Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (178)

Search Parameters:
Keywords = Friedel–Crafts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3142 KB  
Article
Novel Organosilicon Tetramers with Dialkyl-Substituted [1]Benzothieno[3,2-b]benzothiophene Moieties for Solution-Processible Organic Electronics
by Irina O. Gudkova, Evgeniy A. Zaborin, Alexander I. Buzin, Artem V. Bakirov, Yaroslava O. Titova, Oleg V. Borshchev, Sergey N. Chvalun and Sergey A. Ponomarenko
Molecules 2025, 30(23), 4639; https://doi.org/10.3390/molecules30234639 - 3 Dec 2025
Viewed by 392
Abstract
The synthesis, phase behavior and semiconductor properties of two novel organosilicon tetramers with dialkyl-substituted [1]benzothieno[3,2-b]benzothiophene (BTBT) moieties, D4-Und-BTBT-Hex and D4-Hex-BTBT-Oct, are described. The synthesis of these molecules was carried out by sequential modification of the BTBT core by carbonyl-containing functional alkyl substituents [...] Read more.
The synthesis, phase behavior and semiconductor properties of two novel organosilicon tetramers with dialkyl-substituted [1]benzothieno[3,2-b]benzothiophene (BTBT) moieties, D4-Und-BTBT-Hex and D4-Hex-BTBT-Oct, are described. The synthesis of these molecules was carried out by sequential modification of the BTBT core by carbonyl-containing functional alkyl substituents using the Friedel–Crafts reaction, followed by the reduction in the keto group. The target tetramers, D4-Und-BTBT-Hex and D4-Hex-BTBT-Oct, were obtained by the hydrosilylation reaction between tetraallylsilane and corresponding 1,1,3,3-tetramethyl-1-(ω-(7-alkyl[1]benzothieno[3,2-b]benzothiophen-2-yl)alkyl)disiloxanes. The chemical structure of the compounds obtained was confirmed by NMR 1H-, 13C- and 29Si-spectroscopy, gel permeation chromatography and elemental analysis. Their phase behavior was investigated by differential scanning calorimetry, polarization optical microscopy and X-ray diffraction analysis. It was found that D4-Und-BTBT-Hex shows higher crystallinity at room temperature as compared to D4-Hex-BTBT-Oct, while both molecules possess smectic ordering favorable for active layer formation in organic field-effect transistors (OFETs). The active layers were applied by spin-coating under conditions of a homogeneous thin layer formation with a low content of defects. The devices obtained from D4-Und-BTBT-Hex have demonstrated good semiconductor characteristics in OFETs with a hole mobility up to 3.5 × 10−2 cm2 V−1 s−1, a low threshold voltage and an on/off ratio up to 107. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Figure 1

17 pages, 1575 KB  
Article
Alkylation of Benzene with Benzyl Chloride: Comparative Study Between Commercial MOFs and Metal Chloride Catalysts
by Raquel Peláez, Inés Gutiérrez, Eva Díaz and Salvador Ordóñez
Catalysts 2025, 15(11), 1075; https://doi.org/10.3390/catal15111075 - 13 Nov 2025
Viewed by 705
Abstract
Diphenylmethane, recently recognized as a candidate for liquid organic hydrogen carrier systems, is traditionally produced by alkylation of benzene with benzyl chloride using homogeneous catalysts. In the current context, the need for a transition toward processes that reduce environmental impact and move toward [...] Read more.
Diphenylmethane, recently recognized as a candidate for liquid organic hydrogen carrier systems, is traditionally produced by alkylation of benzene with benzyl chloride using homogeneous catalysts. In the current context, the need for a transition toward processes that reduce environmental impact and move toward sustainability has become increasingly evident. In this work, the benzylation of benzene by benzyl chloride using metal–organic frameworks (MOFs) as catalysts is proposed, as alternative materials that combine the advantages of homogeneous and heterogeneous catalysis. Reaction experiments were carried out in an isothermal batch reactor with commercial Basolite C300 and Basolite F300 MOFs, based on Cu and Fe as active species, respectively. The results demonstrate catalytic activity using both proposed catalysts under the studied conditions, with the results of the Fe-based MOF being more favorable, given the greater standard reduction potential of Fe. Compared with their corresponding metal chlorides, the proposed MOFs improve the alkylation activity. Based on a two-step reaction mechanism, a pseudo first-order kinetic model has been developed for the reaction with MOFs as catalysts. The kinetic parameters were obtained by fitting the model to the experimental data, demonstrating good agreement and validating the proposed mechanistic pathway. Full article
(This article belongs to the Collection Catalytic Conversion and Utilization of Carbon-Based Energy)
Show Figures

