Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Fourier VAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2023 KiB  
Article
Assessment of the Nitrification Inhibitor Nitrapyrin on Nitrogen Losses and Brassica oleracea Growth: A Preliminary Sustainable Research
by Mariangela Triozzi, Annamaria Ilacqua, Marina Tumolo, Valeria Ancona and Daniela Losacco
Nitrogen 2025, 6(1), 15; https://doi.org/10.3390/nitrogen6010015 - 12 Mar 2025
Cited by 1 | Viewed by 974
Abstract
The use of nitrification inhibitors (NIs) with nitrogen fertilizers represents an effective strategy to reduce nitrogen loss. In addition, nitrification inhibitors are widely applied to improve agricultural yield. However, it is necessary to continue investigating the crop-specific agricultural practice. In this study, a [...] Read more.
The use of nitrification inhibitors (NIs) with nitrogen fertilizers represents an effective strategy to reduce nitrogen loss. In addition, nitrification inhibitors are widely applied to improve agricultural yield. However, it is necessary to continue investigating the crop-specific agricultural practice. In this study, a nitrapyrin-based nitrification inhibitor was used to assess its effects on Brassica oleracea L. var. botrytis growth and on the environment. In a pot experiment, cauliflower plants were grown in fertilized soils based on calcium nitrate (SF) and SF + nitrapyrin. At the end of the experiment, the content of nitrogen compounds in soil and percolation water and the cauliflower yield were determined, and the plant tissues were characterized by Fourier-transform infrared spectroscopy. The application of the NI significantly reduced nitrogen losses, increasing nutrient availability in the soil and the element’s absorption in the plant. Co-application of fertilizers and NIs reduced NO3 leaching from 925 to 294 mg/L. Plant tissue characterization by FTIR spectroscopy highlighted variations in the functional groups in response to the application of NIs. These results suggest that applying nitrogen fertilizer in combination with nitrapyrin can mitigate nitrate pollution and improve element absorption and plant growth. Our research has shown that application methods and cropping systems need to be studied to maximize the effectiveness of nitrapyrin-based NIs. Full article
Show Figures

Figure 1

15 pages, 2437 KiB  
Article
Electrical Signal Characterization of Aloe vera Var. Chinensis Using Non-Parametric and Parametric Signal Analysis
by Misael Zambrano-de la Torre, Claudia Sifuentes-Gallardo, Efrén González-Ramírez, Oscar Cruz-Dominguez, José Ortega-Sigala, Germán Díaz-Flórez, José Ismael De la Rosa Vargas and Héctor Durán-Muñoz
Appl. Sci. 2025, 15(4), 1708; https://doi.org/10.3390/app15041708 - 7 Feb 2025
Cited by 1 | Viewed by 818
Abstract
Recently, there is a renewed interest from the scientific community in the study of the electrical signal generated by plants due to its wide range of applications in agriculture, for example, environmental monitoring, detection of pests, diseases in crops, etc. Therefore, the aim [...] Read more.
Recently, there is a renewed interest from the scientific community in the study of the electrical signal generated by plants due to its wide range of applications in agriculture, for example, environmental monitoring, detection of pests, diseases in crops, etc. Therefore, the aim of this work is to characterize the electrical signal of Aloe vera var. chinensis by using non-parametric and parametric signal analysis techniques, in order to extract some fundamental features which could be used in the design of a bio-dosimeter. Non-parametric analysis of the signal was carried out in the time, frequency, and time-frequency domains, using the short-time Fourier transform (STFT) and the wavelet transform in order to determine the different characteristics and frequency changes over time. Parametric analysis was then performed by using auto-regressive (AR) models for signal prediction and modeling, and in this case the coefficients of the model will be considered as fundamental features to be extracted. It has been identified that the majority of the signal energy is found in low frequencies, possibly associated with physiological processes or changes in the environment. Subsequently, some metrics like mean squared error (MSE), mean absolute error (MAE), and coefficient of determination (R2) were used in order to establish the capability of modeling the signal in its totality, considering that it is affected by the abrupt changes present in the signal. In this way, the relevance of combining both analyses is discussed in order to take their advantages for the benefit of the compression and feature extraction of the electrical signal of Aloe vera var. chinensis. This analysis allows the Aloe vera var. chinensis plant to be used for environmental monitoring, pest and disease detection in crops, or in a pattern recognition and signal classifier systems. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

