Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterisation
2.2. Catalytic Activity
2.3. Conversion of t-Butyl Chloride and Selectivity of t-Butyl Benzene
2.4. Friedel–Crafts Alkylation Selectivity and Product Distribution
2.5. Effect of Various Metals in AMD on the FC Alkylation Reaction
3. Experimental Details
3.1. Acid-Assisted Silica Extraction from CFA
3.2. Synthesis of Zeolite HBEA
3.3. Metal Loading via Liquid-Phase Ion Exchange and Wet Impregnation
3.4. Catalyst Coding
3.5. Catalyst Characterisation
3.6. Catalyst Activation
3.7. Catalyst Testing
3.8. Effect of Various Metals on the Catalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nyale, S.M.; Babajide, O.O.; Birch, G.D.; Böke, N.; Petrik, L.F. Synthesis and characterization of coal fly ash-based foamed geopolymer. Procedia Environ. Sci. 2013, 18, 722–730. [Google Scholar] [CrossRef]
- Böke, N.; Birch, G.D.; Nyale, S.M.; Petrik, L.F. New synthesis method for the production of coal fly ash-based foamed geopolymers. Constr. Build. Mater. 2015, 75, 189–199. [Google Scholar] [CrossRef]
- Imoisili, P.E.; Jen, T.-C. Synthesis and characterization of amorphous nano silica from South African coal fly ash. Mater. Today Proc. 2023, 105, 21–26. [Google Scholar] [CrossRef]
- Hlatywayo, T. Coal Fly Ash and Acid Mine Drainage Based, Heterogeneous Fe Catalysts for the Friedel-Crafts Alkylation Reaction. Ph.D. Thesis, Chemistry Department, University of the Western Cape, Cape Town, South Africa, 2020. Available online: https://uwcscholar.uwc.ac.za/items/eb0c759b-cfcd-4180-9e81-c2d3a5e339ae (accessed on 7 January 2025).
- Alterary, S.S.; Marei, N.H. Fly ash properties, characterization, and applications: A review. J. King Saud Univ.-Sci. 2021, 33, 101536. [Google Scholar] [CrossRef]
- Bhatt, A.; Priyadarshini, S.; Mohanakrishnan, A.A.; Abri, A.; Sattler, M.; Techapaphawit, S. Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Stud. Constr. Mater. 2019, 11, e00263. [Google Scholar] [CrossRef]
- Reynolds-Clausen, K.; Singh, N. South Africa’s Power Producer’s Revised Coal Ash Strategy and Implementation Progress. Coal Combustion and Gasification Products 11. In Proceedings of the WOCA Conference, Lexington, KY, USA, 9–11 May 2018; Available online: http://www.flyash.info (accessed on 7 January 2025).
- Perämäki, S.E.; Tiihonen, A.J.; Väisänen, A.O. Occurrence and recovery potential of rare earth elements in Finnish peat and biomass combustion fly ash. J. Geochem. Explor. 2019, 201, 71–78. [Google Scholar] [CrossRef]
- Khan, I.; Umar, R. Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India. Groundw. Sustain. Dev. 2019, 8, 346–357. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gacem, A.; Choudhary, N.; Rai, A.; Kumar, P.; Yadav, K.K.; Abbas, M.; Khedher, N.B.; Awwad, N.S.; Barik, D.; et al. Status of Coal-Based Thermal Power Plants, Coal Fly Ash Production, Utilization in India and Their Emerging Applications. Minerals 2022, 12, 1503. [Google Scholar] [CrossRef]
- Ghazali, N.; Muthusamy, K.; Wan Ahmad, S. Utilization of Fly Ash in Construction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 601, 012023. [Google Scholar] [CrossRef]
