Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (284)

Search Parameters:
Keywords = Froude number

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 26478 KiB  
Article
Three-Dimensional Numerical Simulation of Flow Around a Spur Dike in a Meandering Channel Bend
by Yan Xing, Congfang Ai, Hailong Cui and Zhangling Xiao
Fluids 2025, 10(8), 198; https://doi.org/10.3390/fluids10080198 - 29 Jul 2025
Viewed by 151
Abstract
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an [...] Read more.
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an explicit projection method. The 3D grid system is built from a two-dimensional grid by adding dozens of horizontal layers in the vertical direction. Numerical simulations consider four test cases with different spur dike locations in the same meandering channel bend with the same Froude numbers as 0.22. Four turbulence models, the standard k-ε model, the k-ω model, the RNG k-ε model and a nonlinear k-ε model, are implemented in our three-dimensional free surface model. The performance of these turbulence models within the RANS framework is assessed. Comparisons between the model results and experimental data show that the nonlinear k-ε model behaves better than the three other models in general. Based on the results obtained by the nonlinear k-ε model, the highly 3D flow field downstream of the spur dike was revealed by presenting velocity vectors at representative cross-sections and streamlines at the surface and bottom layers. Meanwhile, the 3D characteristics of the downstream separation zone were also investigated. In addition, to highlight the advantage of the nonlinear turbulence model, comparisons of velocity vectors at representative cross-sections between the results obtained by the linear and nonlinear k-ε models are also presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

14 pages, 1983 KiB  
Article
Numerical Approach for Predicting Levee Overtopping in River Curves Through Dimensionless Parameters
by Chanjin Jeong, Dong Hyun Kim and Seung Oh Lee
Appl. Sci. 2025, 15(15), 8422; https://doi.org/10.3390/app15158422 - 29 Jul 2025
Viewed by 132
Abstract
Recent climate changes have led to an increase in flood intensity, often resulting in frequent levee overtopping, which causes significant human and property damage. High vulnerability to such breaches is expected in general, especially at river curves. This study aims to predict the [...] Read more.
Recent climate changes have led to an increase in flood intensity, often resulting in frequent levee overtopping, which causes significant human and property damage. High vulnerability to such breaches is expected in general, especially at river curves. This study aims to predict the occurrence of levee overtopping at these critical points and to suggest a curve, the levee overtopping risk curve, to assess overtopping probabilities. For this purpose, several dimensionless parameters, such as superelevation relative to levee height (y/H) and the channel’s Froude number, were examined. Based on dimensional analysis, a relationship was developed, and the levee overtopping curve was finally proposed. The accuracy of this curve was validated through numerical analysis using a selected levee case, which clearly distinguished between safe and risky conditions for levee overtopping. The curve is designed for immediate integration into the hydraulic design processes, providing engineers with a reliable method for optimizing levee design to mitigate overtopping risks. It also serves as a critical decision-making tool in flood risk management, particularly for urban planning and infrastructure development in areas prone to flooding. Full article
Show Figures

Figure 1

24 pages, 5313 KiB  
Article
The Influence of Gravity Gradient on the Inertialess Stratified Flow and Vortex Structure over an Obstacle in a Narrow Channel
by Karanvir Singh Grewal, Roger E. Khayat and Kelly A. Ogden
Fluids 2025, 10(8), 195; https://doi.org/10.3390/fluids10080195 - 29 Jul 2025
Viewed by 169
Abstract
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when [...] Read more.
The current study examines the influence of a varying gravity field and its interaction with density stratification. This represents a novel area in baroclinic flow analysis. The classical vortex and internal wave structures in stratified flows are shown to be significantly modified when gravity varies with height. Vortices may shift, stretch, or weaken depending on the direction and strength of gravity variation, and internal waves develop asymmetries or damping that are not present under constant gravity. We examine the influence of gravity variation on the flow of both homogeneous and density-stratified fluids in a channel with topography consisting of a Gaussian obstacle lying at the bottom of the channel. The flow is without inertia, induced by the translation of the top plate. Both the density and gravity are assumed to vary linearly with height, with the minimum density at the moving top plate. The narrow-gap approach is used to generate the flow field in terms of the pressure gradient along the top plate, which, in turn, is obtained in terms of the bottom topography and the three parameters of the problem, namely, the Froude number and the density and gravity gradients. The resulting stream function is a fifth-order polynomial in the vertical coordinate. In the absence of stratification, the flow is smooth, affected rather slightly by the variable topography, with an essentially linear drop in the pressure induced by the contraction. For a weak stratified fluid, the streamlines become distorted in the form of standing gravity waves. For a stronger stratification, separation occurs, and a pair of vortices generally appears on the two sides of the obstacle, the size of which depends strongly on the flow parameters. The influence of gravity stratification is closely coupled to that of density. We examine conditions where the coupling impacts the pressure and the velocity fields, particularly the onset of gravity waves and vortex flow. Only a mild density gradient is needed for flow separation to occur. The influence of the amplitude and width of the obstacle is also investigated. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