Graphical abstract

19 pages, 2567 KB  
Article
1H-Indoles from Deoxybenzoin Schiff Bases by Deprotonation—SNAr Cyclization
by Nash E. Nevels and Richard A. Bunce
Molecules 2025, 30(19), 3894; https://doi.org/10.3390/molecules30193894 - 26 Sep 2025
Viewed by 630
Abstract
A transition metal-free synthesis of 1,2,5-trisubstituted 1H-indoles by a deprotonation–SNAr cyclization sequence from 1-aryl-2-(2-fluoro-5-nitrophenyl)ethan-1-one (deoxy-benzoin) Schiff bases is reported. The starting deoxybenzoins were prepared by Friedel-Crafts acylation of activated aromatic compounds by 2-(2-fluoro-5-nitrophenyl)acetyl chloride with AlCl3 or the [...] Read more.
A transition metal-free synthesis of 1,2,5-trisubstituted 1H-indoles by a deprotonation–SNAr cyclization sequence from 1-aryl-2-(2-fluoro-5-nitrophenyl)ethan-1-one (deoxy-benzoin) Schiff bases is reported. The starting deoxybenzoins were prepared by Friedel-Crafts acylation of activated aromatic compounds by 2-(2-fluoro-5-nitrophenyl)acetyl chloride with AlCl3 or the corresponding acid with (CH3SO2)2O. The Schiff bases were generated by slow distillation of toluene (18–24 h) from a heated solution of each deoxybenzoin (1 equiv) with a benzyl- or phenethylamine, a high-boiling aliphatic amine, or an aniline derivative (5 equiv). Subsequent addition of N,N-dimethylformamide, 2 equiv of anhydrous K2CO3, and heating at 90–95 °C for 18–24 h completed the synthesis. Benzyl-, phenethyl-, and high-boiling amines gave excellent yields while the heating requirements for the initial condensation made volatile aliphatic amines difficult to use and gave low yields. Aniline reactivities correlated with substituent-derived base strength, although modified conditions allowed some yields to be improved. Several anticipated competing processes had minimal impact on the outcome of the cyclizations. Full article
Show Figures

Graphical abstract

23 pages, 1877 KB  
Article
Synthesis and Cytotoxicity Evaluation of Denitroaristolochic Acids: Structural Insights and Mechanistic Implications in Nephrotoxicity
by Jianfei Gao, Mengtong Zhao, Jianhua Su, Yi Gao, Xiaofeng Zhang, Yongzhao Ding, Xiaoping Liu, Yang Luan and Chun Hu
Biomolecules 2025, 15(7), 1014; https://doi.org/10.3390/biom15071014 - 14 Jul 2025
Viewed by 794
Abstract
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II–V (DAA-II–V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the [...] Read more.
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II–V (DAA-II–V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the phenanthrene core. Process optimization significantly improved yields: aryl bromide intermediate A reached 50.8% yield via bromination refinement, while arylboronic ester intermediate B overcame selectivity limitations. Combining Darzens condensation with Wittig reaction enhanced throughput, achieving 88.4% yield in the key cyclization. Structures were confirmed by NMR and mass spectra. CCK-8 cytotoxicity assays in human renal proximal tubular epithelial cells revealed distinct toxicological profiles: DAA-III and DAA-IV exhibited IC50 values of 371 μM and 515 μM, respectively, significantly higher than the nitro-containing prototype AA-I (270 μM), indicating that the absence of nitro group attenuates but does not eliminate toxicity, potentially via altered metabolic activation. DAA-II and DAA-V showed no detectable cytotoxicity within assay limits, suggesting reduced toxicological impact. Structure–activity analysis exhibited that the nitro group is not essential for cytotoxicity, with methoxy substituents exerting limited influence on potency. This challenges the conventional DNA adduct-dependent toxicity paradigm, implying alternative mechanisms like oxidative stress or mitochondrial dysfunction may mediate damage in denitro derivatives. These systematic findings provide new perspectives for AA analog research and a foundation for the rational use and safety assessment of Aristolochiaceae plants. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

