Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = Fusarium verticillioides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1437 KB  
Article
Inhibitory Effect of Trichoderma longibrachiatum on Growth of Fusarium Species and Accumulation of Fumonisins
by Ruiqing Zhu, Ying Li, María Viñas, Qing Kong, Manlin Xu, Xia Zhang, Xinying Song, Kang He and Zhiqing Guo
J. Fungi 2026, 12(1), 49; https://doi.org/10.3390/jof12010049 - 10 Jan 2026
Viewed by 256
Abstract
Fusarium spp. cause devastating crop diseases and produce carcinogenic mycotoxins such as fumonisins, threatening global food safety and human health. In this study, Trichoderma longibrachiatum A25011, isolated from apples in Aksu, Xinjiang, exhibited significant antagonistic activity with mycelial growth inhibition rates of 54.52% [...] Read more.
Fusarium spp. cause devastating crop diseases and produce carcinogenic mycotoxins such as fumonisins, threatening global food safety and human health. In this study, Trichoderma longibrachiatum A25011, isolated from apples in Aksu, Xinjiang, exhibited significant antagonistic activity with mycelial growth inhibition rates of 54.52% against F. verticillioides 48.62% against F. proliferatum, and 58.22% against F. oxysporum in confrontation assays. Enzyme activity detection revealed high chitinase (583.21 U/mg protein) and moderate cellulase (43.92 U/mg protein) production, which may have the capacity to degrade fungal cell walls. High-Performance Liquid Chromatography–Mass Spectrometry (HPLC-MS/MS) analyses enabled the quantification of fungal hormones including gibberellin A3 (GA3, 2.44 mg/L), cytokinins (cis-zeatin riboside (CZR): 0.69 mg/L; trans-zeatin riboside (TZR): 0.004 mg/L; kinetin: 0.006 mg/L), and auxins (indole-3-acetic acid (IAA): 0.35 mg/L; abscisic acid: 0.06 mg/L). Application of a T. longibrachiatum A25011 spore suspension around the roots of peanut plants enhanced growth by 13.20% (height), 5.65% (stem and leaf biomass), and 39.13% (root biomass). Notably, A25011 reduced F. proliferatum-derived fumonisin accumulation in rice-based cultures by 93.58% (6 d) and 99.35% (10 d), suggesting biosynthetic suppression. The results demonstrated that T. longibrachiatum strain A25011 exhibited excellent biocontrol capability against Fusarium spp., proving its dual role in simultaneously suppressing fungal growth and fumonisin accumulation while promoting plant growth. T. longibrachiatum A25011 could be applied as a multifunctional biocontrol agent in sustainable agriculture in the future. Full article
(This article belongs to the Special Issue Advances in the Control of Plant Fungal Pathogens)
Show Figures

Figure 1

15 pages, 1674 KB  
Article
Transcriptomic Analysis of Fusarium verticillioides Across Different Cultivation Periods Reveals Dynamic Gene Expression Changes
by Meng-Ling Deng, Jun-Jun He, Xin-Yan Xie, Jian-Fa Yang, Fan-Fan Shu, Feng-Cai Zou, Lu-Yang Wang and Jun Ma
Microorganisms 2026, 14(1), 102; https://doi.org/10.3390/microorganisms14010102 - 2 Jan 2026
Viewed by 260
Abstract
Fusarium verticillioides is a common pathogenic fungus of corn since it causes severe yield losses and produces mycotoxins to threaten the health of both humans and livestock. Although extensive research has characterized specific genetic and environmental factors influencing mycotoxin production, a systematic understanding [...] Read more.
Fusarium verticillioides is a common pathogenic fungus of corn since it causes severe yield losses and produces mycotoxins to threaten the health of both humans and livestock. Although extensive research has characterized specific genetic and environmental factors influencing mycotoxin production, a systematic understanding of the temporal transcriptional dynamics governing its developmental progression remains lacking. This study addresses this critical knowledge gap through a time-series transcriptomic analysis of F. verticillioides at four key cultivation stages (3, 5, 7, and 9 days post-inoculation). Transcriptomic analysis identified 1928, 2818, and 1934 differentially expressed genes (DEGs) in the comparisons of FV3 vs. FV5, FV5 vs. FV7, and FV7 vs. FV9, respectively. Gene Ontology enrichment revealed 76, 106, and 56 significantly enriched terms across these comparisons, with “integral component of membrane” consistently being the most enriched cellular component. Pathway analysis demonstrated “amino acid metabolism” and “carbohydrate metabolism” as the most significantly enriched metabolic pathways. Notably, the fumonisin (FUM) and fusaric acid (FA) biosynthetic gene clusters exhibited coordinated peak expression during the early cultivation, followed by progressive decline. Mfuzz clustering further delineated 12 distinct expression trajectories, highlighting the dynamic transcriptional networks underlying fungal adaptation. This work provided the first comprehensive temporal transcriptome of F. verticillioides, establishing a foundational resource for understanding its stage-specific biology and revealing potential time-sensitive targets for future intervention strategies. Full article
(This article belongs to the Special Issue Advances in Microbial Adaptation and Evolution)
Show Figures

