Fungal Pathogenicity Factors: 2nd Edition

A special issue of Pathogens (ISSN 2076-0817). This special issue belongs to the section "Fungal Pathogens".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 3718

Special Issue Editors

College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
Interests: plant cytoskeleton mediated innate immunity
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Plant Protection, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
Interests: plant and pathogen interaction; plant rhizosphere immunity

Special Issue Information

Dear Colleagues,

Phytopathogenic fungi are known as the most important agents of plant diseases worldwide. Aggressive fungi often infect their hosts via multiple developmental processes requiring the activities of fungal pathogenicity factors which either remain inside the fungus or are secreted into the host cell. In general, fungal pathogenic factors can be classified as penetration effectors, mycotoxins, enzymes degrading the host cell wall, or signal transduction components and other factors. Over the past two decades, numerous studies have focused on discovering novel pathogenicity factors, explaining their functions and interaction with plant hosts, and ultimately designing some targeted fungicide based on these factors.

On the plant side, the zig–zag model of the plant–pathogen interaction, proposed in 2006, reveals plant innate immunity at cellular and molecular levels within cells. The classic CODIT (compartmentalization of decay in trees) model, originally proposed in 1977, explaining the mechanism of compartmentalization taking place following wounding and infection by decaying fungal pathogens is still far from being fully understood. With the state-of-the-art technology, e.g., single-cell sequencing and the latest molecular cell biology evidence to illustrate the plant innate responses at a tissue level, is promising.

This Special Issue will summarize the current knowledge of phytopathogenic fungi and plant innate immunity, and aim to answer some of the many open questions on fungal pathogenicity factors and their functions in terms of the identification of new fungi species, fungi pathogenicity factors and functions, population diversity and evolution, and interactions with plants. In addition, this Special Issue will cover the epidemiology and prevention of fungal diseases, and new techniques and products used in fungal disease control. All types of articles will be considered for publication, including short reports, primary research articles and reviews.

We are looking forward to your contributions.

Dr. Xin Guan
Dr. Xiaoli Chang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pathogenicity factor
  • effectors
  • mycotoxins
  • pathogenesis
  • fungicides
  • plant
  • innate immunity
  • vascular bundle
  • stress responses
  • plant–pathogen interaction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 86576 KB  
Article
Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay
by Maira Munir, Muhammd Naeem, Xiaoling Wu, Weiying Zeng, Zudong Sun, Yuze Li, Taiwen Yong, Feng Yang and Xiaoli Chang
Pathogens 2025, 14(10), 1020; https://doi.org/10.3390/pathogens14101020 - 8 Oct 2025
Viewed by 980
Abstract
The fruiting stage of soybean (Glycine max L.) is critical for determining both its yield and quality, thereby influencing global production. While some studies have provided partial explanations for the occurrence of Fusarium species on soybean seeds and pods, the fungal diversity [...] Read more.
The fruiting stage of soybean (Glycine max L.) is critical for determining both its yield and quality, thereby influencing global production. While some studies have provided partial explanations for the occurrence of Fusarium species on soybean seeds and pods, the fungal diversity affecting soybean pods in Sichuan Province, a major soybean cultivation region in Southwestern China, remains inadequately understood. In this study, 182 infected pods were collected from a maize–soybean relay strip intercropping system. A total of 10 distinct pod-infecting fungal genera (132 isolates) were identified, and their pathogenic potential on soybean seeds and pods was evaluated. Using morphological characteristics and DNA barcode markers, we identified 43 Fusarium isolates belonging to 8 species, including F. verticillioides, F. incarnatum, F. equiseti, F. proliferatum, F. fujikuroi, F. oxysporum, F. chlamydosporum, and F. acutatum through the analysis of the translation elongation factor gene (EF1-α) and RNA polymerases II second largest subunit (RPB2) gene. Multi-locus phylogenetic analysis, incorporating the Internal Transcribed Spacer (rDNA ITS), β-tubulin (β-tubulin), Glyceraldehyde 3-phosphate dehydrogenase (GADPH), Chitin Synthase 1 (CHS-1), Actin (ACT), Beta-tubulin II (TUB2), and Calmodulin (CAL) genes distinguished 37 isolates as 6 Colletotrichum species, including C. truncatum, C. karstii, C. cliviicola, C. plurivorum, C. boninense, and C. fructicola. Among these, F. proliferatum and C. fructicola were the most dominant species, representing 20.93% and 21.62% of the isolation frequency, respectively. Pathogenicity assays revealed significant damage from both Fusarium and Colletotrichum isolates on soybean pods and seeds, with varying isolation frequencies. Of these, F. proliferatum, F. acutatum, and F. verticillioides caused the most severe symptoms. Similarly, within Colletotrichum genus, C. fructicola was the most pathogenic, followed by C. truncatum, C. karstii, C. cliviicola, C. plurivorum, and C. boninense. Notably, F. acutatum, C. cliviicola, C. boninense, and C. fructicola were identified for the first time as pathogens of soybean pods under the maize–soybean strip intercropping system in Southwestern China. These findings highlight emerging virulent pathogens responsible for soybean pod decay and provide a valuable foundation for understanding the pathogen population during the later growth stages of soybean. Full article
(This article belongs to the Special Issue Fungal Pathogenicity Factors: 2nd Edition)
Show Figures

Figure 1

14 pages, 1497 KB  
Article
A Simulation Study to Reveal the Epidemiology and Aerosol Transmission Characteristics of Botrytis cinerea in Grape Greenhouses
by Lifang Yuan, Hang Jiang, Tinggang Li, Qibao Liu, Xilong Jiang, Xing Han, Yanfeng Wei, Xiangtian Yin and Suna Wang
Pathogens 2024, 13(6), 505; https://doi.org/10.3390/pathogens13060505 - 13 Jun 2024
Viewed by 2064
Abstract
Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is [...] Read more.
Most previously studies had considered that plant fungal disease spread widely and quickly by airborne fungi spore. However, little is known about the release dynamics, aerodynamic diameter, and pathogenicity threshold of fungi spore in air of the greenhouse environment. Grape gray mold is caused by Botrytis cinerea; the disease spreads in greenhouses by spores in the air and the spore attaches to the leaf and infects plant through the orifice. In this study, 120 μmol/L propidium monoazide (PMA) were suitable for treatment and quantitation viable spore by quantitative real-time PCR, with a limit detection of 8 spores/mL in spore suspension. In total, 93 strains of B. cinerea with high pathogenicity were isolated and identified from the air samples of grapevines greenhouses by a portable sampler. The particle size of B. cinerea aerosol ranged predominately from 0.65–3.3 μm, accounting for 71.77% of the total amount. The B. cinerea spore aerosols were infective to healthy grape plants, with the lowest concentration that could cause disease being 42 spores/m3. Botrytis cinerea spores collected form six greenhouse in Shandong Province were quantified by PMA-qPCR, with a higher concentration (1182.89 spores/m3) in May and June and a lower concentration in July and August (6.30 spores/m3). This study suggested that spore dispersal in aerosol is an important route for the epidemiology of plant fungal disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant diseases. Full article
(This article belongs to the Special Issue Fungal Pathogenicity Factors: 2nd Edition)
Show Figures

Figure 1

Back to TopTop