Solvent-Assisted Vapor Condensation: A Strategy to Enhance Bio-Oil Yield and Quality from the Pyrolysis of Agro-Industrial Waste
Abstract
1. Introduction
2. Results and Discussion
2.1. The Yield of Bio-Oil Fractions
2.2. Physico-Chemical Characterization of Bio-Oil Fractions
2.3. FTIR-Functional Group Analysis
2.4. GC-MS—Chemical Composition Analysis
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qureshi, F.; Yusuf, M.; Khan, M.A.; Ibrahim, H.; Ekeoma, B.C.; Kamyab, H.; Rahman, M.M.; Nadda, A.K.; Chelliapan, S.A. State-of-the-art review on the latest trends in hydrogen production, storage, and transportation techniques. Fuel 2023, 340, 127574. [Google Scholar] [CrossRef]
- Dong, S.; Liu, Z.; Yang, X. Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chin. Chem. Lett. 2024, 35, 109142. [Google Scholar] [CrossRef]
- Abou Rjeily, M.; Gennequin, C.; Pron, H.; Abi-Aad, E.; Randrianalisoa, J.H. Pyrolysis-catalytic upgrading of bio-oil and pyrolysis-catalytic steam reforming of biogas: A review. Environ. Chem. Lett. 2021, 19, 2825–2872. [Google Scholar] [CrossRef]
- Wei, Y.; Lei, H.; Wang, L.; Zhu, L.; Zhang, X.; Liu, Y.; Chen, S.; Ahring, B. Liquid–liquid extraction of biomass pyrolysis bio-oil. Energy Fuels 2014, 28, 1207–1212. [Google Scholar] [CrossRef]
- Park, L.K.-E.; Ren, S.; Yiacoumi, S.; Ye, X.P.; Borole, A.P.; Tsouris, C. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment. Energy Fuels 2016, 30, 2164–2173. [Google Scholar] [CrossRef]
- Chen, W.-T.; Zhang, Y.; Zhang, J.; Schideman, L.; Yu, G.; Zhang, P.; Minarick, M. Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Appl. Energy 2014, 128, 209–216. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S.; Cross, J.S. Biodiesel production from wet sewage sludge and reduced CO2 emissions compared to incineration in Tokyo, Japan. Fuel 2023, 341, 127614. [Google Scholar] [CrossRef]
- Rahman, T.; Jahromi, H.; Roy, P.; Adhikari, S.; Hassani, E.; Oh, T.-S. Hydrothermal liquefaction of municipal sewage sludge: Effect of red mud catalyst in ethylene and inert ambiences. Energy Convers. Manag. 2021, 245, 114615. [Google Scholar] [CrossRef]
- Khader, E.H.; Khudhur, R.H.; Mohammed, T.J.; Mahdy, O.S.; Sabri, A.A.; Mahmood, A.S.; Albayati, T.M. Evaluation of adsorption treatment method for removal of phenol and acetone from industrial wastewater. Desalination Water Treat. 2024, 317, 100091. [Google Scholar] [CrossRef]
- Soroko, I.; Bhole, Y.; Guy Livingston, A. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem. 2011, 13, 162–168. [Google Scholar] [CrossRef]
- Harrman-Ware, A.E.; Ferrell, J.R., III. Characterization of catalytic fast pyrolysis oils: The importance of solvent selection for analytical method development. J. Anal. Appl. Pyrolysis 2018, 132, 190–199. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Rathore, S.S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Shi, X.; Wang, X.; Song, J.; Fang, S.; Bai, J.; Zhang, G.; Chang, C.; Pang, S. Bio-oil from biomass fast pyrolysis: Yields, related properties and energy consumption analysis of the pyrolysis system. J. Clean. Prod. 2021, 328, 129613. [Google Scholar] [CrossRef]
- Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615–1624. [Google Scholar] [CrossRef]
- Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K. Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 2011, 50, 10424–10433. [Google Scholar] [CrossRef]
- Zhou, H.; Long, Y.; Meng, A.; Chen, S.; Li, Q.; Zhang, Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Adv. 2015, 5, 26509–26516. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, X.; Dong, C.; Zhang, Z.; Zhang, X.; Zhu, X. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study. J. Anal. Appl. Pyrolysis 2011, 92, 430–438. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef]