Figure 1

14 pages, 3865 KB  
Article
Integrated Proteomic and Metabolomic Profiling of the Secretome of Fusarium verticillioides Reveals Candidate Associated Proteins and Secondary Metabolites
by Min-Min Sui, Yan Zhang, Jian-Fa Yang, Fan-Fan Shu, Feng-Cai Zou, Jun-Jun He and Jun Ma
J. Fungi 2026, 12(1), 24; https://doi.org/10.3390/jof12010024 - 27 Dec 2025
Viewed by 364
Abstract
Fusarium verticillioides (F. verticillioides) is an important fungal pathogen known to infect a variety of economically critical crops, particularly maize, causing substantial yield reductions and economic losses worldwide. In addition to its direct damage to agricultural productivity, F. verticillioides threatens public [...] Read more.
Fusarium verticillioides (F. verticillioides) is an important fungal pathogen known to infect a variety of economically critical crops, particularly maize, causing substantial yield reductions and economic losses worldwide. In addition to its direct damage to agricultural productivity, F. verticillioides threatens public health by producing/secreting potent compounds, including well-known fumonisins (FUMs), which pose significant health threats to both livestock and humans due to their toxicity and carcinogenicity. However, current knowledge of the materials secreted/produced by F. verticillioides, such as secreted proteins and additional secondary metabolites, remains limited. In the present study, we conducted an integrated secretome analysis of F. verticillioides at the exponential growth stage by using proteomic and metabolomic technologies. The results of the present study showed that proteomic analysis identified 185 proteins, including 138 fungus-specific proteins. GO enrichment of these 138 fungus-specific proteins yielded 24 significant terms spanning carbohydrate/polysaccharide and aminoglycan metabolic/catabolic processes, extracellular and membrane-anchored components, and hydrolase/peptidase activities. Meanwhile, KEGG analysis identified starch and sucrose metabolism as the sole significantly enriched pathway. Metabolomic analysis of medium supernatant showed that a total of 2352 metabolites were identified, with 110 unique to the medium supernatant of the fungal group, including fumonisins (A1, B2, B3, B4), fatty acids, and other bioactive compounds. KEGG pathway enrichment highlighted key metabolic pathways, including the TCA cycle, unsaturated fatty acid biosynthesis, and arachidonic acid metabolism. These findings provide new insights into the pathogenic mechanisms of F. verticillioides, suggesting candidates for virulence-associated functions and metabolic adaptations that potentially contribute to its pathogenicity. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

13 pages, 1073 KB  
Article
Organic Compounds as a Natural Alternative for Pest Control: How Will Climate Change Affect Their Effectiveness?
by Virginia L. Usseglio, María P. Zunino, Vanessa D. Brito, Magalí Beato, Martin G. Theumer and José S. Dambolena
Plants 2026, 15(1), 48; https://doi.org/10.3390/plants15010048 - 23 Dec 2025
Viewed by 310
Abstract
Climate change scenarios predict increased temperatures, potentially impacting the development of phytopathogenic fungi and the efficacy of their control. This study evaluated the effects of four natural organic compounds—carvacrol, eugenol, trans-cinnamaldehyde, and 1-heptyn-3-ol—on the growth of Fusarium verticillioides and the survival of [...] Read more.
Climate change scenarios predict increased temperatures, potentially impacting the development of phytopathogenic fungi and the efficacy of their control. This study evaluated the effects of four natural organic compounds—carvacrol, eugenol, trans-cinnamaldehyde, and 1-heptyn-3-ol—on the growth of Fusarium verticillioides and the survival of Sitophilus zeamais under two temperature regimes (28 °C and 32 °C). Fungal growth was assessed through the lag phase duration and mycelial expansion, while insecticidal activity was determined by mortality of S. zeamais. Carvacrol (1 ppm) produced the most pronounced inhibitory effect on fungal growth, significantly extending the lag phase and reducing mycelial area, with eugenol showing similar effects at selected concentrations. Both compounds maintained or enhanced their antifungal activity at elevated temperatures. Trans-cinnamaldehyde and 1-heptyn-3-ol exhibited moderate or low effects, depending on concentration and temperature. Regarding S. zeamais, 1-heptyn-3-ol achieved complete mortality at all concentrations under both temperature scenarios, whereas carvacrol, eugenol, and trans-cinnamaldehyde showed dose-dependent effects at 28 °C and enhanced efficacy at 32 °C. Overall, these findings highlight the potential of these compounds as sustainable, climate-resilient alternatives for managing fungal pathogens and stored-product pests. Full article
(This article belongs to the Special Issue Natural Compounds for Controlling Plant Pathogens)
Show Figures