37 pages, 3624 KiB  
Article
Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up
by Melissa Siney, Reza Salehi, Mohamed G. Hassan, Rania Hamza and Ihab M. T. A. Shigidi
Water 2025, 17(14), 2131; https://doi.org/10.3390/w17142131 - 17 Jul 2025
Viewed by 650
Abstract
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, [...] Read more.
Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor’s inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

15 pages, 1382 KiB  
Article
Wave Run-Up Distance Prediction Combined Data-Driven Method and Physical Experiments
by Peng Qin, Hangwei Zhu, Fan Jin, Wangtao Lu, Zhenzhu Meng, Chunmei Ding, Xian Liu and Chunmei Cheng
J. Mar. Sci. Eng. 2025, 13(7), 1298; https://doi.org/10.3390/jmse13071298 - 1 Jul 2025
Viewed by 260
Abstract
Predicting wave run-up on seawalls is essential for assessing coastal flood risk and guiding resilient design. In this study, we combine physical model experiments with a hybrid data driven method to forecast wave run-up distance. Laboratory tests generated a nonlinear data set spanning [...] Read more.
Predicting wave run-up on seawalls is essential for assessing coastal flood risk and guiding resilient design. In this study, we combine physical model experiments with a hybrid data driven method to forecast wave run-up distance. Laboratory tests generated a nonlinear data set spanning a wide range of wave amplitudes, wavelengths, Froude numbers. To capture the underlying physical regimes, the records were first classified using a Gaussian Mixture Model (GMM), which automatically grouped waves of similar hydrodynamic character. Within each cluster a Gradient Boosting Regressor (GBR) was then trained, allowing the model to learn tailored input–output relationships instead of forcing a single global fit. Results demonstrate that the GMM-GBR combined model achieves a coefficient of determination R2 greater than 0.91, outperforming a conventional, non-clustered GBR model. This approach offers a reliable tool for predicting seawall performance under varying wave conditions, contributing to better coastal management and resilience strategies. Full article
(This article belongs to the Special Issue Wave Hydrodynamics in Coastal Areas)
Show Figures

Figure 1

25 pages, 5582 KiB  
Article
Integrated Hydrologic–Hydraulic Modeling Framework for Flood Risk Assessment of Rural Bridge Infrastructure in Northwestern Pakistan
by Muhammad Kashif, Wang Bin, Hamza Shams, Muhammad Jhangeer Khan, Marwa Metwally, S. K. Towfek and Amal H. Alharbi
Water 2025, 17(13), 1893; https://doi.org/10.3390/w17131893 - 25 Jun 2025
Viewed by 513
Abstract
This study presents a flood risk assessment of five rural bridges along the monsoon-prone Khar–Mohmand Gat corridor in Northwestern Pakistan using an integrated hydrologic and hydraulic modeling framework. Hydrologic simulations for 50- and 100-year design storms were performed using the Hydrologic Engineering Center’s [...] Read more.
This study presents a flood risk assessment of five rural bridges along the monsoon-prone Khar–Mohmand Gat corridor in Northwestern Pakistan using an integrated hydrologic and hydraulic modeling framework. Hydrologic simulations for 50- and 100-year design storms were performed using the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS), with watershed delineation conducted via Geographic Information Systems (GIS). Calibration was based on regional rainfall data from the Peshawar station using a Soil Conservation Service Curve Number (SCS-CN) of 86 and time of concentration calculated using Kirpich’s method. The resulting hydrographs were used in two-dimensional hydraulic simulations using the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) to evaluate water surface elevations, flow velocities, and Froude numbers at each bridge site. The findings reveal that all bridges can convey peak flows without overtopping under current climatic conditions. However, Bridges 3 to 5 experience near-critical to supercritical flow conditions, with velocities ranging from 3.43 to 4.75 m/s and Froude numbers between 0.92 and 1.04, indicating high vulnerability to local scour. Bridge 2 shows moderate risk, while Bridge 1 faces the least hydraulic stress. The applied modeling framework effectively identifies structures requiring priority intervention and demonstrates a practical methodology for assessing flood risk in ungauged, data-scarce, and semi-arid regions. Full article
(This article belongs to the Special Issue Numerical Modelling in Hydraulic Engineering)
Show Figures

