Measurements of High-Froude Number Boat Wakes near a Seawall
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sensor Array
2.3. Data Processing
2.3.1. Filtering
2.3.2. Spectral Analysis
2.3.3. Wavelet Analysis
2.3.4. Wake Identification
- Set-up
- Compute masked ;
- Determine wake frequency range defined by [;
- Find the nominal minimum frequency () of wind waves;
- the wake duration resolution ;
- Select range of such that maximum matches or exceeds longest expected wake duration;
- Define generic set of K-curve array positions for .
- Calculate M(t)
- Integrate over each K-curve starting at the initial , yielding ;
- Determine the that maximizes ;
- Define and at this maximal value of ;
- Repeat for all times of interest.
- Remove background M (rectification)
- Smooth using window much larger than maximum wake duration to generate ;
- Calculate .
- Wake Detection
- Find times of local maxima of ;
- For each , partition into and ;
- Calculate the means and of the two segments;
- If then delete this from the set of wakes, otherwise retain.
3. Results
3.1. Wave Forms
3.2. Supervised Boat Passes
3.3. Bulk Properties
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kirkegaard, J.; Kofoed-Hansen, H.; Elfrink, B. Wake wash of high-speed craft in coastal areas. In Coastal Engineering 1998; ASCE: Reston, VA, USA, 1998; pp. 325–337. [Google Scholar]
- Saha, G.K.; Abdullah, M.S.B.; Ashrafuzzaman, M. Wave wash and its effects in ship design and ship operation: A hydrodynamic approach to determine maximum permissible speed in a particular shallow and narrow waterway. Procedia Eng. 2017, 194, 152–159. [Google Scholar] [CrossRef]
- Almström, B.; Larson, M.; Hallin, C. Decision support tool to mitigate ship-induced erosion in non-uniform, sheltered coastal fairways. Ocean Coast. Manag. 2022, 225, 106210. [Google Scholar] [CrossRef]
- Shuster, R.; Sherman, D.J.; Lorang, M.S.; Ellis, J.T.; Hopf, F. Erosive potential of recreational boat wakes. J. Coast. Res. 2020, 95, 1279–1283. [Google Scholar] [CrossRef]
- Zhao, K.; Coco, G.; Gong, Z.; Darby, S.E.; Lanzoni, S.; Xu, F.; Zhang, K.; Townend, I. A review on bank retreat: Mechanisms, observations, and modeling. Rev. Geophys. 2022, 60, e2021RG000761. [Google Scholar] [CrossRef]
- Gemba, K.L.; Sarkar, J.; Cornuelle, B.; Durofchalk, N.C.; Sabra, K.G.; Hodgkiss, W.S.; Kuperman, W.A. Differential arrival time accuracy using ships of opportunity. J. Acoust. Soc. Am. 2017, 142, 2709. [Google Scholar] [CrossRef]
- Meyers, S.D.; Luther, M.E.; Ringuet, S.; Raulerson, G.; Sherwood, E.; Conrad, K.; Basili, G. Ship wakes and their potential shoreline impact in tampa bay. Ocean Coast. Manag. 2021, 211, 105749. [Google Scholar] [CrossRef]
- Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Numerical modeling of breaking wave induced seawall scour. Coast. Eng. 2019, 150, 108–120. [Google Scholar] [CrossRef]
- Taylor, D.; Hall, K.; MacDonald, N. Investigations into ship induced hydrodynamics and scour in confined shipping channels. J. Coast. Res. 2007, 50, 491–496. [Google Scholar] [CrossRef]
- Bauer, B.O.; Lorang, M.S.; Sherman, D.J. Estimating boat-wake-induced levee erosion using sediment suspension measurements. J. Waterw. Port Coast. Ocean Eng. 2002, 128, 152–162. [Google Scholar] [CrossRef]