Figure 1

15 pages, 4812 KB  
Article
Effects of Fusarium graminearum and Fusarium verticillioides Infection on Sweet Corn Quality During Postharvest Storage
by Yihan Xue, Shaoyue Liu, Qianzi Nie, Xinru Zhang, Yan Zhao, Yanfei Li and Haoxin Lv
Foods 2025, 14(23), 4147; https://doi.org/10.3390/foods14234147 - 3 Dec 2025
Viewed by 429
Abstract
Sweet corn is highly susceptible to infection by Fusarium graminearum (F. graminearum) and Fusarium verticillioides (F. verticillioides) during storage, which substantially compromises its nutritional quality and economic value. However, the specific effects of F. graminearum and F. verticillioides on [...] Read more.
Sweet corn is highly susceptible to infection by Fusarium graminearum (F. graminearum) and Fusarium verticillioides (F. verticillioides) during storage, which substantially compromises its nutritional quality and economic value. However, the specific effects of F. graminearum and F. verticillioides on sweet corn quality during postharvest storage remain poorly understood. This study systematically explored the effects of F. graminearum and F. verticillioides infection on sweet corn quality by evaluating the changes in color, hardness, weight loss rate, malondialdehyde (MDA) content, surface fungal spore count, soluble protein content, and soluble sugar content. Results indicated that the critical time points for visible deterioration were 24 h post-inoculation for F. graminearum and 36 h for F. verticillioides. Compared with the control group, both infections caused significant darkening of kernel color and a marked increase in surface fungal spore counts. Notably, F. verticillioides infection was associated with a significant increase in MDA content, indicating enhanced oxidative stress in infected kernels. These findings elucidate the mechanisms of pathogen-induced quality degradation in sweet corn and provide a scientific basis for preserving and enhancing the value of agricultural products and ensuring food safety. Full article
Show Figures

Figure 1

28 pages, 3243 KB  
Article
Transcriptional Analysis of a Tripartite Interaction Between Maize (Zea mays, L.) Roots Inoculated with the Pathogenic Fungus Fusarium verticillioides and Its Bacterial Control Agent Bacillus cereus sensu lato Strain B25
by Paúl Alán Báez-Astorga, Abraham Cruz-Mendívil, Juan Luis Figueroa-Castro, Itzel Guadalupe López-Soto, Jesús Eduardo Cazares-Álvarez, Josefat Gregorio-Jorge, Carlos Ligne Calderón-Vázquez and Ignacio Eduardo Maldonado-Mendoza
Plants 2025, 14(23), 3661; https://doi.org/10.3390/plants14233661 - 1 Dec 2025
Viewed by 668
Abstract
One open question regarding plant–microbe interactions is how a plant interacts molecularly with both a beneficial microbe and a pathogenic fungus. This study used RNA-seq to investigate molecular responses in maize roots during a tripartite interaction with the fungal pathogen Fusarium verticillioides ( [...] Read more.
One open question regarding plant–microbe interactions is how a plant interacts molecularly with both a beneficial microbe and a pathogenic fungus. This study used RNA-seq to investigate molecular responses in maize roots during a tripartite interaction with the fungal pathogen Fusarium verticillioides (Fv), which causes stalk, ear, and root rot, and the endophytic biocontrol agent Bacillus cereus sensu lato B25, known to suppress Fv and promote plant growth. Roots of seven-day-old maize inoculated with Fv (Zm-Fv), B25 (Zm-B25), and co-inoculated (Zm-Fv-B25) were compared to uninoculated control (Zm). Differential Gene Expression (DEG), Gene Ontology (GO) and KEGG analysis revealed distinct molecular responses. Fv suppressed plant pathways related to DNA and protein synthesis and impaired root development. In contrast, B25 triggered defense priming and growth-related responses. In the co-inoculation experiment (Zm-B25-Fv), upregulated DEGs were associated with both defense-related metabolic pathways, including jasmonic acid signaling and secondary metabolite biosynthesis, and genes involved in plant growth processes. Co-expression networks using Arabidopsis orthologs supported the induction of defense- and growth and development-related genes. This study is the first RNA-seq analysis of maize root molecular responses during the tripartite interaction with a fungal pathogen and its bacterial biocontrol agent, providing new directions for further research to understand the detailed molecular mechanisms underlying this interaction fully. Full article
(This article belongs to the Special Issue Plant Interactions with Both Beneficial and Pathogenic Microorganisms)
Show Figures