5 pages, 302 KB  
Short Note
(5R,7R,11bR)-9-(di(1H-Indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl Acetate
by Jessica A. Perez-Rangel, Gabriela Servín-García, Atilano Gutiérrez-Carrillo, Alejandro Islas-Jácome, Luis Chacón-García, Rosa E. del Río and Carlos J. Cortés-García
Molbank 2025, 2025(3), M2034; https://doi.org/10.3390/M2034 - 7 Jul 2025
Viewed by 663
Abstract
The semi-synthesis of the (5R,7R,11bR)-9-(di(1H-indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl acetate was performed via a pseudo-multicomponent reaction involving a double Friedel–Crafts alkylation between the natural product-derived aldehyde 6β-acetoxyvouacapane and the corresponding indole. The transformation was carried [...] Read more.
The semi-synthesis of the (5R,7R,11bR)-9-(di(1H-indol-3-yl)methyl)-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl acetate was performed via a pseudo-multicomponent reaction involving a double Friedel–Crafts alkylation between the natural product-derived aldehyde 6β-acetoxyvouacapane and the corresponding indole. The transformation was carried out under solvent-free mechanochemical conditions using mortar and pestle grinding, with ZnCl2 as the catalyst. Structural elucidation of the target compound was accomplished using 1D and 2D NMR spectroscopy (1H, 13C, COSY, HSQC, and HMBC), FT-IR, and high-resolution mass spectrometry (HRMS). Full article
Show Figures

Graphical abstract

17 pages, 989 KB  
Article
Combination of aza-Friedel Crafts MCR with Other MCRs Under Heterogeneous Conditions
by Giovanna Bosica and Roderick Abdilla
Catalysts 2025, 15(7), 657; https://doi.org/10.3390/catal15070657 - 6 Jul 2025
Cited by 1 | Viewed by 945
Abstract
Multicomponent reactions (MCRs) enable the efficient assembly of complex small molecules via multiple bond-forming events in a single step. However, individual MCRs typically yield products with similar core structures, limiting access to larger, more intricate scaffolds. Strategic selection of reactants allows the combination [...] Read more.
Multicomponent reactions (MCRs) enable the efficient assembly of complex small molecules via multiple bond-forming events in a single step. However, individual MCRs typically yield products with similar core structures, limiting access to larger, more intricate scaffolds. Strategic selection of reactants allows the combination of distinct MCRs, thus facilitating the synthesis of advanced molecular architectures with potential biological significance. Using our previously reported method for performing the aza-Friedel Crafts multicomponent reaction under green heterogeneous conditions, we have incorporated some of the obtained products into diverse multicomponent reactions to generate, in an unprecedent approach, eight novel products, some of which were also characterized by two-dimensional NMR techniques. The biological properties of such products are under investigation. Full article
Show Figures