- Miller, S.E.; Ayers-Rigsby, S.; Murray, E.J.; LeFebvre, M.J.; Kangas, R.; Karim, A. Archaeology as a method and tool for resilience. Southeast Archaeol. 2024, 43, 110–122. [Google Scholar] [CrossRef]
- Gabel, F.; Lorenz, S.; Stoll, S. Effects of ship-induced waves on aquatic ecosystems. Sci. Total Environ. 2017, 601, 926–939. [Google Scholar] [CrossRef]
- Fleit, G.; Baranya, S. Acoustic measurement of ship wave–induced sediment resuspension in a large river. J. Waterw. Port Coast. Ocean Eng. 2021, 147, 04021001. [Google Scholar] [CrossRef]
- Zajicek, P.; Wolter, C. The effects of recreational and commercial navigation on fish assemblages in large rivers. Sci. Total Environ. 2019, 646, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Bilkovic, D.M.; Mitchell, M.M.; Davis, J.; Herman, J.; Andrews, E.; King, A.; Mason, P.; Tahvildari, N.; Davis, J.; Dixon, R.L. Defining boat wake impacts on shoreline stability toward management and policy solutions. Ocean Coast. Manag. 2019, 182, 104945. [Google Scholar] [CrossRef]
- Dias, F. Ship waves and kelvin. J. Fluid Mech. 2014, 746, 1–4. [Google Scholar] [CrossRef]
- Parnell, K.E.; Soomere, T.; Zaggia, L.; Rodin, A.; Lorenzetti, G.; Rapaglia, J.; Scarpa, G.M. Ship-induced solitary riemann waves of depression in venice lagoon. Phys. Lett. A 2015, 379, 555–559. [Google Scholar] [CrossRef]
- Wu, H.; He, J.; Liang, H.; Noblesse, F. Influence of froude number and submergence depth on wave patterns. Eur. J. Mech. B/Fluids 2019, 75, 258–270. [Google Scholar] [CrossRef]
- Kelvin, L. On ship waves. Proc. Inst. Mech. Eng. 1887, 38, 409–434. [Google Scholar]
- Crawford, F.S. Elementary derivation of the wake pattern of a boat. Am. J. Phys. 1984, 52, 782–785. [Google Scholar] [CrossRef]
- Wehausen, J.V. The wave resistance of ships. In Advances in Applied Mechanics; Yih, C.-S., Ed.; Elsevier: Amsterdam, The Netherlands, 1973; Volume 13, pp. 93–245. [Google Scholar]
- Darmon, A.; Benzaquen, M.; Raphaël, E. Kelvin wake pattern at large froude numbers. J. Fluid Mech. 2013, 738, R3. [Google Scholar] [CrossRef]
- Benzaquen, M.; Darmon, A.; Raphaël, E. Wake pattern and wave resistance for anisotropic moving disturbances. Phys. Fluids 2014, 26, 092106. [Google Scholar] [CrossRef]
- Hager, W.H.; Castro-Orgaz, O. William froude and the froude number. J. Hydraul. Eng. 2016, 143, 02516005. [Google Scholar] [CrossRef]
- Watson, D.G. Practical Ship Design; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1, p. 535. [Google Scholar]
- Froude, W. Experiments Upon the Effect Produced on the Wave-Making Resistance of Ships by Length of Parallel Middle Body; Institution of Naval Architects: London, UK, 1877. [Google Scholar]
- Yousefi, R.; Shafaghat, R.; Shakeri, M. Hydrodynamic analysis techniques for high-speed planing hulls. Appl. Ocean Res. 2013, 42, 105–113. [Google Scholar] [CrossRef]
- Toby, A.S. Us high speed destroyers, 1919–1942: Hull proportions. Nav. Eng. J. 1997, 109, 155–177. [Google Scholar] [CrossRef]
- Papanikolaou, A. Ship Design: Methodologies of Preliminary Design; Springer: Berlin/Heidelberg, Germany, 2014; p. 627. [Google Scholar]