Figure 1

34 pages, 9392 KiB  
Article
Temperature-Induced Errors in ITTC Model-Ship Extrapolation
by Sang-seok Han, Saishuai Dai, Momchil Terziev, Daejeong Kim, Tahsin Tezdogan, Doojin Jung and Soonseok Song
J. Mar. Sci. Eng. 2025, 13(7), 1203; https://doi.org/10.3390/jmse13071203 - 20 Jun 2025
Viewed by 500
Abstract
This study addresses the question: “Does the towing tank water temperature affect the result of model-ship extrapolation?” While it is well-established that temperature variations affect Reynolds numbers and consequently frictional and viscous resistance, this study examines whether the ITTC 1978 extrapolation method properly [...] Read more.
This study addresses the question: “Does the towing tank water temperature affect the result of model-ship extrapolation?” While it is well-established that temperature variations affect Reynolds numbers and consequently frictional and viscous resistance, this study examines whether the ITTC 1978 extrapolation method properly compensates for these effects. Although current procedures consider temperature indirectly through the Reynolds number, they assume that the form factor depends solely on the Froude number and is insensitive to viscosity changes. Our analysis reveals that the form factor is also temperature-sensitive, indicating a fundamental limitation in the conventional approach. This sensitivity arises from the limitations of the ITTC 1957 friction curve and the method’s neglect of temperature-induced variations in the form factor. To quantify the effect of temperature, model-scale CFD simulations were conducted for two ship models (KCS and KVLCC2) at different water temperatures using the ITTC 1978 procedure with Prohaska’s method. The results show that the ship-scale total resistance coefficient (CT) can vary by up to 2.8% depending on the water temperature and friction line selection. This demonstrates that the ITTC 1978 performance prediction method fails to adequately compensate for the temperature-induced changes in resistance, which leads to systematic errors in the extrapolated results. Full article
(This article belongs to the Special Issue CFD Applications in Ship and Offshore Hydrodynamics 2nd Edition)
Show Figures

Figure 1

21 pages, 2043 KiB  
Review
A Review on the Impact of Fallback Factor on Intermittent Gas and Gas-Assisted Plunger Lifts
by Erasmus Mensah and Smith Leggett
Geosciences 2025, 15(7), 237; https://doi.org/10.3390/geosciences15070237 - 20 Jun 2025
Viewed by 252
Abstract
In intermittent gas lift (IGL), not all the liquid initially in the tubing is usually produced at the surface in one cycle. This is due to a concept known as fallback, which occurs when some amount of the initial liquid column drops back [...] Read more.
In intermittent gas lift (IGL), not all the liquid initially in the tubing is usually produced at the surface in one cycle. This is due to a concept known as fallback, which occurs when some amount of the initial liquid column drops back to join the next slug. We conducted a review of earlier works on IGL and the behavior of the fallback factor. The dependence on the fallback factor on the operational conditions such as slug velocity, valve opening pressure, valve closing pressure, casing–tubing pressure ratio, diameter of tubing, and amount of gas injected during IGL are discussed in this paper. The effect on the shape and stability of the nose of the Taylor bubble on the lifting efficiency of the bubble is also explained. In trying to reduce the fallback factor per cycle, there have been recommendations to combine gas lift with plunger lift. We also present the results of this combination and the effects on the fallback factor in gas-assisted plunger lift (GAPL). More light is shed on the behavior of the velocity of the liquid slug and how it affects the fallback factor during IGL. The behavior of the fallback factor with an increase or decrease in plunger velocity during GAPL is also presented in this paper. This review is categorized into experimental and numerical studies on fallback factor to evaluate their impact on production efficiency in IGL and GAPL. Additionally, different formulas for fallback proposed by different literature are compiled. Full article
Show Figures