- Liaqat, S.; Sun, Z.; Zeng, Y.; Maeda, N.; Liu, J. Technical challenges and corrosion research progress in bio-crude co-processing. Chem. Eng. J. 2024, 499, 155981. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Ihara, I.; Elgarahy, A.M.; Ayyad, A.; Mehta, N.; Ng, K.H.; Abd El-Monaem, E.M.; Eltawei, A.S.; Hosny, M.; et al. Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review. Environ. Chem. Lett. 2023, 21, 1419–1476. [Google Scholar] [CrossRef]
- García Gómez, J.O.; Rodríguez Olalde, N.E.; Vargas Tah, A.A.; Rito-Palomares, M.; Nápoles-Rivera, F.; Castro Montoya, A.J. Alternative acetone–water separation process through the application of aqueous two-phase systems. J. Chem. Technol. Biotechnol. 2021, 96, 578–582. [Google Scholar] [CrossRef]
- Menya, E.; Olupot, P.; Storz, H.; Lubwama, M.; Kiros, Y. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Manag. 2018, 81, 104–116. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, H.; Xu, S.; Qian, L.; Li, H.; Gao, J.; Zhao, G.; Ray, M.B.; Xu, C.C. Influence of extraction solvents on the recovery yields and properties of bio-oils from woody biomass liquefaction in sub-critical water, ethanol or water–ethanol mixed solvent. Fuel 2022, 307, 121930. [Google Scholar] [CrossRef]
- Gupta, R.B.; Demirbas, A. Bio-Oil from Biomass Pyrolysis. In Gasoline, Diesel, and Ethanol Biofuels from Grasses and Plants; Cambridge University Press: Cambeidge, UK, 2010; pp. 140–157. [Google Scholar] [CrossRef]
- Mehta, P.S.; Anand, K. Estimation of a lower heating value of vegetable oil and biodiesel fuel. Energy Fuels 2009, 23, 3893–3898. [Google Scholar] [CrossRef]
- ASTM D7544-12; Standard Specification for Pyrolysis Liquid Biofuel. ASTM International: West Conshohocken, PA, USA, 2012.
- EN 16900:2017; Fast pyrolysis bio-oils for industrial boilers—Requirements and test methods. CEN (European Committee for Standardization): Brussels, Belgium, 2017.
- Yuan, X.; Leng, L.; Huang, H.; Chen, X.; Wang, H.; Xiao, Z.; Zhai, Y.; Chen, H.; Zeng, G. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 2015, 120, 645–652. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Huang, H.; Jiang, H.; Chen, X.; Zeng, G. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 2014, 167, 144–150. [Google Scholar] [CrossRef]
- Sørmo, E.; Dublet-Adli, G.; Menlah, G.; Flatabø, G.Ø.; Zivanovic, V.; Carlsson, P.; Almås, Å.; Cornelissen, G. Heavy Metals in pyrolysis of contaminated wastes: Phase distribution and leaching behaviour. Environments 2024, 11, 130. [Google Scholar] [CrossRef]
- Kumar, A.; Preetam, A.; Pant, K.K. An integrated eco-friendly and efficient approach towards heavy metal removal from industrial wastewater and co-generating bio-oil using wheat straw via hydrothermal liquefaction. J. Environ. Chem. Eng. 2023, 11, 110217. [Google Scholar] [CrossRef]
- Praspaliauskas, M.; Pedišius, N.; Čepauskienė, D.; Valantinavičius, M. Study of chemical composition of agricultural residues from various agro-mass types. Biomass Convers. Biorefinery 2019, 10, 937. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Jahirul, M.I.; Mofijur, M. Fuelling the future: Unleashing energy and exergy efficiency from municipal green waste pyrolysis. Fuel 2024, 357, 129815. [Google Scholar] [CrossRef]
- Zhang, J.; Sekyere, D.T.; Niwamanya, N.; Huang, Y.; Barigye, A.; Tian, Y. Study on the staged and direct fast pyrolysis behavior of waste pine sawdust using high heating rate TG-FTIR and Py-GC/MS. ACS Omega 2022, 7, 4245–4256. [Google Scholar] [CrossRef] [PubMed]
- Abnisa, F.; Arami-Niya, A.; Daud, W.M.A.W.; Sahu, J.N. Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. BioEnergy Res. 2013, 6, 830–840. [Google Scholar] [CrossRef]