20 pages, 3868 KiB  
Article
PLGA/Ti-Zn as Nanocomposite for Drug Delivery of Oleoresin
by Noé Rodríguez-Barajas, Ubaldo de Jesús Martin-Camacho, Jasmin Salazar-Mendoza, Suresh Ghotekar, Jorge Alberto Sánchez-Burgos, Oscar Arturo González-Vargas, Mamoun Fellah, Monserrat Macías-Carballo, Yanet Karina Gutiérrez-Mercado, Gabriela Camargo-Hernández, Christian Martin Rodríguez-Razón and Alejandro Pérez-Larios
J. Compos. Sci. 2024, 8(10), 431; https://doi.org/10.3390/jcs8100431 - 16 Oct 2024
Cited by 4 | Viewed by 2004
Abstract
Capsicum annuum L. var. “Chile de árbol” combined with poly(lactic-co-glycolic acid) (PLGA) and TiO2-ZnO oxides synthesized at different molar ratios and pH (Ti-Zn A and B 3:1, 1:1, and 1:3) via the sol-gel method was characterized by the Brunauer–Emmett–Teller (BET) method, [...] Read more.
Capsicum annuum L. var. “Chile de árbol” combined with poly(lactic-co-glycolic acid) (PLGA) and TiO2-ZnO oxides synthesized at different molar ratios and pH (Ti-Zn A and B 3:1, 1:1, and 1:3) via the sol-gel method was characterized by the Brunauer–Emmett–Teller (BET) method, a UV-Vis spectrophotometer (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), High-Performance Liquid Chromatography (HPLC-DAD), and a release profile through mathematical models to explain its behavior. Furthermore, FTIR revealed the presence of PLGA, TiO2, and ZnO as well as amino group characteristics from oleoresin components, principally alkaloid groups (capsaicin and dihydrocapsaicin), as evidenced by HPLC, to identify the presence of capsaicin and dihydrocapsaicin. The UV-Vis spectra showed a slight hypsochromic shift in the PLGA treatments. The release profile demonstrated a higher controllable release in the PLGA treatments than in the double nanoemulsions. Moreover, it is important to note that the effect of NPs influenced the release profile itself, increasing the release when NPs were synthesized at an acidic pH. Therefore, the TiZnOl/PLGA A characteristics suggest that these results have potential for pharmaceutical (as drug carriers) and medical applications. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

13 pages, 4863 KiB  
Article
Application of ATR-FTIR Spectroscopy for Analysis of Salt Stress in Brussels Sprouts
by Su-Min Yun, Cheol-Soo Kim, Jeung-Joo Lee and Jung-Sung Chung
Metabolites 2024, 14(9), 470; https://doi.org/10.3390/metabo14090470 - 26 Aug 2024
Cited by 3 | Viewed by 1767
Abstract
Salt stress is one of the environmental stresses that significantly reduces crop productivity and quality worldwide. Methods to overcome salt stress include developing salt-resistant crops by inserting various resistance genes or to diagnosing and responding to the effects of salt stress at an [...] Read more.
Salt stress is one of the environmental stresses that significantly reduces crop productivity and quality worldwide. Methods to overcome salt stress include developing salt-resistant crops by inserting various resistance genes or to diagnosing and responding to the effects of salt stress at an early stage. In this study, we investigate the effects of salinity stress on growth, photosynthetic efficiency, and metabolic changes in Brussels sprouts (Brassica oleracea var. gemmifera). Fresh weight and leaf area decreased significantly with increasing NaCl concentration, indicating that salinity stress has a detrimental effect on plant growth. However, chlorophyll fluorescence parameters did not show significant changes, suggesting that photosynthetic efficiency was not significantly affected over 10 days. Fourier transform infrared (FTIR) spectroscopy revealed notable metabolic adjustments, especially in lipids, plastids, proteins, and carbohydrates, indicating biosynthesis of protective compounds such as anthocyanins and proline in response to salinity stress. Pearson correlation analysis confirmed a strong relationship between NaCl concentration and the observed physiological and metabolic changes. The findings highlight the potential of FTIR spectroscopy as a non-destructive tool for early detection of salinity stress and timely intervention to improve crop resilience and yield. This study highlights the widespread application of FTIR spectroscopy in agricultural research to manage abiotic stresses in crops. Full article
(This article belongs to the Topic Application of Analytical Technology in Metabolomics)
Show Figures

Figure 1

15 pages, 2063 KiB  
Article
The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents
by Octavia Sabin, Raluca Maria Pop, Ioana Corina Bocșan, Veronica Sanda Chedea, Floricuța Ranga, Adriana Grozav, Antonia-Mihaela Levai and Anca Dana Buzoianu
Molecules 2024, 29(15), 3448; https://doi.org/10.3390/molecules29153448 - 23 Jul 2024
Cited by 3 | Viewed by 2318
Abstract
This study investigates the anti-inflammatory, analgesic, and antioxidant properties of polyphenols extracted from Brassica oleracea var. capitata (cabbage) ethanolic extract (BOE). Given the historical use of cabbage in traditional medicine for treating various ailments, this research aims to validate these effects scientifically. The [...] Read more.
This study investigates the anti-inflammatory, analgesic, and antioxidant properties of polyphenols extracted from Brassica oleracea var. capitata (cabbage) ethanolic extract (BOE). Given the historical use of cabbage in traditional medicine for treating various ailments, this research aims to validate these effects scientifically. The study involved the characterization of BOE’s bioactive compounds using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography–Diode Array Detection–Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI MS) analysis. We assessed the anti-inflammatory and analgesic effects of topical and oral BOE administration on rodent models with acute and subacute inflammation. Additionally, the antioxidant capacity of orally administered BOE was evaluated. The results showed that BOE possesses significant levels of phenolic compounds with a potent antioxidant activity. The topical administration of BOE demonstrated notable anti-inflammatory effects in the tested rodent models, which were comparable with nonsteroidal anti-inflammatory drugs. These findings suggest that BOE could be a valuable natural remedy for inflammation-related conditions, supporting its traditional uses and highlighting its potential for further pharmacological development. Full article
Show Figures