Figure 1

33 pages, 5220 KiB  
Article
Stability Diagrams of Bed Evolution for Vertically Averaged and Moment (VAM) Models
by Mohamed Hassan Elgamal and Mohd Aamir Mumtaz
Mathematics 2025, 13(12), 1997; https://doi.org/10.3390/math13121997 - 17 Jun 2025
Viewed by 322
Abstract
This study presents, for the first time, a detailed linear stability analysis (LSA) of bedform evolution under low-flow conditions using a one-dimensional vertically averaged and moment (1D-VAM) approach. The analysis focuses exclusively on bedload transport. The classical Saint-Venant shallow water equations are extended [...] Read more.
This study presents, for the first time, a detailed linear stability analysis (LSA) of bedform evolution under low-flow conditions using a one-dimensional vertically averaged and moment (1D-VAM) approach. The analysis focuses exclusively on bedload transport. The classical Saint-Venant shallow water equations are extended to incorporate non-hydrostatic pressure terms and a modified moment-based Chézy resistance formulation is adopted that links bed shear stress to both the depth-averaged velocity and its first moment (near-bed velocity). Applying a small-amplitude perturbation analysis to an initially flat bed, while neglecting suspended load and bed slope effects, reveals two distinct modes of morphological instability under low-Froude-number conditions. The first mode, associated with ripple formation, features short wavelengths independent of flow depth, following the relation F2 = 1/(kh), and varies systematically with both the Froude and Shields numbers. The second mode corresponds to dune formation, emerging within a dimensionless wavenumber range of 0.17 to 0.9 as roughness increases and the dimensionless Chézy coefficient C decreases from 20 to 10. The resulting predictions of the dominant wavenumbers agree well with recent experimental observations. Critically, the model naturally produces a phase lag between sediment transport and bedform geometry without empirical lag terms. The 1D-VAM framework with Exner equation offers a physically consistent and computationally efficient tool for predicting bedform instabilities in erodible channels. This study advances the capability of conventional depth-averaged models to simulate complex bedform evolution processes. Full article
(This article belongs to the Special Issue Advanced Computational Methods for Fluid Dynamics and Applications)
Show Figures

Figure 1

17 pages, 5909 KiB  
Article
Experimental Assessment of Scour Around Side-by-Side Double Piers in an S-Shaped Channel with Ice-Jammed Flow
by Zhonglin Li, Zhenhua Zhang, Jueyi Sui and Jun Wang
Water 2025, 17(12), 1768; https://doi.org/10.3390/w17121768 - 12 Jun 2025
Viewed by 390
Abstract
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development [...] Read more.
Through laboratory experiments in an S-shaped channel, this study analyzes how the flow Froude number, the ratio of ice-to-flow rate, pier spacing-diameter ratio, and bed material median grain size influence scour depth around side-by-side double piers under ice-jammed flow conditions. Unlike the development of a scour hole around a bridge pier in a straight channel, where the scour depth increases with the flow Froude number under ice-covered conditions, this study reveals that in an S-shaped channel, scour depth increases with the flow Froude number near the convex bank pier and decreases near the concave bank counterpart. Irrespective of ice conditions, a higher ratio of pier spacing-diameter correlates with augmented scour depth at the convex bank and diminished scour at the concave bank. As the ice-to-flow rate ratio increases, the ice jam thickness in the S-shaped channel also increases, leading to a significant decrease in the flow area and resulting in deeper scour holes around the piers. Equations have been developed to calculate the maximum scour depth around side-by-side double piers positioned in an S-shaped channel with ice-jammed flow. Full article
(This article belongs to the Special Issue Flow Dynamics and Sediment Transport in Rivers and Coasts)
Show Figures