- Reyman, D.; Saiz Bermejo, A.; Ramirez Uceda, I.; Rodriguez Gamero, M. A new FTIR method to monitor transesterification in biodiesel production by ultrasonication. Environ. Chem. Lett. 2014, 12, 235–240. [Google Scholar] [CrossRef]
- Galhano dos Santos, R.; Ventura, P.; Bordado, J.C.; Mateus, M.M. Direct and efficient liquefaction of potato peel into bio-oil. Environ. Chem. Lett. 2017, 15, 453–458. [Google Scholar] [CrossRef]
- Lazzari, E.; Schena, T.; Marcelo, M.C.A.; Primaz, C.T.; Silva, A.N.; Ferrão, M.F.; Bjerk, T.; Caramão, E.B. Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Ind. Crops Prod. 2018, 111, 856–864. [Google Scholar] [CrossRef]
- Isailović, J.; Vukićević, E.; Antić, M.; Schwarzbauer, J.; Ignjatović, L.; Gajica, G.; Antić, V. Pyrolysis of corn stalks: The potential of using bio-oil as a fuel. J. Serbian Chem. Soc. 2024, 89, 1675–1687. [Google Scholar] [CrossRef]
- Benedini, L.; Dalsgaard Jensen, C.; Ahrenfeldt, J.; Birk Henriksen, U. Production and characterization of two-step condensation bio-oil from pyrolysis. J. Anal. Appl. Pyrolysis 2024, 183, 106744. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, L.; Yang, Y.; Li, Y.; Ren, S.; Dong, L.; Lei, T. Fast pyrolysis of cellulose and the effect of a catalyst on product distribution. Int. J. Environ. Res. Public Health 2022, 19, 16837. [Google Scholar] [CrossRef]
- Lu, X.; Gu, X. A review on lignin pyrolysis: Pyrolytic behavior, mechanism, and relevant upgrading for improving process efficiency. Biotechnol. Biofuels Bioprod. 2022, 15, 106. [Google Scholar] [CrossRef]
- Muzyka, R.; Chrubasik, M.; Dudziak, M.; Ouadi, M.; Sajdak, M. Pyrolysis of tobacco waste: A comparative study between Py-GC/MS and fixed-bed reactors. J. Anal. Appl. Pyrolysis 2022, 167, 105702. [Google Scholar] [CrossRef]
- Zhang, R.; You, Z.; Ji, J.; Shi, Q.; Suo, Z. A Review of Characteristics of Bio-Oils and Their Utilization as Additives of Asphalts. Molecules 2021, 26, 5049. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jiang, Z.; Xu, H.; Yan, K. Selective production of phenol-rich bio-oil from corn straw waste by direct microwave pyrolysis without extra catalyst. Front. Chem. 2021, 9, 700887. [Google Scholar] [CrossRef] [PubMed]
- Vukićević, E.; Isailović, J.; Gajica, G.; Antić, V.; Jovančićević, B. Biochar from agricultural biomass: Green material as an ecological alternative to solid fossil fuels. J. Serbian Chem. Soc. 2024, 89, 907–919. [Google Scholar] [CrossRef]
- SRPS EN ISO 12937:2011; Petroleum products — Direct determination of water in petroleum products boiling below 390 °C (method for water determination). Institute for Standardization of Serbia (ISS): Belgrade, Serbia, 2011.
- ASTM D482-19; Test Method for Ash from Petroleum Products. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM E70-24; Standard Test Method for pH of Aqueous Solutions With the Glass Electrode. ASTM International: West Conshohocken, PA, USA, 2024.
- SRPS ISO 13878:2005; Soil quality—Determination of total nitrogen content by dry combustion (elemental analysis). Institute for Standardization of Serbia (ISS): Belgrade, Serbia, 2005.
- SRPS ISO 10694:2005; Soil quality—Determination of organic and total carbon after dry combustion (elementary analysis). Institute for Standardization of Serbia (ISS): Belgrade, Serbia, 2005.
- SRPS ISO 15178:2019; Soil quality—Determination of total sulfur by dry combustion. Institute for Standardization of Serbia (ISS): Belgrade, Serbia, 2019.
- SRPS CEN/TS 16023:2014; Characterization of waste—Determination of gross calorific value and calculation of net calorific value. Institute for Standardization of Serbia (ISS)/CEN: Belgrade, Serbia, (adoption of CEN/TS). 2014.
- EPA Method 200.7; Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma–Atomic Emission Spectrometry. U.S. Environmental Protection Agency (EPA): Cincinnati, OH, USA, 1994.