- Pethiyagoda, R.; McCue, S.W.; Moroney, T.J. Wake angle for surface gravity waves on a finite depth fluid. Phys. Fluids 2015, 27, 061701. [Google Scholar] [CrossRef]
- Zhu, Y.; He, J.; Wu, H.; Li, W.; Noblesse, F. Basic models of farfield ship waves in shallow water. J. Ocean Eng. Sci. 2018, 3, 109–126. [Google Scholar] [CrossRef]
- Rabaud, M.; Moisy, F. Ship wakes: Kelvin or mach angle? Phys. Rev. Lett. 2013, 110, 214503. [Google Scholar] [CrossRef]
- Didenkulova, I.; Sheremet, A.; Torsvik, T.; Soomere, T. Characteristic properties of different vessel wake signals. J. Coast. Res. 2013, 65, 213–218. [Google Scholar] [CrossRef]
- Pethiyagoda, R.; Moroney, T.J.; Macfarlane, G.J.; Binns, J.R.; McCue, S.W. Time-frequency analysis of ship wave patterns in shallow water: Modelling and experiments. Ocean Eng. 2018, 158, 123–131. [Google Scholar] [CrossRef]
- Torsvik, T.; Soomere, T.; Didenkulova, I.; Sheremet, A. Identification of ship wake structures by a time–frequency method. J. Fluid Mech. 2015, 765, 229–251. [Google Scholar] [CrossRef]
- Robbins, A.; Thomas, G.; Amin, W.; MacFarlane, G.; Renildon, M.; Dand, I. Vessel wave wake characterisation using wavelet analysis. Int. J. Marit. Eng. Trans. R. Inst. Nav. Archit. Part A 2013, 155, 59–66. [Google Scholar] [CrossRef]
- Valbuena, S.A.; Schladow, S.G.; Bombardelli, F.A. Boat effects on lake water clarity and the efficacy of a no-wake zone policy. Lake Reserv. Manag. 2025, 41, 16–33. [Google Scholar] [CrossRef]
- Scully, B.M.; Young, D.L.; Ross, J.E. Mining marine vessel ais data to inform coastal structure management. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 04019042. [Google Scholar] [CrossRef]
- Ewans, K.C. Observations of the directional spectrum of fetch-limited waves. J. Phys. Oceanogr. 1998, 28, 495–512. [Google Scholar] [CrossRef]
- Ranasinghe, D.P.L.; Kumara, I.G.I.K.; Caldera, H.P.G.M.; Engiliyage, N.L. Adaptation of Directional Wave Measurement in 3d Physical Model to Eliminate the Reflection Component in Uni-Directional Waves. In Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, 10–15 June 2018. [Google Scholar]
- Sheremet, A.; Gravois, U.; Tian, M. Boat-wake statistics at jensen beach, florida. J. Waterw. Port Coast. Ocean Eng. 2013, 139, 286–294. [Google Scholar] [CrossRef]
- Leatherman, S.P. Coastal erosion and the united states national flood insurance program. Ocean Coast. Manag. 2018, 156, 35–42. [Google Scholar] [CrossRef]
- Gittman, R.K.; Fodrie, F.J.; Popowich, A.M.; Keller, D.A.; Bruno, J.F.; Currin, C.A.; Peterson, C.H.; Piehler, M.F. Engineering away our natural defenses: An analysis of shoreline hardening in the us. Front. Ecol. Environ. 2015, 13, 301–307. [Google Scholar] [CrossRef]
- Bilkovic, D.M.; Mitchell, M.M.; Toft, J.D.; La Peyre, M.K. A primer to living shorelines. In Living Shorelines; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–10. [Google Scholar]
- Herbert, D.; Astrom, E.; Bersoza, A.C.; Batzer, A.; McGovern, P.; Angelini, C.; Wasman, S.; Dix, N.; Sheremet, A. Mitigating erosional effects induced by boat wakes with living shorelines. Sustainability 2018, 10, 436. [Google Scholar] [CrossRef]
- Huff, T.P.; Feagin, R.A.; Figlus, J. Delft3d as a tool for living shoreline design selection by coastal managers. Front. Built Environ. 2022, 8, 926662. [Google Scholar] [CrossRef]