Figure 1

19 pages, 2738 KiB  
Article
Formulation and Bioequivalence Evaluation of a Miniaturized Fexofenadine Hydrochloride Tablet
by Woo-Yul Song, Chang-Soo Han, Won-Sang Yu, Jae-Won Jang, Gyoung-Won Kim, Yoo-Shin Jeon, Young-Jin Kim, So-Jeong Jeong, Ji-Hyun Kang, Dong-Wook Kim, Yun-Sang Park and Chun-Woong Park
Pharmaceutics 2025, 17(6), 756; https://doi.org/10.3390/pharmaceutics17060756 - 8 Jun 2025
Viewed by 728
Abstract
Background: Fexofenadine hydrochloride (FEX) is widely used to treat allergic rhinitis. However, poor solubility, high cohesiveness, and risk of polymorphic transformation present significant formulation challenges. Conventional FEX tablet formulations are large and may pose swallowing difficulties for patients with dysphagia. Therefore, a miniaturized [...] Read more.
Background: Fexofenadine hydrochloride (FEX) is widely used to treat allergic rhinitis. However, poor solubility, high cohesiveness, and risk of polymorphic transformation present significant formulation challenges. Conventional FEX tablet formulations are large and may pose swallowing difficulties for patients with dysphagia. Therefore, a miniaturized FEX tablet that maintained bioequivalence with the marketed product was developed. Methods: An organic solvent-based binder and porous carrier enhanced solubility, flowability, and process efficiency. The formulation was optimized using a design of experiments approach to assess the effects of tablet size and porous carrier incorporation on dissolution and residual solvent content. Scale-up feasibility was evaluated using Froude number-based process optimization, and stability studies were conducted under accelerated conditions (40 °C and 75% relative humidity) to ensure long-term formulation robustness. Results: The miniaturized tablet exhibited dissolution at pH 4.0 and pH 6.8 equivalent to that of the reference product, whereas a faster dissolution rate was observed at pH 1.2. No significant changes were observed in the dissolution rate, crystalline structure, or impurity levels over six months. An in vivo bioequivalence study demonstrated that the test formulation met the bioequivalence criteria, with 90% confidence intervals for the area under the curve and the Cmax falling within the regulatory acceptance range. Conclusions: A miniaturized and commercially viable fexofenadine hydrochloride tablet was developed (44% weight reduction and 50% volume reduction compared to the marketed product). The organic solvent-based binder and porous carrier system improved manufacturing efficiency, stability, and solubility, thereby ensuring compliance with regulatory standards. These findings provide valuable insights into size reduction, solubility enhancement, and large-scale production strategies for the development of future pharmaceutical formulations. Full article
Show Figures

Graphical abstract

18 pages, 4426 KiB  
Article
Experimental Study of Sediment Incipient Velocity and Scouring in Submarine Cable Burial Areas
by Fanjun Chen, Wankang Yang, Feng Liu, Lili Zhu and Zhilin Sun
Water 2025, 17(9), 1310; https://doi.org/10.3390/w17091310 - 27 Apr 2025
Viewed by 445
Abstract
This study investigates the incipient motion and scouring of sediments around simulated submarine cables in a controlled flume experiment, focusing on five distinct grain sizes in an experimental pool. The measured incipient velocity values were compared with predictions from three established formulas, leading [...] Read more.
This study investigates the incipient motion and scouring of sediments around simulated submarine cables in a controlled flume experiment, focusing on five distinct grain sizes in an experimental pool. The measured incipient velocity values were compared with predictions from three established formulas, leading to a modification of the Sun Zhilin formula for improved accuracy. By incrementally increasing flow velocity, the scour depth and scour duration were measured required to expose cables buried at varying depths for different sediment sizes, and the relationships between scour rate, relative flow rate, and Froude number were analyzed. The results indicate that as the Froude number increases, both the relative flow velocity and scour rate increase, thereby enhancing the erosion of sediment. The modified formula demonstrated a higher consistency with observed scour depths, providing a reliable tool for assessing submarine cable exposure risks. These findings offer valuable insights for developing effective protection strategies to enhance cable stability in complex marine environments. This research highlights the importance of understanding sediment dynamics and their impact on submarine cable stability, contributing to the development of more effective protection strategies for submarine cables in dynamic seabed conditions. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

19 pages, 9716 KiB  
Article
Turbulent and Subcritical Flows over Macro-Roughness Elements
by Francisco Martínez and Javier Farías
Water 2025, 17(9), 1301; https://doi.org/10.3390/w17091301 - 27 Apr 2025
Viewed by 367
Abstract
Determining the friction coefficients for uniform flows over very rough bottoms is a long-standing problem in open-channel hydraulics and river engineering. This experimental study presents measurements of the surface deformation as well as Darcy–Weisbach and Manning friction coefficients for steady, turbulent (6058 [...] Read more.
Determining the friction coefficients for uniform flows over very rough bottoms is a long-standing problem in open-channel hydraulics and river engineering. This experimental study presents measurements of the surface deformation as well as Darcy–Weisbach and Manning friction coefficients for steady, turbulent (6058 Re 28,502), and subcritical flows (0.14 Fr 0.52) over large roughness elements, where Fr and Re denote the Froude and Reynolds numbers, respectively. The experiments were conducted in a rectangular, inclined flume with a train of half-cylinders mounted on the bed, with radii in the range 20 mm a 50 mm. These obstacles yield a relative submergence 1.45 hN/a 4.41 and a constant spacing ratio e/a=12.8 across all experimental runs, where hN and e denote the normal flow depth and the center-to-center spacing between cylinders, respectively. The relative amplitude of the surface profiles, (Δh/a), was analyzed and found to correlate strongly with hN/a, Re and Fr. The results reveal very high values of the Darcy friction factor, f, which follows scaling laws of the form f(hN/a)n^, with n^<0, independent of a, and fReβ, where β<0 is closely linked to a. Scaling relationships for the Manning roughness coefficient, (n), were also investigated and are reported herein. Full article
(This article belongs to the Special Issue Open Channel Flows: An Open Topic That Requires Further Exploration)
Show Figures