Sample Name/Parameter | pH | Moisture Content, w/w, % | Ash Content, w/w, % | Calorific Value, MJ/kg | Elemental Analysis, w/w, % | |||||
---|---|---|---|---|---|---|---|---|---|---|
N | C | H | S | O | ||||||
Tomato LF-Ac | 400 °C | 4.30 | 5.78 | 0.00 | 26.60 | 0.84 | 44.47 | 8.81 | 0.00 | 45.88 |
500 °C | 5.05 | 26.32 | 0.00 | 27.49 | 2.92 | 43.68 | 9.96 | 0.06 | 43.38 | |
Tomato LF | 400 °C | 4.52 | 79.45 | 0.00 | 27.49 | 1.45 | 10.74 | 9.29 | 0.00 | 78.52 |
500 °C | 4.99 | 77.50 | 0.01 | 26.34 | 1.68 | 19.84 | 11.63 | 0.01 | 66.85 | |
Tomato HF | 400 °C | 5.69 | 2.76 | 0.07 | 24.96 | 2.14 | 56.77 | 9.08 | 0.00 | 32.01 |
500 °C | 6.06 | 6.67 | 0.17 | 26.22 | 6.34 | 66.56 | 11.36 | 0.02 | 15.72 | |
Tobacco LF-Ac | 400 °C | 4.43 | 20.20 | 0.00 | 20.22 | 0.82 | 44.04 | 8.75 | 0.00 | 46.39 |
500 °C | 4.99 | 23.89 | 0.00 | 21.07 | 4.11 | 49.93 | 9.73 | 0.06 | 36.18 | |
Tobacco LF | 400 °C | 3.75 | 51.69 | 0.00 | 19.44 | 0.79 | 26.69 | 9.88 | 0.00 | 62.64 |
500 °C | 3.88 | 57.25 | 0.05 | 14.70 | 0.16 | 10.05 | 1.41 | 0.00 | 88.38 | |
Tobacco HF | 400 °C | 4.66 | 13.01 | 0.00 | 15.21 | 0.87 | 50.51 | 8.15 | 0.00 | 40.47 |
500 °C | 4.84 | 8.86 | 0.00 | 23.22 | 4.90 | 52.49 | 8.87 | 0.07 | 33.66 | |
Cn LF-Ac | 400 °C | 4.01 | 7.10 | 0.03 | 24.85 | 0.80 | 40.70 | 5.46 | 0.28 | 52.76 |
500 °C | 4.08 | 12.83 | 0.00 | 43.60 | 0.92 | 43.94 | 7.97 | 0.07 | 47.10 | |
Cn LF | 400 °C | 2.78 | 60.72 | 0.00 | 16.05 | 0.54 | 22.00 | 8.63 | 0.05 | 68.78 |
500 °C | 2.97 | 61.82 | 0.00 | 17.93 | 0.10 | 9.93 | 3.41 | 0.06 | 86.50 | |
Cn HF | 400 °C | 3.42 | 7.96 | 0.04 | 26.07 | 1.91 | 50.44 | 7.27 | 0.06 | 40.32 |
500 °C | 3.59 | 8.05 | 0.07 | 27.23 | 0.01 | 12.42 | 1.91 | 0.13 | 85.51 | |
Cz LF-Ac | 400 °C | 3.88 | 13.81 | 0.00 | 22.70 | 0.69 | 47.46 | 8.67 | 0.00 | 43.18 |
500 °C | 3.97 | 18.93 | 0.06 | 26.63 | 1.00 | 29.33 | 5.21 | 0.04 | 64.42 | |
Cz LF | 400 °C | 3.16 | 65.48 | 0.00 | 21.98 | 1.06 | 32.69 | 8.39 | 0.02 | 57.84 |
500 °C | 3.24 | 67.34 | 0.03 | 23.67 | 0.35 | 18.17 | 10.70 | 0.03 | 70.75 | |
Cz HF | 400 °C | 3.72 | 6.96 | 0.04 | 27.64 | 0.84 | 49.04 | 8.08 | 0.00 | 42.04 |
500 °C | 3.95 | 8.15 | 0.00 | 27.60 | 0.99 | 53.83 | 7.92 | 0.00 | 37.26 |
Sample Name/Metal Content, mg/kg | Pb | Cd | As | Cr | Hg | Cu | Stotal | Si | Ca | K | P | Mg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tomato LF-Ac | 400 °C | 0.26 | <0.15 | <0.25 | 2.55 | <0.15 | 1.51 | 429.7 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.31 | <0.15 | <0.25 | <0.35 | <0.15 | 0.31 | 810.8 | <100 | <100 | <100 | <100 | <100 | |
Tomato LF | 400 °C | 0.11 | <0.15 | <0.25 | <0.35 | <0.15 | 1.24 | 157.3 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.20 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 120.3 | <100 | <100 | <100 | <100 | <100 | |
Tomato HF | 400 °C | 0.10 | <0.15 | <0.25 | <0.35 | <0.15 | 1.14 | 111.5 | <100 | <100 | 853.4 | <100 | <100 |
500 °C | 0.51 | 0.28 | <0.25 | 65.67 | <0.15 | 38.37 | 786.2 | <100 | <100 | 1227 | <100 | <100 | |
Tobacco LF-Ac | 400 °C | 0.41 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 344.6 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.26 | <0.15 | <0.25 | <0.35 | <0.15 | 1.01 | 515.2 | <100 | <100 | <100 | <100 | <100 | |