Graphical abstract

17 pages, 3228 KB  
Article
Boosting Hydroformylation via Reactant Enrichment in Covalent Triazine Frameworks with Atomically Dispersed Rh
by Xinguo Li, Xiangjie Zhang, Gaolei Qin, Peng He and Yajuan Hao
Materials 2025, 18(12), 2691; https://doi.org/10.3390/ma18122691 - 7 Jun 2025
Viewed by 945
Abstract
Hydroformylation is one of the most widely applied homogeneous catalytic processes in the chemical industry, constituting the predominant manufacturing platform for aldehyde synthesis at commercial scales. Nevertheless, hydroformylation shares with traditional homogeneous catalysis the inherent limitation of difficult catalyst recovery and recycling. Developing [...] Read more.
Hydroformylation is one of the most widely applied homogeneous catalytic processes in the chemical industry, constituting the predominant manufacturing platform for aldehyde synthesis at commercial scales. Nevertheless, hydroformylation shares with traditional homogeneous catalysis the inherent limitation of difficult catalyst recovery and recycling. Developing heterogeneous catalysts for such reactions is thus critically needed. Herein, a stable nitrogen-rich covalent triazine framework (CTF) was synthesized via a mild Friedel–Crafts alkylation method and employed as a support for Rh single-atom catalysts (Rh/CTF-TPA). In the hydroformylation of 1-decene, the Rh/CTF-TPA catalyst exhibits an exceptional reaction efficiency (TOF > 1900 h−1), outperforming the homogeneous Rh(CO)2(acac). Experimental and characterization results revealed that the CTF support enhances catalytic performance through two key mechanisms: (1) strong enrichment of reactants within its special structure, and (2) efficient dispersion of Rh single-atom sites stabilized by abundant nitrogen coordination. This work demonstrates a rational design strategy for heterogeneous hydroformylation catalysts by leveraging nitrogen-rich porous frameworks to synergistically optimize metal anchoring and reactant enrichment, offering a promising alternative to conventional homogeneous systems. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications (2nd Edition))
Show Figures

Figure 1

14 pages, 2552 KB  
Article
Architecting Porosity Through Monomer Engineering: Hypercrosslinked Polymers for Highly Selective CO2 Capture from CH4 or N2
by Lin Liu, Qi Zhang, Xue Leng, Rui Song and Zheng-Bo Han
Polymers 2025, 17(12), 1592; https://doi.org/10.3390/polym17121592 - 6 Jun 2025
Viewed by 1051
Abstract
Natural gas purification and the mitigation of carbon dioxide (CO2) emissions from flue gases are critical steps in alleviating the greenhouse effect and significantly mitigate multiple environmental challenges associated with global warming. Hypercrosslinked polymers (HCPs) have become a hot topic as [...] Read more.
Natural gas purification and the mitigation of carbon dioxide (CO2) emissions from flue gases are critical steps in alleviating the greenhouse effect and significantly mitigate multiple environmental challenges associated with global warming. Hypercrosslinked polymers (HCPs) have become a hot topic as prospective adsorbents for gas purification and separation, owing to their low cost and scalability. Hence, TPB-Ben, TPB-Nap, and TPB-Ant were synthesized through a solvent knitting strategy, with the modification in the size of the monomers serving as a distinctive feature. This alteration aimed to explore the impact of phenyl ring quantity on the polymers’ gas adsorption and separation efficiency. All HCPs showed outstanding selective separation capability of CO2 from CO2/CH4 and CO2/N2 mixtures, such as TPB-Ben-3-2 (CO2/CH4: 10.77; CO2/N2: 59.72), TPB-Nap-3-2 (CO2/CH4: 9.12; CO2/N2: 61.31), and TPB-Ant-3-2 (CO2/CH4: 10.00; CO2/N2: 62.89), which could be potential candidate adsorbents for natural gas purification and CO2 capture. Considering the mild reaction conditions, low cost, efficient gas adsorption, and the potential for scalable production, these polymers are considered ideal selective solid adsorbents for capturing CO2. This further highlights the significance of the solvent knitting strategy. Full article
(This article belongs to the Special Issue Application and Development of Polymer-Based Catalysts)
Show Figures