- Mathapati, M.; Amate, K.; Prasad, D.; Jayavardhana, M.L.; Raju, T.H. A review on fly ash utilization. Mater. Today Proc. 2022, 50, 1535–1540. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Gilbert, C.; Ayanda, O.S.; Fatoba, O.O.; Madzivire, G.; Petrik, L.F. A Novel Method of Using Iron Nanoparticles from Coal Fly Ash or Ferric Chloride for Acid Mine Drainage Remediation. In Mine Water and the Environment; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Darmansyah, D.; You, S.-J.; Wang, Y.-F. Advancements of coal fly ash and its prospective implications for sustainable materials in Southeast Asian countries: A review. Renew. Sustain. Energy Rev. 2023, 188, 113895. [Google Scholar] [CrossRef]
- Missengue, R.M.; Losch, P.; Sedres, G.; Musyoka, N.M.; Fatoba, O.O.; Louis, B.; Pale, P.; Petrik, L.F. Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst. Comptes Rendus Chim. 2017, 20, 78–86. [Google Scholar] [CrossRef]
- Petrik, L.F.; Missengue, R.N.M.; Ameh, A.E.; Hlatywayo, T. Process for Production of High Silica Content Zeolite from Fly Ash. Patent WO/2017221192, 28 December 2017. [Google Scholar]
- Fan, Y.; Huang, R.; Liu, Q.; Cao, Q.; Guo, R. Synthesis of zeolite A from fly ash and its application in the slow release of urea. Waste Manag. 2023, 158, 47–55. [Google Scholar] [CrossRef]
- Lankapati, H.M.; Lathiya, D.R.; Choudhary, L.; Dalai, A.K.; Maheria, K.C. Modification and characterization of Mordenite zeolite derived from waste coal fly ash and its application as a heterogeneous catalyst for the n-butyl levulinate synthesis. Catal. Commun. 2023, 183, 106772. [Google Scholar] [CrossRef]
- Yao, Q.; Peng, Y.; Chen, M.; Wang, Y.; Ding, J.; Ma, B.; Wang, Q.; Lu, S. One-step high efficiency synthesis of zeolite from fly ash by mechanochemical method as a low-cost adsorbent for cadmium removal. J. Environ. Chem. Eng. 2024, 12, 111877. [Google Scholar] [CrossRef]
- Eren, S.; Türk, F.N.; Arslanoğlu, H. Synthesis of zeolite from industrial wastes: A review on characterization and heavy metal and dye removal. Environ. Sci. Pollut. Res. 2024, 31, 41791. [Google Scholar] [CrossRef] [PubMed]
- Buzukashvili, S.; Sommerville, R.; Hu, W.; Brooks, O.; Kökkılı, O.; Ouzilleau, P.; Rowson, N.A.; Waters, K.E. Zeolite synthesis from coal fly ash and its application to heavy metals remediation from water contaminated with Pb, Cu, Zn and Ni ions. Miner. Eng. 2024, 209, 108619. [Google Scholar] [CrossRef]
- Senila, M.; Cadar, O. Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives. Heliyon 2024, 10, e25303. [Google Scholar] [CrossRef] [PubMed]
- Ríos, C.A.; Williams, C.D.; Roberts, C.L. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J. Hazard. Mater. 2008, 156, 23–35. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Kinetic studies of the removal of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2011, 101, 42–49. [Google Scholar] [CrossRef]
- Silva, D.; Weber, C.; Oliveira, C. Neutralization and uptake of pollutant cations from acid mine drainage (amd) using limestones and zeolites in a pilot-scale passive treatment system. Miner. Eng. 2021, 170, 107000. [Google Scholar] [CrossRef]
- Gaikwad, R.W.; Sonawane, A.V.; Hakke, V.S.; Sonawane, S.H.; Gaikwad, M.S.; Lakhera, S.K.; Venu, B.G.; Warade, A.R.; Urgunde, A.B.; Sapkal, V.S. Application of apophyllite and thomsonite natural zeolite as modified adsorbents for the removal of zinc from acid mine drainage. Chemosphere 2024, 350, 141095. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Beauclair, N.; Maaza, M.; Mokrani, T.; Ambushe, A.A.; Seopela, M.P.; Msagati, A.T. Acid mine drainage treatment and metals recovery by means of selective precipitation using magnesium oxide (MgO): An experimental study. Groundw. Sustain. Dev. 2024, 25, 101151. [Google Scholar] [CrossRef]
- Humphries, M.S.; McCarthy, T.S.; Letitia, P. Attenuation of pollution arising from acid mine drainage by a natural wetland on the Witwatersrand. S. Afr. J. Sci 2017, 113, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shabalala, A.N.; Ekolu, S.O. Quality of water recovered by treating acid mine drainage using pervious concrete adsorbent. Water SA 2019, 45, 4. [Google Scholar] [CrossRef]
- Feng, D.; Aldrich, C.; Tan, H. Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner. Eng. 2000, 13, 623–642. [Google Scholar] [CrossRef]
- Luptakova, A.; Kusnierova, M. Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 2005, 77, 97–102. [Google Scholar] [CrossRef]
- Gitari, W.; Petrik, L.; Ajayi, A.S. Treatment of Acid Mine Drainage with Coal Fly Ash: Exploring the Solution Chemistry and Product Water Quality. In Coal Fly Ash Beneficiation: Treatment of Acid Mine Drainage with Coal Fly Ash; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Pereira, T.C.B.; dos Santos, K.B.; Lautert-Dutra, W.; Teodoro, L.D.; de Almeida, V.O.; Weiler, J.; Schneider, I.A.H.; Bogo, M.R. Acid mine drainage (AMD) treatment by neutralization: Evaluation of physical-chemical performance and ecotoxicological effects on zebrafish (Danio rerio) development. Chemosphere 2020, 253, 126665. [Google Scholar] [CrossRef] [PubMed]
- Levio-Raiman, M.; Briceño, G.; Schalchli, H.; Bornhardt, C.; Diez, M.C. Alternative treatment for metal ions removal from acid mine drainage using an organic biomixture as a low cost adsorbent. Environ. Technol. Innov. 2021, 24, 101853. [Google Scholar] [CrossRef]
- Chimanlal, I.; Nthunya, L.N.; Richards, H. Resource recovery from acid mine drainage in membrane distillation crystallization. Front. Membr. Sci. Technol. 2023, 2, 1247276. [Google Scholar] [CrossRef]
- Alegbe, M.J.; Ayanda, O.S.; Ndungu, P.; Nechaev, A.; Fatoba, O.O.; Petrik, L.F. Physicochemical Characteristics of Acid Mine Drainage, Simultaneous Remediation and use as Feedstock for Value Added Products. J. Environ. Chem. Eng. 2019, 7, 103097. [Google Scholar] [CrossRef]
- Madzivire, G.; Maleka, R.M.; Tekere, M.; Petrik, L.F. Cradle to cradle solution to problematic waste materials from mine and coal power station: Acid mine drainage, coal fly ash and carbon dioxide. J. Water Process Eng. 2019, 30, 100474. [Google Scholar] [CrossRef]
- Yuan, J.; Ding, Z.; Bi, Y.; Li, J.; Wen, S.; Bai, S. Resource Utilization of Acid Mine Drainage (AMD): A Review. Water 2022, 14, 2385. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, X.; Hensen, E.J.M. Stable Fe/ZSM-5 nanosheet zeolite catalysts for the oxidation of benzene to phenol. Am. Chem. Soc. Catal. 2017, 7, 2709–2719. [Google Scholar] [CrossRef] [PubMed]
- Patet, R.E.; Koehle, M.; Lobo, R.F.; Caratzoulas, S.; Vlachos, D.G. General acid-type catalysis in the dehydrative aromatization of furans to aromatics in H-[Al]-BEA, H-[Fe]-BEA, H-[Ga]-BEA, and H-[B]-BEA Zeolites. J. Phys. Chem. C 2017, 121, 13666–13679. [Google Scholar] [CrossRef]
- Ingole, A.K.; Dixit, D.; Dingare, S.V. A review on Selective Catalytic Reduction technique for diesel engine exhaust after treatment. Int. J. Curr. Eng. Technol. 2017, 7, 206–210. [Google Scholar]
- Yang, H.; Zhang, C.; Gao, P.; Wang, H.; Li, X.; Zhong, L.; Wei, W.; Sun, Y. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 2017, 7, 4580–4598. [Google Scholar] [CrossRef]
- Velichkova, F.; Delmas, H.; Julcour, C.; Koumanova, B. Heterogeneous fenton and photo-fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst. Am. Inst. Chem. Eng. J. 2016, 63, 669–679. [Google Scholar] [CrossRef]
- Olah, G.A.; Molnar, A. Hydrocarbon Chemistry, 2nd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2003; pp. 230–232. [Google Scholar]
- Ivanchina, E.; Ivashkina, E.; Dolganova, I.; Dolganov, I.; Krutey, A. Application of mathematical modeling for optimization of linear alkylbenzenes sulphonation modes in film reactor. Procedia Eng. 2016, 152, 73–80. [Google Scholar] [CrossRef]
- Shi, H.; Zhu, W. Removal of free acids from heavy alkylbenzene sulfonic acid by a novel three-step method. Chem. Eng. Process.-Process Intensif. 2023, 193, 109531. [Google Scholar] [CrossRef]
- Shokria, A.; Karimia, S. A review in linear alkylbenzene (LAB) production processes in the petrochemical industry. Russ. J. Appl. Chem. 2021, 94, 1546–1559. [Google Scholar] [CrossRef]
- Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel-Crafts alkylation—From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem. 2010, 6, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bidart, A.M.; Borges, A.P.; Nogueira, L.; Lachter, E.R.; Mota, C.J.A. Iron-Exchanged Zeolite as Effective Catalysts for Friedel–Crafts Alkylation with Alkyl Halides. Catal. Lett. 2001, 75, 155–157. [Google Scholar] [CrossRef]
- Motsi, T.; Rowson, N.A.; Simmons, M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 2009, 92, 42–48. [Google Scholar] [CrossRef]
- Kosri, C.; Deekamwong, K.; Sophiphun, O.; Osakoo, N.; Chanlek, N.; Fo¨ttinger, K.; Wittayakun, J. Comparison of Fe/HBEA catalysts from incipient wetness impregnation with various loading on phenol hydroxylation. React. Kinet. Mech. Catal. 2017, 121, 751–761. [Google Scholar] [CrossRef]
- Wu, R.; Liu, N.; Dai, C.; Xu, R.; Wang, N.; Yu, G.; Chen, B. Collaborative Purification of Tert-Butanol and N2O over Fe/Co-Zeolite Catalysts. Int. J. Environ. Res. Public Health 2023, 20, 4902. [Google Scholar] [CrossRef] [PubMed]
- Moreno, N.; Querol, X.; Ayora, C.; Pereira, C.F.; Janssen-Jurkovicová, M. Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ. Sci. Technol. 2001, 35, 3526–3534. [Google Scholar] [CrossRef] [PubMed]
- Balle, P.; Geiger, B.; Kureti, S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust. Appl. Catalysis. B Environ. 2009, 85, 109–119. [Google Scholar] [CrossRef]
- Sophiphun, O.; Föttinger, K.; Loiha, S.; Neramittagapong, A.; Prayoonpokarach, S.; Rupprechter, G.; Wittayakun, J. Properties and catalytic performance in phenol hydroxylation of iron on zeolite beta prepared by different methods. React. Kinet. Mech. Catal. 2015, 116, 549–561. [Google Scholar] [CrossRef]
- Yan, P.; Kennedy, E.; Stockenhuber, M. Hydrodeoxygenation of guaiacol over BEA supported bimetallic Ni-Fe catalysts with varied impregnation sequence. J. Catal. 2021, 404, 1–11. [Google Scholar] [CrossRef]
- Andrade, M.A.; Ansari, L.M.; Pombeiro, A.J.; Carvalho, A.P.; Martins, A.; Martins, L.M. Fe@Hierarchical BEA Zeolite Catalyst for MW-Assisted Alcohol Oxidation Reaction: A Greener Approach. Catalysts 2020, 10, 1029. [Google Scholar] [CrossRef]
- Miskolczi, N.; Juzsakova, T.; Sója, J. Preparation and application of metal loaded ZSM-5 and Y-zeolite catalysts for thermo-catalytic pyrolysis of real end of life vehicle plastics waste. J. Energy Inst. 2019, 92, 118–127. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Muraza, O.; Jamil, A.K.; Shafei, E.N.; Yamani, Z.H.; Choi, K.H. Steam catalytic cracking of n-dodecane over Ni and Ni/Co bimetallic catalyst supported on hierarchical BEA zeolite. Energy 2017, 31, 5482–5490. [Google Scholar] [CrossRef]
- Barclay, L.; Betts, E. The tertiarybutylbenzenes: I. Alkylation of 1,4-di-t-butylbenzene with t-butyl chloride. Can. J. Chem. 2011, 33, 672–678. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Jana, S.K.; Kiran, B.P. Alkylation of benzene by benzyl chloride over H-ZSM-5 zeolite with its framework Al completely or partially substituted by Fe or Ga. Catal. Lett. 1999, 59, 217–219. [Google Scholar] [CrossRef]
- Nur, H.; Ramli, Z.; Efendi, J.; Rahman, A.N.A.; Chandren, S.; Yuan, L.S. Synergistic role of Lewis and Brönsted acidities in Friedel–Crafts alkylation of resorcinol over gallium-zeolite beta. Catal. Commun. 2011, 12, 822–825. [Google Scholar] [CrossRef]
- Lin, T.; Zhang, X.; Li, R.; Bai, T.; Yang, Y.S. Synergistic catalysis of isolated Fe3+ and Fe2O3 on FeOx/HZSM-5 catalysts for Friedel–Crafts benzylation of benzene. Chin. Chem. Lett. 2011, 22, 639–642. [Google Scholar] [CrossRef]
- Arata, K.; Hino, M. High catalytic activity of iron oxide for benzylation, t-butylation, and acetylation of toluene with benzyl, t-butyl, and acetyl chlorides. Chem. Lett. 1980, 9, 1479–1480. [Google Scholar] [CrossRef]
- Vinu, A.; Sawant, D.P.; Ariga, K.; Hartmann, M.; Halligudi, S.B. Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts. Microporous Mesoporous Mater. 2005, 80, 195–203. [Google Scholar] [CrossRef]
- Hlatywayo, T. Supported Metal Catalysts for Friedel-Crafts Alkylation. Master’s Thesis, Chemistry Department, University of The Western Cape, Cape Town, South Africa, 2014. Available online: https://uwcscholar.uwc.ac.za/items/a2b0c1f7-9a95-49dc-b67a-b07214864521 (accessed on 7 January 2025).
- Emana, A.N.; Chand, S. Alkylation of benzene with ethanol over modified HZSM-5 zeolite catalysts. Appl. Petrochem. Res. 2015, 5, 121–134. [Google Scholar] [CrossRef]
- He, N.; Bao, S.; Xu, Q. Fe-containing mesoporous molecular sieves materials: Very active Friedel-Crafts alkylation catalysts. Appl. Catal. A Gen. 1998, 169, 29–36. [Google Scholar] [CrossRef]
- Dong, P.; Li, Z.; Wang, X.; Yun, H.; Li, G. The alkylation reaction of benzene with methanol to produce toluene: Y-C and Y-CCs catalyst. Green Chem. Lett. Rev. 2018, 11, 158–164. [Google Scholar] [CrossRef]
- Sebti, S.; Tahir, R.; Nazih, R.; Boulaajaj, S. Comparison of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel–Crafts alkylation. Appl. Catal. A Gen. 2001, 218, 25–30. [Google Scholar] [CrossRef]
- Ali, T.T.; Narasimharao, K.; Ahmed, N.S.; Basahel, S.; Al-Thabaiti, S.; Mokhtar, M. Nanosized iron and nickel oxide zirconia supported catalysts forbenzylation of benzene: Role of metal oxide support interaction. Appl. Catal. A Gen. 2014, 486, 19–31. [Google Scholar] [CrossRef]
- Shen, S.; Chen, J.; Koodali, R.T.; Hu, Y.; Xiao, Q.; Zhou, J.; Wang, X.; Guo, L. Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Appl. Catal. B Environ. 2014, 150–151, 138–146. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Rao, P.V.C.; Choudary, N.V.; Ganesh, G.S.; Shah, G.; Maradur, S.P.; Halgeri, A.B.; Shanbhag, G.V.; Ravishankar, R. Influence of Alkaline Earth Cation Exchanged X-Zeolites Towards Ortho-Selectivity in Alkylation of Aromatics: Hard-Soft-Acid-Base Concept. Adv. PorousMater. 2014, 2, 221–229. [Google Scholar] [CrossRef]
- Wang, Y.; Song, Y.; Huo, W.; Jia, M.; Jing, X.; Yang, P.; Yang, Z.; Liub, G.; Zhang, W. Vapor phase ortho-selective alkylation of phenol with methanol over silica–manganese mixed oxide catalysts. Chem. Eng. J. 2012, 181–182, 630–635. [Google Scholar] [CrossRef]
- Ko, A.-N.; Huang, C.S. Alkylation of Ethylbenzene with Methanol on HY, HM and HZSM-5 Zeolite. J. Chin. Chem. Soc. 1993, 40, 345–350. [Google Scholar] [CrossRef]
- Li, Q.; Wu, A.; Zhang, M.; Li, J.; Cao, J.; Li, H.; Jiang, Y. Study on the Influence of Calcination Temperature of Iron Vitriol on the Coloration of Ancient Chinese Traditional Iron Red Overglaze Color. Materials 2023, 17, 2800. [Google Scholar] [CrossRef]
Element | Fe | Mn | Mg | Na | Ca | Ni |
---|---|---|---|---|---|---|
conc. (ppm) | 4166.6 | 241.7 | 721.3 | 1179.4 | 1921.1 | 2498.7 |
Catalysts | |||||
---|---|---|---|---|---|
code | 5 AHI | 10 AHI | 15 AHI | 20 AHI | 25 AHI |
actual Fe wt.% | 0.73 | 1.43 | 2.10 | 2.79 | 3.49 |
theoretical Fe wt.% | 0.7 | 1.4 | 2.1 | 2.8 | 3.5 |
Catalyst Code | Actual Metal wt.% Loading on HBEA as Determined by ICP-OES | |||||
---|---|---|---|---|---|---|
Fe | Ni | Ca | Na | Mg | Mn | |
5 AHW | 0.84 | 0.38 | 0.31 | 0.29 | 0.14 | 0.04 |
10 AHW | 1.46 | 0.85 | 0.61 | 0.39 | 0.24 | 0.08 |
15 AHW | 2.28 | 1.36 | 1.01 | 0.63 | 0.35 | 0.13 |
20 AHW | 2.62 | 1.42 | 1.22 | 0.80 | 0.41 | 0.16 |
25 AHW | 3.19 | 1.79 | 1.25 | 0.91 | 0.42 | 0.18 |
Catalyst | BET Surface Area (m2/g) | Micropore Surface Area (m2/g) |
---|---|---|
HBEA | 492 | 341 |
25 AHI | 483 | 312 |
25 AHW | 361 | 237 |
Metal Species | Fe | Ni | Ca | Na | Mg | Mn |
---|---|---|---|---|---|---|
wt.% loading | 1.46 | 0.86 | 0.62 | 0.38 | 0.24 | 0.08 |
Sample Code | Theoretical wt.% | Loading Approach | Sample Code | Theoretical wt.% | Loading Approach |
---|---|---|---|---|---|
HBEA | 0.0 | n/a | HBEA | 0.0 | n/a |
5 AHI | 0.7 | IE | 5 AHW | 0.7 | WI |
10 AHI | 1.4 | IE | 10 AHW | 1.4 | WI |
15 AHI | 2.1 | IE | 15 AHW | 2.1 | WI |
20 AHI | 2.8 | IE | 20 AHW | 2.8 | WI |
25 AHI | 3.5 | IE | 25 AHW | 3.5 | WI |
Catalyst Code | Composition-Theoretical wt.% (Prepared Via Wet Impregnation) |
---|---|
Fe-H | Fe(1.4) |
FeMn-H | Fe(1.4) Mn(0.08) |
FeMnMg-H | Fe(1.4) Mn(0.08) Mg(0.24) |
FeMnMgNa-H | Fe(1.4) Mn(0.08) Mg(0.24) Na(0.38) |
FeMnMgNaCa-H | Fe(1.4) Mn(0.08) Mg(0.24) Na(0.38) Ca(0.62) |
FeMnMgNaCaNi-H | Fe(1.4) Mn(0.08) Mg(0.24) Na(0.38) Ca(0.62) Ni(0.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlatywayo, T.; Petrik, L.; Louis, B. Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene. Catalysts 2025, 15, 155. https://doi.org/10.3390/catal15020155
Hlatywayo T, Petrik L, Louis B. Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene. Catalysts. 2025; 15(2):155. https://doi.org/10.3390/catal15020155
Chicago/Turabian StyleHlatywayo, Tapiwa, Leslie Petrik, and Benoit Louis. 2025. "Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene" Catalysts 15, no. 2: 155. https://doi.org/10.3390/catal15020155
APA StyleHlatywayo, T., Petrik, L., & Louis, B. (2025). Coal Fly Ash and Acid Mine Drainage-Based Fe-BEA Catalysts for the Friedel–Crafts Alkylation of Benzene. Catalysts, 15(2), 155. https://doi.org/10.3390/catal15020155