Tobacco LF | 400 °C | 0.01 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 106.4 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.45 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 124.2 | <100 | <100 | <100 | <100 | <100 | |
Tobacco HF | 400 °C | 0.09 | <0.15 | <0.25 | 3.39 | <0.15 | 1.34 | <100 | <100 | <100 | 520.5 | <100 | <100 |
500 °C | 0.30 | <0.15 | <0.25 | 4.33 | <0.15 | 2.77 | 707.2 | <100 | 209.23 | 3485.0 | <100 | <100 | |
Cn LF-Ac | 400 °C | 0.38 | <0.15 | <0.25 | <0.35 | <0.15 | 0.88 | 367.1 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.22 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 657.4 | <100 | <100 | <100 | <100 | <100 | |
Cn LF | 400 °C | 0.19 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 311.1 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.44 | <0.15 | <0.25 | 0.74 | <0.15 | 0.65 | 112.8 | <100 | <100 | <100 | <100 | <100 | |
Cn HF | 400 °C | 0.16 | <0.15 | <0.25 | 5.06 | <0.15 | 1.94 | <100 | <100 | <100 | 332.1 | <100 | <100 |
500 °C | 0.16 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | <100 | <100 | <100 | 230.0 | <100 | <100 | |
Cz LF-Ac | 400 °C | 0.24 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 390.4 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.17 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 680.7 | <100 | <100 | <100 | <100 | <100 | |
Cz LF | 400 °C | 0.19 | <0.15 | <0.25 | <0.35 | <0.15 | <0.30 | 236.6 | <100 | <100 | <100 | <100 | <100 |
500 °C | 0.25 | <0.15 | <0.25 | 3.46 | <0.15 | <0.30 | 348.7 | <100 | <100 | <100 | <100 | <100 | |
Cz HF | 400 °C | 0.54 | <0.15 | <0.25 | 3.23 | <0.15 | 1.75 | 141.0 | <100 | <100 | 489.8 | <100 | <100 |
500 °C | 0.35 | <0.15 | <0.25 | 13.79 | <0.15 | <0.30 | <100 | <100 | <100 | 441.6 | <100 | <100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isailović, J.; Vukićević, E.; Schwarzbauer, J.; Lević, S.; Antić, M.; Brčeski, I.; Jovančićević, B.; Antić, V. Solvent-Assisted Vapor Condensation: A Strategy to Enhance Bio-Oil Yield and Quality from the Pyrolysis of Agro-Industrial Waste. Molecules 2025, 30, 3945. https://doi.org/10.3390/molecules30193945
Isailović J, Vukićević E, Schwarzbauer J, Lević S, Antić M, Brčeski I, Jovančićević B, Antić V. Solvent-Assisted Vapor Condensation: A Strategy to Enhance Bio-Oil Yield and Quality from the Pyrolysis of Agro-Industrial Waste. Molecules. 2025; 30(19):3945. https://doi.org/10.3390/molecules30193945
Chicago/Turabian StyleIsailović, Jelena, Emilija Vukićević, Jan Schwarzbauer, Steva Lević, Mališa Antić, Ilija Brčeski, Branimir Jovančićević, and Vesna Antić. 2025. "Solvent-Assisted Vapor Condensation: A Strategy to Enhance Bio-Oil Yield and Quality from the Pyrolysis of Agro-Industrial Waste" Molecules 30, no. 19: 3945. https://doi.org/10.3390/molecules30193945
APA StyleIsailović, J., Vukićević, E., Schwarzbauer, J., Lević, S., Antić, M., Brčeski, I., Jovančićević, B., & Antić, V. (2025). Solvent-Assisted Vapor Condensation: A Strategy to Enhance Bio-Oil Yield and Quality from the Pyrolysis of Agro-Industrial Waste. Molecules, 30(19), 3945. https://doi.org/10.3390/molecules30193945