Figure 1

7 pages, 549 KB  
Communication
An Alternative Method for Preparing Methyl 2-Ferrocenyl-2-oxo-acetate
by Pascal Pigeon and Hugo Hapel
Molbank 2025, 2025(2), M2009; https://doi.org/10.3390/M2009 - 21 May 2025
Viewed by 740
Abstract
Because of the continuous interest in ferrocene chemistry, there is a sustained demand for various ferrocenic building blocks, especially small molecules with useful chemical functional groups, sometimes containing multiple groups. Our interest in ferrocene ketoesters (ω-ferrocenyl-ω-ketoesters) was motivated by the synthesis of esters [...] Read more.
Because of the continuous interest in ferrocene chemistry, there is a sustained demand for various ferrocenic building blocks, especially small molecules with useful chemical functional groups, sometimes containing multiple groups. Our interest in ferrocene ketoesters (ω-ferrocenyl-ω-ketoesters) was motivated by the synthesis of esters and subsequently alcohols of ferrociphenols. However, from a bibliographic survey, only one publication dated from 1964 reports the two-step synthesis (six-step synthesis from ferrocene) of methyl 2-ferrocenyl-2-oxoacetate, the simplest member of this family of compounds, with no further developments since. We hypothesized that a simpler method might exist, such as the Friedel–Crafts method. By focusing on our experiments to use aluminum trichloride as the catalyst, we managed to achieve the synthesis of FcCOCOOMe in a single step, albeit with a very low yield, regardless of reaction time, temperature, amount of aluminum chloride and reagents concentration. Nevertheless, considering the time saved, simplicity, and the use of less hazardous and less expensive reagents, this method offers certain advantages for synthesizing this building block. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

18 pages, 3354 KB  
Review
Advances in Catalyst Design for β-Lactone Formation via Ring-Expansion Carbonylation
by Ali Hasnain, Vinothkumar Ganesan and Sungho Yoon
Molecules 2025, 30(7), 1399; https://doi.org/10.3390/molecules30071399 - 21 Mar 2025
Cited by 1 | Viewed by 1622
Abstract
Over the past three decades, β-lactones have emerged as valuable intermediates for producing diverse industrial chemicals and biodegradable polymers. The ring-expansion carbonylation (REC) of epoxides has become an atom-economical and direct approach to β-lactone production, leveraging readily available carbon monoxide and epoxides. While [...] Read more.
Over the past three decades, β-lactones have emerged as valuable intermediates for producing diverse industrial chemicals and biodegradable polymers. The ring-expansion carbonylation (REC) of epoxides has become an atom-economical and direct approach to β-lactone production, leveraging readily available carbon monoxide and epoxides. While homogeneous catalysts, particularly bimetallic [Lewis acid]+[Lewis base]-type systems, have demonstrated exceptional activity and selectivity, issues like recycling and separation limit the industrial scalability. Heterogenized catalysts offer advantages such as ease of separation and reusability but suffer from reduced efficiency. Recent advancements in porous polymer-based heterogeneous systems, including immobilized cobaltate anions, address these challenges by combining high surface areas with enhanced catalytic performance. Herein, we explore the evolution of homogeneous to heterogeneous REC catalysts, highlighting emerging porous materials and their potential for scalable β-lactone synthesis. Future directions emphasize overcoming the remaining barriers to establish robust, efficient, and sustainable catalytic processes. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

