± 0.02 | 0.09 ± 0.02 | 0.37 ± 0.16 | 0.24 ± 0.10 | 0.22 ± 0.07 | * |
| Allyl methyl trisulfide | 0.96 ± 0.15 | 0.44 ± 0.10 | 1.03 ± 0.15 | 1.72 ± 0.43 | 2.67 ± 0.41 | 1.57 ± 0.29 | 4.10 ± 0.46 | *** |
| Methyl (Z)-1-propenyl trisulfide | n.d. | 0.10 ± 0.03 | 0.32 ± 0.04 | 0.08 ± 0.05 | 0.30 ± 0.13 | 0.12 ± 0.02 | 0.26 ± 0.04 | *** |
| Methyl (E)-1-propenyl trisulfide | n.d. | n.d. | n.d. | 0.13 ± 0.02 | 0.31 ± 0.16 | 0.11 ± 0.03 | 0.20 ± 0.03 | - |
| trans-2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene | n.d. | 0.32 ± 0.09 | 0.40 ± 0.07 | 0.28 ± 0.05 | 0.50 ± 0.15 | 0.25 ± 0.05 | 0.38 ± 0.18 | - |
| 2-Vinyl-4H-1,3-dithiine | 0.22 ± 0.08 | 0.38 ± 0.17 | 0.29 ± 0.04 | 0.17 ± 0.04 | 0.30 ± 0.14 | 0.16 ± 0.03 | 0.30 ± 0.07 | - |
| Diallyl trisulfide | 7.01 ± 1.17 | 6.31 ± 1.23 | 4.40 ± 0.48 | 9.37 ± 0.78 | 10.83 ± 1.56 | 11.10 ± 0.67 | 9.72 ± 0.79 | *** |
| Allyl (Z)-1-propenyl trisulfide | 0.22 ± 0.08 | 0.46 ± 0.10 | 0.50 ± 0.11a | 0.57 ± 0.09a | 0.77 ± 0.18 | 0.68 ± 0.11b | 0.96 ± 0.12 | *** |
| Allyl (E)-1-propenyl trisulfide | 0.18 ± 0.09 | 0.46 ± 0.12 | 0.39 ± 0.09 | 0.56 ± 0.12 | 1.04 ± 0.34 | 0.82 ± 0.20 | 0.91 ± 0.11 | *** |
| Dimethyl pentasulfide | 0.04 ± 0.04 | n.d. | n.d. | 0.07 ± 0.05 | 0.17 ± 0.04 | 0.26 ± 0.08 | 0.14 ± 0.01 | * |
| β-Ionone | 1.06 ± 0.22 | 0.16 ± 0.04 | 0.28 ± 0.02 | 0.26 ± 0.06 | 0.35 ± 0.12 | 0.31 ± 0.05 | 0.20 ± 0.03 | *** |
| Diallyl tetrasulfide | 0.37 ± 0.17 | 0.14 ± 0.03 | 0.21 ± 0.05 | 0.16 ± 0.02 | 0.41 ± 0.20 | 0.33 ± 0.02 | 0.24 ± 0.02 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reale, S.; Ferretti, R.; Biancolillo, A.; Di Cecco, V.; Martino, L.D.; Santo, M.D.; D’Archivio, A.A. HS-SPME-GC-MS Volatile Profile of “Aglio Rosso di Sulmona” (Sulmona Red Garlic) Floral Scape. Chemosensors 2025, 13, 361. https://doi.org/10.3390/chemosensors13100361
Reale S, Ferretti R, Biancolillo A, Di Cecco V, Martino LD, Santo MD, D’Archivio AA. HS-SPME-GC-MS Volatile Profile of “Aglio Rosso di Sulmona” (Sulmona Red Garlic) Floral Scape. Chemosensors. 2025; 13(10):361. https://doi.org/10.3390/chemosensors13100361
Chicago/Turabian StyleReale, Samantha, Rossella Ferretti, Alessandra Biancolillo, Valter Di Cecco, Luciano Di Martino, Marco Di Santo, and Angelo Antonio D’Archivio. 2025. "HS-SPME-GC-MS Volatile Profile of “Aglio Rosso di Sulmona” (Sulmona Red Garlic) Floral Scape" Chemosensors 13, no. 10: 361. https://doi.org/10.3390/chemosensors13100361
APA StyleReale, S., Ferretti, R., Biancolillo, A., Di Cecco, V., Martino, L. D., Santo, M. D., & D’Archivio, A. A. (2025). HS-SPME-GC-MS Volatile Profile of “Aglio Rosso di Sulmona” (Sulmona Red Garlic) Floral Scape. Chemosensors, 13(10), 361. https://doi.org/10.3390/chemosensors13100361