Graphical abstract

16 pages, 2555 KB  
Article
Isolation, Toxigenic Potential, and Mating Type of Fusarium pseudograminearum Causing Wheat Crown Rot in Hebei, China
by Jianzhou Zhang, Wenyu Wang, Jianhua Wang, Jiahui Zhang, Hao Li, Baizhu Chen and Chunying Li
J. Fungi 2025, 11(12), 844; https://doi.org/10.3390/jof11120844 - 28 Nov 2025
Viewed by 545
Abstract
Fusarium crown rot (FCR) is a devastating fungal disease of wheat in China that causes substantial yield losses and deterioration of grain quality. To clarify the pathogen composition and associated mycotoxin risks of FCR in Hebei Province, a comprehensive field survey was conducted [...] Read more.
Fusarium crown rot (FCR) is a devastating fungal disease of wheat in China that causes substantial yield losses and deterioration of grain quality. To clarify the pathogen composition and associated mycotoxin risks of FCR in Hebei Province, a comprehensive field survey was conducted during the critical growth stage from flowering to maturity (April to May) of the 2024 wheat season from 46 sites. Fungal isolates were obtained from symptomatic wheat stem bases and were identified through morphological and molecular analyses. In total, 156 Fusarium isolates were obtained, and from these isolates, 12 Fusarium species were identified based on species-specific PCR and DNA sequencing of the translation elongation factor 1-α (TEF1) loci. Of these Fusarium isolates, 118 were identified as Fusarium pseudograminearum, 16 identified as F. graminearum and the remaining isolates consisted of F. acuminatum, F. asiaticum, F. boothii, F. culmorum, F. equiseti, F. flocciferum, F. incarnatum, F. proliferatum, F. sinensis, and F. verticillioides. The results revealed that F. pseudograminearum with the 15ADON genotype was the predominant species, accounting for 75.64% of all the isolates, followed by F. graminearum. Trichothecene genotyping revealed that 91.53% of the F. pseudograminearum strains possessed the 15ADON genotype (108 isolates), while 8.47% exhibited the 3ADON genotype (10 isolates). Although differences were observed within F. pseudograminearum in MAT1-1 and MAT1-2 distributions among different sampling regions, a well-balanced mating type ratio was identified across Hebei Province. Population genetic analysis based on composite genotypes (trichothecene and mating type) revealed moderate to high genetic diversity within the F. pseudograminearum population. Recent studies on causal Fusarium species, trichothecene genotypes, and their distribution in China are compared and discussed. These findings may have implications in managing this significant fungal disease. Full article
Show Figures

Figure 1

19 pages, 2104 KB  
Article
Biological Control Properties of Two Strains of Priestia megaterium Isolated from Tar Spots in Maize Leaves
by Eric T. Johnson, Patrick F. Dowd and Jill K. Winkler-Moser
Agriculture 2025, 15(23), 2465; https://doi.org/10.3390/agriculture15232465 - 28 Nov 2025
Viewed by 598
Abstract
Priestia megaterium is a maize endophyte that may help the plant defend itself against bacterial and fungal pathogens. This study aimed to identify antimicrobials produced by two P. megaterium endophytes (FS10 and FS11) from maize and determine if seed coating with either strain [...] Read more.
Priestia megaterium is a maize endophyte that may help the plant defend itself against bacterial and fungal pathogens. This study aimed to identify antimicrobials produced by two P. megaterium endophytes (FS10 and FS11) from maize and determine if seed coating with either strain could increase resistance to pathogens. Volatiles emitted by both isolates reduced the hyphal growth of fungi by 17–76%. Gas chromatography analysis found that each strain emitted isovaleric acid (IVA) and 3-methyl-1-butanol (3MB). Volatiles produced by each isolate inhibited bacterial growth, especially Clavibacter michiganensis ssp. michiganensis (Cmm). IVA killed all Cmm cells at 208 µL L−1, while 3MB inhibited Cmm growth by 51% at 208 µL L−1. Diluted cell-free extracts from FS10 and FS11 cultures stopped growth of Cmm, Erwinia amylovora and Ustilago maydis but did not arrest growth of Fusarium verticillioides. The treatment of corn seeds with FS10 or FS11 reduced leaf damage by 38–84% in young plants caused by Bipolaris maydis, Colletotrichum graminicola (Ces.) G.W. Wilson 1914, Exserohilum turcicum and Pythium sylvaticum. FS10 and FS11 isolates exuded volatile and soluble compounds that were more effective in slowing growth of bacteria than fungi. It is likely that corn seed treatment with FS10 and FS11 triggers induced systemic resistance, which mitigates leaf damage caused by maize pathogens. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