- Nunez, K.; Rudnicky, T.; Mason, P.; Tombleson, C.; Berman, M. A geospatial modeling approach to assess site suitability of living shorelines and emphasize best shoreline management practices. Ecol. Eng. 2022, 179, 106617. [Google Scholar] [CrossRef]
- Jones, S.C.; Pippin, J.S. Towards principles and policy levers for advancing living shorelines. J. Environ. Manag. 2022, 311, 114695. [Google Scholar] [CrossRef]
- Flynn, B.; Cheng, T. Philippe park (north) coastal conditions analysis. ESA Assoc. 2021, 1–12. [Google Scholar]
- Shi, J.Z.; Luther, M.E.; Meyers, S. Modelling of wind wave-induced bottom processes during the slack water periods in tampa bay, florida. Intl. J. Numer. Meth. Fluids 2006, 52, 1277–1292. [Google Scholar] [CrossRef]
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Allen, J. Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Trans. Acoust.Speech Signal Process. 1977, 25, 235–238. [Google Scholar] [CrossRef]
- Johnson, D. Diwasp, a directional wave spectra toolbox for matlab®: User manual. Cent. Water Res. Univ. West. Aust. 2002, WP-1601-DJ, 1–23. [Google Scholar]
- Barber, N. The directional resolving power of an array of wave detectors. Ocean Wave Spectra 1963, 357, 137–150. [Google Scholar]
- Martinelli, L.; Zanuttigh, B.; Lamberti, A. Comparison of Directional Wave Analysis Methods on Laboratory Data. In Proceedings of the IAHR 2003, XXX Congress, Thessaloniki, Greece, 24–28 August 2003; pp. 355–362. [Google Scholar]
- Hole, L.R.; Fer, I.; Peddie, D. Directional wave measurements using an autonomous vessel. Ocean Dyn. 2016, 66, 1087–1098. [Google Scholar] [CrossRef]
- Cruz, J.M.; Sarmento, A.J. Sea state characterisation of the test site of an offshore wave energy plant. Ocean Eng. 2007, 34, 763–775. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef]
- Strang, G. Wavelets and dilation equations: A brief introduction. SIAM Rev. 1989, 31, 614–627. [Google Scholar] [CrossRef]
- Kumar, P.; Foufoula-Georgiou, E. Wavelet analysis for geophysical applications. Rev. Geophys. 1997, 35, 385–412. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Meyers, S.D.; Kelly, B.G.; O’Brien, J.J. An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of yanai waves. Mon. Wea. Rev. 1993, 121, 2858–2866. [Google Scholar] [CrossRef]
- Olhede, S.C.; Walden, A.T. Generalized morse wavelets. IEEE Trans. Signal Process. 2002, 50, 2661–2670. [Google Scholar] [CrossRef]
- Martinez-Ríos, E.A.; Bustamante-Bello, R.; Navarro-Tuch, S.; Perez-Meana, H. Applications of the generalized morse wavelets: A review. IEEE Access 2022, 11, 667–688. [Google Scholar] [CrossRef]
- Liu, Y.; San Liang, X.; Weisberg, R.H. Rectification of the bias in the wavelet power spectrum. J. Atmos. Ocean. Technol. 2007, 24, 2093–2102. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Carmona, R.; Hwang, W.L.; Torrésani, B. Identification of chirps with continuous wavelet transform. Wavelets Stat. 1995, 103, 95–108. [Google Scholar]
- Soomere, T.; Rannat, K. An experimental study of wind waves and ship wakes in tallinn bay. Est. Acad. Sci. Eng. 2003, 9, 157–184. [Google Scholar]
- Macfarlane, G.J.; Duffy, J.T.; Bose, N. Rapid assessment of boat-generated waves within sheltered waterways. Aust. J. Civ. Eng. 2014, 12, 31–40. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, C.; Liu, J.; Xing, H.; Zhou, F.; Wang, D.; Long, X.; Wang, S.; Wang, W.; Shi, F. Identifying ship-wakes in a shallow estuary using machine learning. Ocean Eng. 2022, 246, 110456. [Google Scholar] [CrossRef]
- Carmona, R.A.; Hwang, W.-L.; Torrésani, B. Characterization of signals by the ridges of their wavelet transforms. IEEE Trans. Signal Process. 1997, 45, 2586–2590. [Google Scholar] [CrossRef]
- Tyler, D.; Zawada, D.G.; Nayegandi, A.; Brock, J.C.; Crane, M.; Yates, K.K.; Smith, K.E. Topobathymetric Data for Tampa Bay, Florida; U. S. Geological Survey: Reston, VI, USA, 2007. [Google Scholar]
- Almström, B.; Danielsson, P.; Göransson, G.; Hallin, C.; Larson, M. Experiences of nature-based solutions for mitigating ship-induced erosion in confined coastal waters. Ecol. Eng. 2022, 180, 106662. [Google Scholar] [CrossRef]
- Parnell, K.E.; Kofoed-Hansen, H. Wakes from large high-speed ferries in confined coastal waters: Management approaches with examples from new zealand and denmark. Coast. Manag. 2001, 29, 217–237. [Google Scholar]
- Wang, P.; Cheng, J. Mega-ship-generated tsunami: A field observation in tampa bay, florida. J. Mar. Sci. Eng. 2021, 9, 437. [Google Scholar] [CrossRef]
- Soomere, T. Nonlinear components of ship wake waves. Appl. Mech. Rev. 2007, 60, 120–138. [Google Scholar] [CrossRef]
Pass # | Start Time | Approx Speed (m/s) | FL | Fh | Amp (mm) |
---|---|---|---|---|---|
1 | 9:00 | 4.5 | 0.63 | 1.3 | 51 |
2 | 9:09 | 4.9 | 0.70 | 1.4 | 26 |
3 | 9:15 | 5.8 | 0.82 | 1.7 | 26 |
4 | 9:20 | 7.6 | 1.10 | 2.2 | 32 |
5 | 9:25 | 7.6 | 2.2 | 19 | |
6 | 9:30 | 2.9 | 0.41 | 0.8 | 20 |
7 | 9:37 | 13.4 | 1.90 | 3.9 | 8 |
A | 9:40 | 0.0 | |||
8 | 9:45 | 14.3 | 2.01 | 4.2 | 8 |
9 | 9:50 | 13.9 | 1.94 | 4.0 | 9 |
10 | 10:00 | 13.4 | 1.88 | 3.9 | 23 |
Pass # | M′ (×10−3) | τ1 (min) | Τ2 (min) | Τ3 (min) | τ1* (s) | τ3* (min) |
---|---|---|---|---|---|---|
1 | 8.7 | 1.2 | 2.0 | 3.4 | 10 | 2.0 |
2 | 7.9 | 0.9 | 1.1 | 1.7 | 25 | 2.5 |
3 | 8 | 1.0 | 2.0 | 2.6 | 30 | 2.6 |
4 | 4.4 | 0.2 | 1.6 | 2.0 | 5 | 1.9 |
5 | 1.2 | 2.0 | 2.9 | 3.8 | 65 | 3.7 |
6 | 0.6 | 1.4 | NA | 1.6 | 15 | 2.2 |
7 | 1.1 | 2.8 | 3.6 | 4.5 | 90 | 4.4 |
8 | 1.3 | 2.4 | 3.0 | 4.0 | 75 | 4.0 |
9 | 3.2 | 0.8 | 2.0 | 2.8 | 25 | 2.5 |
10 | 5.4 | 0.2 | 1.3 | 2.2 | 5 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyers, S.D.; Day, S.; Luther, M.E. Measurements of High-Froude Number Boat Wakes near a Seawall. Appl. Sci. 2025, 15, 4807. https://doi.org/10.3390/app15094807
Meyers SD, Day S, Luther ME. Measurements of High-Froude Number Boat Wakes near a Seawall. Applied Sciences. 2025; 15(9):4807. https://doi.org/10.3390/app15094807
Chicago/Turabian StyleMeyers, Steven D., Stacey Day, and Mark E. Luther. 2025. "Measurements of High-Froude Number Boat Wakes near a Seawall" Applied Sciences 15, no. 9: 4807. https://doi.org/10.3390/app15094807
APA StyleMeyers, S. D., Day, S., & Luther, M. E. (2025). Measurements of High-Froude Number Boat Wakes near a Seawall. Applied Sciences, 15(9), 4807. https://doi.org/10.3390/app15094807