20 pages, 3311 KB  
Article
Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene
by Tapiwa Hlatywayo, Leslie Petrik and Benoit Louis
Catalysts 2025, 15(2), 155; https://doi.org/10.3390/catal15020155 - 7 Feb 2025
Viewed by 1094
Abstract
Coal fly ash and acid mine drainage are significant environmental issues in South Africa, causing storage constraints and impacting water quality. This study explores the use of coal fly ash and acid mine drainage in preparing zeolite HBEA-supported Fe catalysts. The Na-BEA parent [...] Read more.
Coal fly ash and acid mine drainage are significant environmental issues in South Africa, causing storage constraints and impacting water quality. This study explores the use of coal fly ash and acid mine drainage in preparing zeolite HBEA-supported Fe catalysts. The Na-BEA parent catalysts were synthesised hydrothermally using coal fly ash as a feedstock. The Fe was loaded upon the H-BEA form zeolite using liquid-phase ion exchange or wet impregnation, using Fe-rich acid mine drainage as the metal precursor. The ion-exchanged Fe-BEA catalysts exhibited excellent activity, with the highest selectivity achieved over the 25 AHW after 0.5 h on stream. The study also found that when impregnation was used to load Fe onto the zeolite support, other metals present in the AMD affected the overall activity, with Mn, Ca, Mg, and Na decreasing conversion and selectivity, while Ni had a promoting effect. This study demonstrates that green solid acid catalysts with high catalytic activity can be prepared using two waste materials, coal fly ash and acid mine drainage. To the best of our knowledge, we are reporting for the first time the use of acid mine drainage as a metal precursor in Fe-BEA catalyst preparation. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

7 pages, 2230 KB  
Short Note
1-(2,3,5,6-Tetramethylphenyl)ethan-1-one
by David B. Cordes, Iain A. Smellie and Brian A. Chalmers
Molbank 2025, 2025(1), M1961; https://doi.org/10.3390/M1961 - 28 Jan 2025
Viewed by 1125
Abstract
X-ray crystallography was used to characterize 1-(2,3,5,6-tetramethylphenyl)ethan-1-one (acetyldurene) for the first time. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Graphical abstract

16 pages, 848 KB  
Article
Coal Tar Naphtha Refining: Phenol Alkylation with 1-Hexene and the Impact of Pyridine
by Yuhan Xia and Arno de Klerk
Processes 2025, 13(1), 194; https://doi.org/10.3390/pr13010194 - 12 Jan 2025
Cited by 4 | Viewed by 1614
Abstract
Coal tar naphtha is produced from coal carbonization, moving bed coal gasification, and thermal liquefaction of coal. The naphtha can contain up to 60% aromatics and 15% olefins, as well as nitrogen-, oxygen-, and sulfur-containing compounds. Usually only hydrotreating is considered, but when [...] Read more.
Coal tar naphtha is produced from coal carbonization, moving bed coal gasification, and thermal liquefaction of coal. The naphtha can contain up to 60% aromatics and 15% olefins, as well as nitrogen-, oxygen-, and sulfur-containing compounds. Usually only hydrotreating is considered, but when producing motor gasoline, olefin–aromatic alkylation could reduce the associated octane number loss due to olefin hydrogenation by converting olefins to alkylated phenols and aromatics. The plausibility of using acid-catalyzed alkylation with coal tar naphtha, which contains nitrogen bases, was investigated by studying a model system comprising phenol and 1-hexene in the absence and presence of pyridine. It was found that pyridine only inhibited conversion over a range of amorphous silica–alumina catalysts. The most effective catalyst was Siral 30 (30% silica, 70% alumina) and at 315 °C, 0.05 wt% pyridine caused a 35% inhibition of phenol conversion compared to conversion in the absence of pyridine. Catalyst activity could be restored by rejuvenating the catalyst with clean feed at a higher temperature. The results supported a description of phenol alkylation with olefins that took place by at least two pathways, one involving protonation of the olefin (typical for Friedel–Crafts alkylation) and one where the olefin is the nucleophile. Full article
(This article belongs to the Special Issue Synthesis, Catalysis and Applications of Organic Chemistry)
Show Figures

Figure 1

14 pages, 1467 KB  
Article
Organocatalytic Enantioselective Friedel–Crafts Reaction of Phenanthrenequinones and Indoles
by Yan Jin, Yuhong Sun, Yue Yu, Jiao Zhao, Mingshan Zheng, Liming Wang and Ying Jin
Molecules 2025, 30(1), 172; https://doi.org/10.3390/molecules30010172 - 4 Jan 2025
Viewed by 1540
Abstract
An efficient stereoselective synthesis of 10-hydroxy-10-(1H-indol-3-yl)-9-(10H)-phenanthrene derivatives was realized through an organocatalyzed Friedel–Crafts reaction of phenanthrenequinones and indoles using a (S,S)-dimethylaminocyclohexyl-squaramide as the catalyst. Under the optimized conditions, the desired chiral products were obtained in [...] Read more.
An efficient stereoselective synthesis of 10-hydroxy-10-(1H-indol-3-yl)-9-(10H)-phenanthrene derivatives was realized through an organocatalyzed Friedel–Crafts reaction of phenanthrenequinones and indoles using a (S,S)-dimethylaminocyclohexyl-squaramide as the catalyst. Under the optimized conditions, the desired chiral products were obtained in good yields (73–90%) with moderate to high ee values (up to 97% ee). Two pairs of synthesized enantiomers were subjected to evaluation of their antiproliferative activities on four types of human cancer cell lines and one human umbilical vein endothelial cell line using the CCK-8 assay. The results indicated that stereoselectivity had obvious impacts on biological activity. (S)-4g was found to have optimal cytotoxicity against the A549 cell line and a good safety profile for human normal cells, which was better than the inhibitory activity of the positive control drug (doxorubicin). Full article
Show Figures

Figure 1

29 pages, 10189 KB  
Article
New Chloroprene Rubber/Styrene–Butadiene Rubber (CR/SBR) Blends Cross-Linked with Tin(II) Oxide (SnO): Curing Characteristics, Swelling Studies, Mechanical Properties, and Flame Resistance
by Aleksandra Smejda-Krzewicka, Konrad Mrozowski and Krzysztof Strzelec
Molecules 2024, 29(24), 6028; https://doi.org/10.3390/molecules29246028 - 20 Dec 2024
Cited by 1 | Viewed by 1970
Abstract
This study aimed to investigate the properties of tin(II) oxide (SnO) as an unconventional cross-linking agent for chloroprene (CR) and styrene–butadiene (SBR) rubbers compositions. The use of tin(II) oxide results from the need to reduce the use of zinc oxide as a cross-linking [...] Read more.
This study aimed to investigate the properties of tin(II) oxide (SnO) as an unconventional cross-linking agent for chloroprene (CR) and styrene–butadiene (SBR) rubbers compositions. The use of tin(II) oxide results from the need to reduce the use of zinc oxide as a cross-linking agent due to environmental regulations and its toxic impact on aquatic environments. The studied elastomeric blends can be cross-linked with tin(II) oxide, and the results demonstrate the significant potential of this oxide in such applications. The CR/SBR vulcanizates cross-linked with SnO exhibit good mechanical properties and a high degree of cross-linking. The studies clearly show that the proportions of both rubbers as well as the amount of tin(II) oxide used influence the cross-linking of the CR/SBR blends and the properties of vulcanizates. FTIR spectrum analysis allowed the identification of the cross-linking mechanism, which followed the Friedel–Crafts alkylation reaction mechanism. The AFM analysis determined the miscibility of the rubbers and interelastomeric reactions, proving that the rubbers studied are partially miscible. The results of the oxygen index measurements indicated that the obtained vulcanizates showed flame resistance and self-extinguishing properties. Multivariate regression was performed to fit the models to the experimental value and to determine the influence of the content of the cross-linking agent and the CR and SBR proportions on the properties of the blends. Full article
(This article belongs to the Special Issue Macromolecular Chemistry in Europe)
Show Figures

Graphical abstract

Back to TopTop