20 pages, 4615 KB  
Article
Research on the Pathogenic Mechanism of Effector FvCfem7 in Fusarium verticillioides
by Meiduo Wang, Yi Liu, Xinyi Li, Shiqing Lin, Lifan Ke, Gaolong Wen, Guodong Lu, Zonghua Wang and Wenying Yu
Agronomy 2025, 15(12), 2706; https://doi.org/10.3390/agronomy15122706 - 25 Nov 2025
Viewed by 574
Abstract
Fusarium verticillioides, a hemibiotrophic pathogen, infects a range of important crops and contaminates grains with fumonisin B1 (FB1) toxins, posing serious threats to yield, quality, and food safety. Secreted proteins containing Common Fungal Extracellular Membrane (CFEM) domains are known to contribute to [...] Read more.
Fusarium verticillioides, a hemibiotrophic pathogen, infects a range of important crops and contaminates grains with fumonisin B1 (FB1) toxins, posing serious threats to yield, quality, and food safety. Secreted proteins containing Common Fungal Extracellular Membrane (CFEM) domains are known to contribute to the pathogenicity of several fungi, yet their functions in F. verticillioides remain poorly understood. In this study, we first identified the truncated protein FvCfem7ΔSP without signal-peptide-triggered host immune responses in tobacco. The knockout mutant ΔFvcfem7 exhibited significantly enhanced virulence, while the constitutive overexpression of the FvCFEM7-OE strain showed reduced pathogenicity. Notably, foliar spraying of recombinant FvCfemΔSP protein suppressed fungal infection. FvCfem7 accumulated specifically in haustorium-like structures during early infection of maize leaves and onion. However, heterologous expression of FvCfemΔSP in Nicotiana benthamiana leaves and maize protoplasts can be localized in their cytoplasm and nucleus, although its potential transport mechanism remains to be elucidated. Further analysis revealed that FvCfem7 interacts with specific members of ZmPR5, as well as ZmPR1 and ZmPR4. The ΔFvcfem7 mutant suppressed ZmPR1 induction while enhancing ZmPR5 expression at 24 hpi, which suggests that FvCfem7 modulates the expression of PR proteins at the early invasion stage. In summary, FvCfem7 was identified as a CFEM effector that is recognized and hijacked by PR proteins, thereby triggering immune defenses, while its host-targeting function was also characterized. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

23 pages, 4580 KB  
Article
Bacillus velezensis 7-A as a Biocontrol Agent Against Fusarium verticillioides, the Causal Agent of Rice Sheath Rot Disease
by Boyu Liu, Qunying Qin, Jianchao Hu, Jiayi Wang, Juan Gan, Ye Zhuang, Zhengxiang Sun and Yi Zhou
Microorganisms 2025, 13(11), 2511; https://doi.org/10.3390/microorganisms13112511 - 31 Oct 2025
Viewed by 887
Abstract
Rice sheath rot has progressively developed into a growing threat to global rice production, particularly in intensively managed systems conducive to disease development. Therefore, accurate identification of the causal pathogen and the development of sustainable management strategies represent urgent scientific requirements. In this [...] Read more.
Rice sheath rot has progressively developed into a growing threat to global rice production, particularly in intensively managed systems conducive to disease development. Therefore, accurate identification of the causal pathogen and the development of sustainable management strategies represent urgent scientific requirements. In this study, we isolated the causal organism of rice sheath rot from infected rice tissues and identified it as Fusarium verticillioides based on multi-locus sequence analysis. Eight endophytic bacterial strains were recovered from healthy rice root systems. Among the isolates, Bacillus velezensis isolate 7-A exhibited the strongest antifungal activity against F. verticillioides. This isolate demonstrated broad-spectrum antifungal activity, with inhibition rates ranging from 54.8% to 71.8%. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences identified it as B. velezensis. Further characterization revealed that B. velezensis 7-A is capable of secreting proteases and synthesizing siderophores. The filtered liquid from sterile fermentation markedly inhibited the growth of mycelium in F. verticillioides and induced marked morphological abnormalities. Liquid LC-MS analysis identified multiple antifungal active substances, including camphor, ginkgolides B, salicin, cinnamic acid, hydroxygenkwanin, stearamide, β-carotene, and others. A pot experiment demonstrated that the fermentation broth of B. velezensis 7-A effectively suppressed the occurrence of rice sheath rot, achieving a relative control efficacy of 61.3%, which is comparable to that of a 10% carbendazim water-dispersible granule (WDG). Additionally, isolate 7-A enhances plant disease resistance by activating the activities of key defense enzymes. These findings provide preliminary insights into its potential application in integrated and sustainable disease management programs. Full article
(This article belongs to the Special Issue Beneficial Microorganisms for Sustainable Agriculture)
Show Figures