Figure 1

24 pages, 7394 KiB  
Article
Measurements of High-Froude Number Boat Wakes near a Seawall
by Steven D. Meyers, Stacey Day and Mark E. Luther
Appl. Sci. 2025, 15(9), 4807; https://doi.org/10.3390/app15094807 - 26 Apr 2025
Viewed by 503
Abstract
Characterizing the coastal wave environment, typically composed of wind-driven waves and boat wakes, and its interaction with built infrastructure is essential for planning sustainable and resilient shoreline development and protection. Objectively identifying and measuring non-stationary wave features, particularly boat wakes, in longer data [...] Read more.
Characterizing the coastal wave environment, typically composed of wind-driven waves and boat wakes, and its interaction with built infrastructure is essential for planning sustainable and resilient shoreline development and protection. Objectively identifying and measuring non-stationary wave features, particularly boat wakes, in longer data records remains a challenge. A wave gauge array of four pressure sensors was deployed for several weeks in the northernmost section of urbanized Tampa Bay, FL, a sheltered, shallow (mean depth 1.2 m) region with frequent recreational small-boat activity. New methods for analyzing these measurements were explored. The array had a square geometry, allowing the calculation of directional spectra. Most prior studies of boat wakes could only examine amplitude spectra. A nearby seawall was found to be a significant source of wave reflection. Additionally, a novel empirical method for identifying wakes, distinguishing them from wind-driven waves, and providing an estimate of their duration and amplitude was developed. The method was found to reliably identify most primary wakes but not reflected wakes. Reflected boat wakes were identified manually, and only during times of relatively high water levels when the shoreline in front of the seawall was flooded. Full article
(This article belongs to the Special Issue Infrastructure Resilience Analysis)
Show Figures

Figure 1

19 pages, 11511 KiB  
Article
Numerical Study on the Influence of Catamaran Hull Arrangement and Demihull Angle on Calm Water Resistance
by Sumin Guo, Xianhe Yang, Hongyu Li, Weizhuang Ma, Qunhong Tian, Qingfeng Ma, Xin Su and Zongsheng Wang
J. Mar. Sci. Eng. 2025, 13(4), 815; https://doi.org/10.3390/jmse13040815 - 19 Apr 2025
Viewed by 543
Abstract
This study investigates the WAM-V (Wave Adaptive Modular Vessel) catamaran configuration, focusing on the hydrodynamic interaction between its articulated hulls. The unique hinged connection mechanism induces a relative angular displacement between the demihulls during operation, significantly modifying the calm water resistance characteristics. Such [...] Read more.
This study investigates the WAM-V (Wave Adaptive Modular Vessel) catamaran configuration, focusing on the hydrodynamic interaction between its articulated hulls. The unique hinged connection mechanism induces a relative angular displacement between the demihulls during operation, significantly modifying the calm water resistance characteristics. Such resistance variations critically influence both vessel maneuverability and the operational effectiveness of onboard acoustic detection systems. This study using computational fluid dynamics (CFD) technology, the effects of varying demihull spacing and the angles of the demihulls on resistance were calculated. Numerical simulations were performed using STAR-CCM+, employing the Reynolds-averaged Navier–Stokes equations (RANS) method combined with the k-epsilon turbulence model. The study investigates the free surface and double body viscous flow at different Froude numbers in the range of 0.3 to 0.75. The analysis focuses on the effects of the demihull spacing ratio (BS/LPP, Demihull spacing/Length between perpendiculars) on calm water resistance. Specifically, the resistance coefficient at BS/LPP = 0.2 is on average 14% higher than that at BS/LPP = 0.5. Additionally, the influence of demihull angles on resistance was simulated at BS/LPP = 0.42. The results indicate that inner demihull angles result in higher resistance compared to outer angles, with the maximum increase in resistance being approximately 9%, with specific outer angles effectively reducing resistance. This study provides a scientific basis for optimizing catamaran design and offers valuable insights for enhancing sailing performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop