Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = Freshwater ecosystem health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1451 KiB  
Article
Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
by Jia Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu and Lingang Hao
Water 2025, 17(15), 2348; https://doi.org/10.3390/w17152348 - 7 Aug 2025
Abstract
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted [...] Read more.
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted plankton surveys across wetlands subjected to freshwater restoration durations ranging from 5 to 22 years. We assessed shifts in phytoplankton and zooplankton community structure, biomass, diversity, and their relationships with environmental drivers. Results revealed distinct temporal dynamics: phytoplankton biomass and diversity followed a “U-shaped” trajectory (initial decline followed by recovery), while zooplankton biomass decreased but diversity increased with restoration duration. Canonical Correspondence Analysis (CCA) and Partial Least Squares Path Modeling (PLS-PM) identified salinity (Cl, SO42−) and dissolved nitrate (NO3) as primary environmental controls for both groups. Cyanobacteria dominated phytoplankton biomass initially but declined with restoration age, while rotifers replaced copepods as the dominant zooplankton taxon over time. These findings demonstrate that freshwater restoration restructures plankton communities through salinity-mediated physiological constraints and altered nutrient availability, with implications for ecosystem function and adaptive management in anthropogenically influenced deltas. Full article
Show Figures

Figure 1

21 pages, 2588 KiB  
Article
Trace Metal Contamination in Commercial Fish from the Ecuadorian Amazon: Preliminary Health Risk Assessment in a Local Market
by Gabriela Elena Echevarría Díaz, Fernando Rafael Sánchez Orellana, Rafael Enrique Yunda Vega, Jonathan Santiago Valdiviezo-Rivera and Blanca Patricia Ríos-Touma
Fishes 2025, 10(8), 392; https://doi.org/10.3390/fishes10080392 - 7 Aug 2025
Abstract
Trace metal pollution in tropical freshwater ecosystems poses growing public health concerns, particularly in regions where fisheries are central to food security; however, little is known about metal exposure risks in the Western Amazon. This study presents the first assessment of trace metal [...] Read more.
Trace metal pollution in tropical freshwater ecosystems poses growing public health concerns, particularly in regions where fisheries are central to food security; however, little is known about metal exposure risks in the Western Amazon. This study presents the first assessment of trace metal concentrations in fish sold at the main market in El Coca, a rapidly growing city in the Ecuadorian Amazon. We analyzed 11 trace metals in 17 commercially important species and estimated seven health risk indices based on two fish consumption scenarios and international reference dose standards. Our results show that all species exceeded recommended thresholds for arsenic, mercury, and lead, while one species surpassed guidelines for aluminum. Metal concentrations varied by species and river of origin: small catfish from the Payamino River had elevated cadmium, chromium, copper, and manganese levels, potentially linked to upstream gold mining, whereas larger catfish showed higher mercury and arsenic accumulation. Monte Carlo simulations of risk indices suggested overall low disease risk, but the lack of local demographic data limits accurate assessments for vulnerable groups. Despite sampling limitations, our findings offer the first baseline for monitoring trace metal exposure in the northern Ecuadorian Amazon and underscore the need for targeted public health strategies in this understudied region. Full article
(This article belongs to the Special Issue Toxicology of Anthropogenic Pollutants on Fish)
Show Figures

Graphical abstract

18 pages, 1656 KiB  
Article
Evaluating Zeolites of Different Origin for Eutrophication Control of Freshwater Bodies
by Irene Biliani, Eirini Papadopoulou and Ierotheos Zacharias
Sustainability 2025, 17(15), 7120; https://doi.org/10.3390/su17157120 - 6 Aug 2025
Abstract
Eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. Caused by excessive nitrogen (N) and phosphorus (P) inputs, it has a significant impact on aquatic ecosystems, resulting in algal blooms, oxygen depletion, [...] Read more.
Eutrophication has become the primary water quality issue for most of the freshwater and coastal marine ecosystems in the world. Caused by excessive nitrogen (N) and phosphorus (P) inputs, it has a significant impact on aquatic ecosystems, resulting in algal blooms, oxygen depletion, and biodiversity loss. Zeolites have been identified as effective adsorbents for removal of these pollutants, improving water quality and ecosystem health. Kinetic and isotherm adsorption experiments were conducted to examine the adsorption efficiency of four zeolites of various origins (Greek, Slovakian, Turkish, and Bulgarian) and a specific modification (ZeoPhos) to determine the most effective material for N and P removal. The aim of the study is to discover the best zeolite for chemical adsorption in eutrophic waters by comparing their adsorption capacities and pollutant removal efficiencies along with SEM, TEM, and X-RD spectrographs. Slovakian ZeoPhos has been identified as the best-performing material for long-term and efficient water treatment systems for eutrophication management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

15 pages, 2611 KiB  
Article
Transgenerational Effects of Cadmium and Copper Exposure on Development, Reproduction, and Midgut Integrity in Culex pipiens (Diptera: Culicidae): Implications for Vector Ecology Under Metal Pollution
by Ahmed I. Hasaballah, Ramy E. El-Ansary, Mahmoud M. Zidan, Areej A. Al-Khalaf and Abdelwahab Khalil
Biology 2025, 14(8), 1004; https://doi.org/10.3390/biology14081004 - 5 Aug 2025
Abstract
Heavy metal contamination in freshwater ecosystems poses persistent threats to aquatic organisms and public health. This study evaluates the transgenerational toxicity of cadmium chloride and copper sulfate on Culex pipiens, focusing on development, reproduction, and midgut histopathology over two successive generations. Larval [...] Read more.
Heavy metal contamination in freshwater ecosystems poses persistent threats to aquatic organisms and public health. This study evaluates the transgenerational toxicity of cadmium chloride and copper sulfate on Culex pipiens, focusing on development, reproduction, and midgut histopathology over two successive generations. Larval bioassays showed cadmium chloride to be more toxic than copper sulfate, with early instars exhibiting higher sensitivity (LC50 = 8.66 μg/L for Cd; 175.63 μg/L for Cu). Both metals significantly delayed larval and pupal development, reduced fecundity, and decreased egg hatchability in a dose-dependent manner. Histopathological examination revealed midgut epithelial degeneration, vacuolation, and brush border loss, with copper sulfate inducing more severe cytotoxicity. These findings confirm that sublethal, chronic metal exposure can impair physiological and reproductive traits across generations. Moreover, this study highlights the utility of mosquitoes as sensitive bioindicators of aquatic pollution, and underscores the long-term ecological implications of heavy metal contamination on vector dynamics and disease transmission. Full article
Show Figures

Figure 1

33 pages, 1166 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 129
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

6 pages, 575 KiB  
Proceeding Paper
Analysing Aquatic Invertebrate Health in Terms of Artificial Light at Night
by Farhan Jamil and Chayan Munshi
Biol. Life Sci. Forum 2025, 45(1), 3; https://doi.org/10.3390/blsf2025045003 - 1 Aug 2025
Viewed by 207
Abstract
Artificial Light at Night (ALAN) is a recent issue of concern for researchers primarily working on the anthropogenic impacts on animal and ecosystem health. Our concern is associated with the ALAN exposure to an aquatic ecosystem by disrupting the natural dark–light cycle, which [...] Read more.
Artificial Light at Night (ALAN) is a recent issue of concern for researchers primarily working on the anthropogenic impacts on animal and ecosystem health. Our concern is associated with the ALAN exposure to an aquatic ecosystem by disrupting the natural dark–light cycle, which is essential for maintaining the overall health of the ecosystem and its inhabitants. In this study, we have attempted to understand the adverse consequences of ALAN in inducing neuro-behavioural stress in a freshwater prawn species (aquatic arthropod) Macrobrachium lamarrei by considering grooming behaviour, a well-established indicator of neurological stress in animals. Our results show that continuous ALAN exposure (for seven days) can increase collective grooming activity in Macrobrachium lamarrei over time. In our experiment, we have used two intensities of ALAN (50 and 120 lux). Although the response (in terms collective grooming) to both intensities are apparently different, our fundamental hypothesis is confirmed, where it is evident that prolonged light exposure can induce an elevation in cumulative grooming performances in a freshwater prawn population. Full article
Show Figures

Figure 1

15 pages, 3267 KiB  
Article
Monitoring and Analyzing Aquatic Vegetation Using Sentinel-2 Imagery Time Series: A Case Study in Chimaditida Shallow Lake in Greece
by Maria Kofidou and Vasilios Ampas
Limnol. Rev. 2025, 25(3), 35; https://doi.org/10.3390/limnolrev25030035 - 1 Aug 2025
Viewed by 143
Abstract
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field [...] Read more.
Aquatic vegetation plays a crucial role in freshwater ecosystems by providing habitats, regulating water quality, and supporting biodiversity. This study aims to monitor and analyze the dynamics of aquatic vegetation in Chimaditida Shallow Lake, Greece, using Sentinel-2 satellite imagery, with validation from field measurements. Data processing was performed using Google Earth Engine and QGIS. The study focuses on discriminating and mapping two classes of aquatic surface conditions: areas covered with Floating and Emergent Aquatic Vegetation and open water, covering all seasons from 1 March 2024, to 28 February 2025. Spectral bands such as B04 (red), B08 (near infrared), B03 (green), and B11 (shortwave infrared) were used, along with indices like the Modified Normalized Difference Water Index and Normalized Difference Vegetation Index. The classification was enhanced using Otsu’s thresholding technique to distinguish accurately between Floating and Emergent Aquatic Vegetation and open water. Seasonal fluctuations were observed, with significant peaks in vegetation growth during the summer and autumn months, including a peak coverage of 2.08 km2 on 9 September 2024 and a low of 0.00068 km2 on 28 December 2024. These variations correspond to the seasonal growth patterns of Floating and Emergent Aquatic Vegetation, driven by temperature and nutrient availability. The study achieved a high overall classification accuracy of 89.31%, with producer accuracy for Floating and Emergent Aquatic Vegetation at 97.42% and user accuracy at 95.38%. Validation with Unmanned Aerial Vehicle-based aerial surveys showed a strong correlation (R2 = 0.88) between satellite-derived and field data, underscoring the reliability of Sentinel-2 for aquatic vegetation monitoring. Findings highlight the potential of satellite-based remote sensing to monitor vegetation health and dynamics, offering valuable insights for the management and conservation of freshwater ecosystems. The results are particularly useful for governmental authorities and natural park administrations, enabling near-real-time monitoring to mitigate the impacts of overgrowth on water quality, biodiversity, and ecosystem services. This methodology provides a cost-effective alternative for long-term environmental monitoring, especially in regions where traditional methods are impractical or costly. Full article
Show Figures

Figure 1

25 pages, 3102 KiB  
Article
Rainfall Drives Fluctuating Antibiotic Resistance Gene Levels in a Suburban Freshwater Lake
by Jack Roddey, Karlen Enid Correa Velez and R. Sean Norman
Water 2025, 17(15), 2260; https://doi.org/10.3390/w17152260 - 29 Jul 2025
Viewed by 381
Abstract
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one [...] Read more.
Antibiotic resistance genes (ARGs) in suburban freshwater ecosystems pose a growing public health concern by potentially reducing the effectiveness of medical treatments. This study investigated how rainfall influences ARG dynamics in Lake Katherine, a 62-hectare suburban lake in Columbia, South Carolina, over one year. Surface water was collected under both dry and post-rain conditions from three locations, and ARGs were identified using metagenomic sequencing. Statistical models revealed that six of nine ARG classes with sufficient data showed significant responses to rainfall. Three classes, Bacitracin, Aminoglycoside, and Unclassified, were more abundant after rainfall, while Tetracycline, Multidrug, and Peptide resistance genes declined. Taxonomic analysis showed that members of the Pseudomonadota phylum, especially Betaproteobacteria, were prevalent among ARG-carrying microbes. These findings suggest that rainfall can alter the distribution of ARGs in suburban lakes, highlighting the importance of routine monitoring and water management strategies to limit the environmental spread of antibiotic resistance. Full article
(This article belongs to the Special Issue Water Safety, Ecological Risk and Public Health)
Show Figures

Graphical abstract

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Viewed by 301
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance (Rrs), optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

29 pages, 9060 KiB  
Article
Satellite-Based Prediction of Water Turbidity Using Surface Reflectance and Field Spectral Data in a Dynamic Tropical Lake
by Elsa Pereyra-Laguna, Valeria Ojeda-Castillo, Enrique J. Herrera-López, Jorge del Real-Olvera, Leonel Hernández-Mena, Ramiro Vallejo-Rodríguez and Jesús Díaz
Remote Sens. 2025, 17(15), 2595; https://doi.org/10.3390/rs17152595 - 25 Jul 2025
Viewed by 184
Abstract
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since [...] Read more.
Turbidity is a crucial parameter for assessing the ecological health of aquatic ecosystems, particularly in shallow tropical lakes that are subject to climatic variability and anthropogenic pressures. Lake Chapala, the largest freshwater body in Mexico, has experienced persistent turbidity and sediment influx since the 1970s, primarily due to upstream erosion and reduced water inflow. In this study, we utilized Landsat satellite imagery in conjunction with near-synchronous in situ reflectance measurements to monitor spatial and seasonal turbidity patterns between 2023 and 2025. The surface reflectance was radiometrically corrected and validated using spectroradiometer data collected across eight sampling sites in the eastern sector of the lake, the area where the highest rates of horizontal change in turbidity occur. Based on the relationship between near-infrared reflectance and field turbidity, second-order polynomial models were developed for spring, fall, and the composite annual model. The annual model demonstrated acceptable performance (R2 = 0.72), effectively capturing the spatial variability and temporal dynamics of the average annual turbidity for the whole lake. Historical turbidity data (2000–2018) and a particular case study in 2016 were used as a reference for statistical validation, confirming the model’s applicability under varying hydrological conditions. Our findings underscore the utility of empirical remote-sensing models, supported by field validation, for cost-effective and scalable turbidity monitoring in dynamic tropical lakes with limited monitoring infrastructure. Full article
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
by Abraham Addo-Bediako, Thato Matita and Wilmien Luus-Powell
Water 2025, 17(15), 2200; https://doi.org/10.3390/w17152200 - 23 Jul 2025
Viewed by 280
Abstract
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of [...] Read more.
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of pollution and assessed human health risk in the Moopetsi River, an intermittent river in the Limpopo Province of South Africa. Chemical analyses were conducted on water and sediment samples collected during high-flow, low-flow and intermittent-flow regimes. The findings showed seasonal variations in the chemical pollution levels in the sediments and the highest contamination was measured during intermittent flow. The enrichment factor and geoaccumulation index values identified chromium and nickel as major contributors to sediment contamination. The mean arsenic, chromium and nickel levels exceeded the established guideline values. An evaluation of human health risk was conducted using ingestion and dermal absorption pathways. The results showed that ingestion has greater non-carcinogenic and carcinogenic risks than dermal exposure, especially for children during intermittent flow. The elements of great concern for non-carcinogenic risk were chromium, manganese and nickel and for carcinogenic risk, they were arsenic, chromium, nickel and lead. The outcome of this study is useful for waste management and conservation to reduce environmental degradation and human health risk. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

23 pages, 1285 KiB  
Review
An Exploratory Review of Microplastic Pollution, Associated Microbiomes and Pathogens in Water
by Paulina Cholewińska, Konrad Wojnarowski, Hanna Moniuszko, Przemysław Pokorny and Dušan Palić
Appl. Sci. 2025, 15(15), 8128; https://doi.org/10.3390/app15158128 - 22 Jul 2025
Viewed by 380
Abstract
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations [...] Read more.
Microplastic particles (MPs) are an emerging global pollutant of increasing concern due to their widespread occurrence, persistence, and multifaceted impact on aquatic ecosystems. This study provides a comprehensive review of peer-reviewed literature from 2011 to 2025, analysing the presence, distribution, and microbiological associations of MPs in surface waters across five continents. The findings confirm that MPs are present in both marine and freshwater systems, with concentrations varying by region, hydrology, and proximity to anthropogenic sources. Polyethylene and polypropylene were identified as the most common polymers, often enriched in river mouths, estuaries, and aquaculture zones. A key focus of this review is the plastisphere—microbial biofilms colonizing MPs—which includes both environmental and pathogenic bacteria such as Vibrio, Pseudomonas, and Acinetobacter. Notably, MPs serve as vectors for the spread of antibiotic resistance genes (ARGs), including sul1, tetA and ermF, and β-lactamase genes like blaCTX-M. This highlights their role in enhancing horizontal gene transfer and microbial dissemination. The results emphasize the need for standardized monitoring protocols and further interdisciplinary research. In light of the One Health approach, understanding the microbial dimension of MP pollution is essential for managing risks to environmental and public health. Full article
Show Figures

Figure 1

13 pages, 1593 KiB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 434
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

12 pages, 2374 KiB  
Article
The Complete Genomes of Microcystis ichthyoblabe Kützing and Microcystis protocystis (Crow) Komárek & Anagnostidis Reveal the Complexity and Plasticity of Microcystis Genomes
by Jina Kim, Hyaekang Kim, Jaeduk Goh, Seung Won Nam, Eu Jin Chung, Miyoung Shin, Donghyeok Seol, Ki Hwan Kim and Woori Kwak
Microorganisms 2025, 13(7), 1693; https://doi.org/10.3390/microorganisms13071693 - 18 Jul 2025
Viewed by 513
Abstract
Microcystis is a genus of cyanobacteria responsible for harmful algal blooms (HABs) in freshwater ecosystems, posing significant ecological and public health risks. Despite its importance, current genomic resources are heavily biased toward Microcystis aeruginosa, limiting comprehensive understanding of genomic diversity within the [...] Read more.
Microcystis is a genus of cyanobacteria responsible for harmful algal blooms (HABs) in freshwater ecosystems, posing significant ecological and public health risks. Despite its importance, current genomic resources are heavily biased toward Microcystis aeruginosa, limiting comprehensive understanding of genomic diversity within the genus. In this study, we present the first complete genome sequences of two morphospecies, M. ichthyoblabe FBCC-A1114 and M. protocystis FBCC-A270. Using long-read sequencing, both genomes were assembled into single circular chromosomes of 5.84 Mb and 5.76 Mb, respectively. Phylogenetic analyses placed both strains within genospecies G, alongside M. aeruginosa and M. viridis. Comparative analysis of biosynthetic gene clusters revealed that, while most genospecies G members harbor aeruginosin, cyanobactin, and microviridin gene clusters, the two newly sequenced strains lack cyanobactin and microcystin clusters but retain the microginin cluster. Synteny analysis demonstrated high structural conservation between the two genomes, while notable structural variations were observed when compared with M. aeruginosa NIES-298. These findings reveal both functional and structural plasticity within the genospecies, suggesting ecotype diversification driven by environmental adaptation. The newly assembled genomes provide critical resources to refine classification frameworks and advance our understanding of Microcystis genomic diversity. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 1415 KiB  
Review
Next-Generation River Health Monitoring: Integrating AI, GIS, and eDNA for Real-Time and Biodiversity-Driven Assessment
by Su-Ok Hwang, Byeong-Hun Han, Hyo-Gyeom Kim and Baik-Ho Kim
Hydrobiology 2025, 4(3), 19; https://doi.org/10.3390/hydrobiology4030019 - 16 Jul 2025
Viewed by 515
Abstract
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system [...] Read more.
Freshwater ecosystems face escalating degradation, demanding real-time, scalable, and biodiversity-aware monitoring solutions. This review proposes an integrated framework combining artificial intelligence (AI), geographic information systems (GISs), and environmental DNA (eDNA) to overcome these limitations and support next-generation river health assessment. The AI-GIS-eDNA system was applied to four representative river basins—the Mississippi, Amazon, Yangtze, and Danube—demonstrating enhanced predictive accuracy (up to 94%), spatial pollution mapping precision (85–95%), and species detection sensitivity (+18–30%) compared to conventional methods. Furthermore, the framework reduces operational costs by up to 40%, highlighting its potential for cost-effective deployment in low-resource regions. Despite its strengths, challenges persist in the areas of regulatory acceptance, data standardization, and digital infrastructure. We recommend legal recognition of AI and eDNA indicators, investment in explainable AI (XAI), and global data harmonization initiatives. The integrated AI-GIS-eDNA framework offers a scalable and policy-relevant tool for adaptive freshwater governance in the Anthropocene. Full article
(This article belongs to the Special Issue Ecosystem Disturbance in Small Streams)
Show Figures

Figure 1

Back to TopTop