Figure 1

25 pages, 1786 KB  
Review
Aflatoxins in Mexican Maize Systems: From Genetic Resources to Agroecological Resilience and Co-Occurrence with Fumonisins
by Carlos Muñoz-Zavala, Obed Solís-Martínez, Jessica Berenice Valencia-Luna, Kai Sonder, Ana María Hernández-Anguiano and Natalia Palacios-Rojas
Toxins 2025, 17(11), 531; https://doi.org/10.3390/toxins17110531 - 29 Oct 2025
Cited by 1 | Viewed by 1868 | Correction
Abstract
Aflatoxins (AFs) and fumonisins (FUMs) are among the most prevalent and toxic mycotoxins affecting maize production globally. In Mexico, their co-occurrence poses a significant public health concern, as maize is not only a dietary staple but also predominantly grown and consumed at the [...] Read more.
Aflatoxins (AFs) and fumonisins (FUMs) are among the most prevalent and toxic mycotoxins affecting maize production globally. In Mexico, their co-occurrence poses a significant public health concern, as maize is not only a dietary staple but also predominantly grown and consumed at the household level. This review examines the multifactorial nature of AFs and FUMs contamination in Mexican maize systems, considering the roles of maize germplasm, agricultural practices, environmental conditions, and soil microbiota. Maize landraces, well-adapted to diverse agroecological zones, exhibit potential resistance to AFs contamination and should be prioritized in breeding programs. Sustainable agricultural practices and biocontrol strategies, including the use of atoxigenic Aspergillus flavus strains, are presented as promising interventions. Environmental factors and soil characteristics further influence fungal proliferation and mycotoxin biosynthesis. Advances in microbiome engineering, biological breeding approaches, and predictive modeling offer novel opportunities for prevention and control. The synergistic toxicity of AFs and FUMs significantly increases health risks, particularly for liver cancer, highlighting the urgency of integrated mitigation strategies. While Mexico has regulatory limits for AFs, the lack of legal thresholds for FUMs remains a critical gap in food safety legislation. This comprehensive review underscores the need for biomarker-based exposure assessments and coordinated national policies, alongside multidisciplinary strategies to reduce mycotoxin exposure and enhance food safety in maize systems. Full article
Show Figures

Figure 1

32 pages, 7132 KB  
Article
Synthetic Bacterial Consortium Induces Dynamic Shifts in Fungal Community and Alters Microbial Network Topology in Barley Soil Under Field Conditions
by Roderic Gilles Claret Diabankana, Ernest Nailevich Komissarov, Daniel Mawuena Afordoanyi, Bakhtiyar Islamov, Artemiy Yurievich Sukhanov, Elena Shulga, Maria Nikolaevna Filimonova, Keremli Saparmyradov, Natalia V. Trachtmann and Shamil Z. Validov
Soil Syst. 2025, 9(4), 116; https://doi.org/10.3390/soilsystems9040116 - 19 Oct 2025
Cited by 1 | Viewed by 1234
Abstract
Microorganisms are fundamental drivers of soil productivity, mediating nutrient cycling and pathogen suppression. In this study, we evaluated changes in the fungal community in the soil of barley (Hordeum vulgare L.) in a field experiment involving the application of a consortium of [...] Read more.
Microorganisms are fundamental drivers of soil productivity, mediating nutrient cycling and pathogen suppression. In this study, we evaluated changes in the fungal community in the soil of barley (Hordeum vulgare L.) in a field experiment involving the application of a consortium of Paenibacillus pabuli, Priestia megaterium, Pseudomonas koreensis, and Pseudomonas orientalis. Seed pretreatment and seed pretreatment followed by rhizosphere drenching at different growth stages were implemented. Regarding fungal communities in bulk soil, the rhizospheres of untreated and treated plants were characterized based on full-length ribosomal RNA gene (18S-5.8S-28S) metabarcoding sequencing. Despite the compositional shifts, no statistical differences were observed among the alpha diversity metrics. Seed treatment resulted in long-term, targeted suppression of Fusarium graminearum, Fusarium fujikuroi, Fusarium musae, and Fusarium verticillioides from the booting through flowering and dough development stages, outperforming seed pretreatment followed by rhizosphere drenching. A low-modularity network was observed in the rhizosphere of untreated plants. Seed treatment fostered a highly interconnected and uniform network with low hub-betweenness scores. Rhizosphere drenching of pretreated seeds shifted the network topology toward higher hub-betweenness scores, reducing their connectivity by up to 10% in the rhizosphere and bulk soil. These findings provide a framework for optimizing the soil ecosystem for sustainable agriculture. Full article
Show Figures

Figure 1

18 pages, 86576 KB  
Article
Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay
by Maira Munir, Muhammd Naeem, Xiaoling Wu, Weiying Zeng, Zudong Sun, Yuze Li, Taiwen Yong, Feng Yang and Xiaoli Chang
Pathogens 2025, 14(10), 1020; https://doi.org/10.3390/pathogens14101020 - 8 Oct 2025
Viewed by 1152
Abstract
The fruiting stage of soybean (Glycine max L.) is critical for determining both its yield and quality, thereby influencing global production. While some studies have provided partial explanations for the occurrence of Fusarium species on soybean seeds and pods, the fungal diversity [...] Read more.
The fruiting stage of soybean (Glycine max L.) is critical for determining both its yield and quality, thereby influencing global production. While some studies have provided partial explanations for the occurrence of Fusarium species on soybean seeds and pods, the fungal diversity affecting soybean pods in Sichuan Province, a major soybean cultivation region in Southwestern China, remains inadequately understood. In this study, 182 infected pods were collected from a maize–soybean relay strip intercropping system. A total of 10 distinct pod-infecting fungal genera (132 isolates) were identified, and their pathogenic potential on soybean seeds and pods was evaluated. Using morphological characteristics and DNA barcode markers, we identified 43 Fusarium isolates belonging to 8 species, including F. verticillioides, F. incarnatum, F. equiseti, F. proliferatum, F. fujikuroi, F. oxysporum, F. chlamydosporum, and F. acutatum through the analysis of the translation elongation factor gene (EF1-α) and RNA polymerases II second largest subunit (RPB2) gene. Multi-locus phylogenetic analysis, incorporating the Internal Transcribed Spacer (rDNA ITS), β-tubulin (β-tubulin), Glyceraldehyde 3-phosphate dehydrogenase (GADPH), Chitin Synthase 1 (CHS-1), Actin (ACT), Beta-tubulin II (TUB2), and Calmodulin (CAL) genes distinguished 37 isolates as 6 Colletotrichum species, including C. truncatum, C. karstii, C. cliviicola, C. plurivorum, C. boninense, and C. fructicola. Among these, F. proliferatum and C. fructicola were the most dominant species, representing 20.93% and 21.62% of the isolation frequency, respectively. Pathogenicity assays revealed significant damage from both Fusarium and Colletotrichum isolates on soybean pods and seeds, with varying isolation frequencies. Of these, F. proliferatum, F. acutatum, and F. verticillioides caused the most severe symptoms. Similarly, within Colletotrichum genus, C. fructicola was the most pathogenic, followed by C. truncatum, C. karstii, C. cliviicola, C. plurivorum, and C. boninense. Notably, F. acutatum, C. cliviicola, C. boninense, and C. fructicola were identified for the first time as pathogens of soybean pods under the maize–soybean strip intercropping system in Southwestern China. These findings highlight emerging virulent pathogens responsible for soybean pod decay and provide a valuable foundation for understanding the pathogen population during the later growth stages of soybean. Full article
(This article belongs to the Special Issue Fungal Pathogenicity Factors: 2nd Edition)
Show Figures

Figure 1

21 pages, 3912 KB  
Article
The Global Transcription Factor FvCon7 Plays a Role in the Morphology, FB1 Toxin Production, and Pathogenesis of Fusarium verticillioides
by Gaolong Wen, Xiange Lu, Jiayan Liang, Yi Liu, Xudong Zhang, Guodong Lu, Zonghua Wang and Wenying Yu
Plants 2025, 14(17), 2725; https://doi.org/10.3390/plants14172725 - 1 Sep 2025
Cited by 2 | Viewed by 960
Abstract
Fusarium verticillioides, an important global pathogenic fungus, compromises crop quality and yield by infecting maize, sugarcane, and some Solanaceae, endangering food security through contaminated grains and cereals with the fumonisin B1 (FB1) toxin. While Con7 has been reported as a transcription factor [...] Read more.
Fusarium verticillioides, an important global pathogenic fungus, compromises crop quality and yield by infecting maize, sugarcane, and some Solanaceae, endangering food security through contaminated grains and cereals with the fumonisin B1 (FB1) toxin. While Con7 has been reported as a transcription factor involved in the sporulation and pathogenicity of some pathogenic fungi, the function of FvCon7 and its regulatory genes in F. verticillioides remains uncharacterized. Gene deletion mutants of ΔFvcon7 were constructed through homologous recombination, which exhibited defects in vegetative growth, survival, sporophore development, conidiation, conidial germination, and carbon metabolism. Carbon metabolism defects led to a significant accumulation of glycogen granules in hypha and lipid bodies in conidia. Additionally, ΔFvcon7 displayed impaired cell wall structure and integrity, along with an altered expression of genes encoding cell wall-degrading enzymes (such as chitinase), as detected by qRT-PCR. Moreover, Fvcon7 also plays a role in the pathogenicity of maize and sugarcane through different splicing, defective conidia, reduced survival viability, differential expression of secreted proteins, and deficiencies in antioxidant stress capacity. Furthermore, using yeast one-hybrid (Y1H) assays, FvCon7 was found for the first time to directly regulate the expression of FvFUMs by binding to the CCAAT box within the promoters of six key FvFUMs, thereby affecting FB1 production. Overall, FvCon7 functions as a global transcription factor regulating multiple phenotypes. This study provides a theoretical basis for elucidating the mechanism of transcription factor FvCon7 regulating toxin production and pathogenesis in F. verticillioides. Full article
Show Figures

Figure 1

20 pages, 8487 KB  
Article
Precise Identification and Analysis of Maize Germplasm Resistance to Ear Rot Caused by Six Fusarium Species
by Shuai Li, Lihong Zhu, Yongxiang Li, Yaxuan Guo, Yuhang Zhang, Chaosong Huang, Wenqi Wu, Suli Sun, Zixiang Cheng and Canxing Duan
Plants 2025, 14(15), 2280; https://doi.org/10.3390/plants14152280 - 24 Jul 2025
Viewed by 1118
Abstract
Maize (Zea may L.) is one of the most important crops worldwide, but ear rot poses a significant threat to its production. Diverse pathogens cause ear rot in China, with Fusarium spp. being predominant, especially Fusarium graminearum and Fusarium verticillioides. Current [...] Read more.
Maize (Zea may L.) is one of the most important crops worldwide, but ear rot poses a significant threat to its production. Diverse pathogens cause ear rot in China, with Fusarium spp. being predominant, especially Fusarium graminearum and Fusarium verticillioides. Current methods for the control of ear rot are limited, making the use of resistant germplasm resources an effective and economical management strategy. Earlier research focused on resistance to Fusarium ear rot (FER; caused by F. verticillioides) and Gibberella ear rot (GER; caused by F. graminearum), but assessing maize resistance to multiple major Fusarium spp. is critical in ensuring maize production. Thus, the resistance of 343 maize germplasm resources to ear rot caused by six Fusarium spp. (F. verticillioides, F. graminearum, F. proliferatum, F. meridionale, F. subglutinans, and F. temperatum) was evaluated in this study. Over three years, 69 and 77 lines resistant to six and five ear rot diseases, respectively, and 139 lines resistant to both FER and GER were identified. Moreover, the 343 germplasm resources were divided into eight heterotic groups, of which PH4CV was the most resistant one, whereas NSS and Pioneer Female were the least resistant ones. These findings provide a basis for the development of maize cultivars with broad-spectrum ear rot resistance. Full article
(This article belongs to the Special Issue Identification of Resistance of Maize Germplasm Resources to Disease)
Show Figures

Figure 1

Back to TopTop