Figure 1

19 pages, 8885 KiB  
Article
The Protective Effect of Auricularia cornea var. Li. Polysaccharide on Alcoholic Liver Disease and Its Effect on Intestinal Microbiota
by Tianci Wang, Zikun Jia, Canghai An, Ping Ren, Yiting Yang, Wanting Wang and Ling Su
Molecules 2023, 28(24), 8003; https://doi.org/10.3390/molecules28248003 - 8 Dec 2023
Cited by 9 | Viewed by 2163
Abstract
This study’s objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and [...] Read more.
This study’s objective was to examine the protective effect and mechanism of a novel polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis. Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galactose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio: 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment (alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were reduced in ALD mice treated by AYP. Furthermore, the AYPH group was the most effective and was therefore chosen to further investigate its effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1 sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella and Candida). This discovery opens new possibilities for investigating physiological activity in A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research. Full article
(This article belongs to the Special Issue Structural Analysis and Biological Evaluation of Compounds from Fungi)
Show Figures

Figure 1

14 pages, 480 KiB  
Article
Sustainability, Natural Gas Consumption, and Environmental Pollution in the Period of Industry 4.0 in Turkey: MS-Granger Causality and Fourier Granger Causality Analysis
by Melike E. Bildirici, Sema Yılmaz Genç and Salih Boztuna
Sustainability 2023, 15(13), 10742; https://doi.org/10.3390/su151310742 - 7 Jul 2023
Cited by 3 | Viewed by 1886
Abstract
The effects of environmental pollution and Industry 4.0 on a sustainable environment are the main topic of this study, which may be regarded as a complement to the literature on energy and the environment. The paper aims to investigate the relation between Industry [...] Read more.
The effects of environmental pollution and Industry 4.0 on a sustainable environment are the main topic of this study, which may be regarded as a complement to the literature on energy and the environment. The paper aims to investigate the relation between Industry 4.0 (I4.0) and environmental sustainability, which is very important for policymakers, practitioners, and company executives in the period of Industry 4.0 in Turkey. To this end, natural gas consumption and technology patents as control variables of Industry 4.0, in addition to the variables of environmental pollution and economic growth, were selected during the period of 1988 to 2022 using Markov switching VAR (MS-VAR), Markov switching Granger causality (MS-GC), Fourier VAR (FVAR), and Granger causality (FGC) techniques. The reason for covering the period starting in 1988 is its recognition as the beginning of the Industry 4.0 era with AutoIDLab in 1988. According to the causality results, there was unidirectional causality running from technology patents to environmental pollution in the results of both MS-GC and FGC. However, the directions of causality between natural gas consumption and environmental pollution, and between economic growth and environmental pollution differed between regimes in the MS-GC model. Bidirectional causality was determined between economic growth and environmental pollution in the first MS-GC regime. However, in the second regime, unidirectional causality from economic growth to environmental pollution was determined. The causality direction determined by Fourier causality gave the same result with the second regime. A similar finding was observed in the direction of causality between natural gas consumption and CO2 emissions. While MS-GC determined unidirectional causality from natural gas consumption to environmental pollution in the first regime, a bidirectional causality result between GC and environmental pollution was determined in the second regime. The FGC result was similar to the second regime result. And lastly, the MS-GC and FGC methods determined unidirectional causality from Industry 4.0 to environmental pollution. Full article
Show Figures

Figure 1

17 pages, 3851 KiB  
Article
Evaluation of Aging Methods on the Surface Characteristics of Hydrochar and Germination Indices for Kale Seeds
by Dengge Qin, Quan He, Seyed Mohammad Nasir Mousavi and Lord Abbey
Horticulturae 2023, 9(5), 545; https://doi.org/10.3390/horticulturae9050545 - 30 Apr 2023
Cited by 9 | Viewed by 2041
Abstract
Hydrochar derived from hydrothermal carbonization (HTC) has been recognized as a potential absorbent and horticultural substrate. However, its practical application has been limited due to its low adsorption capacity and negative effects on plant growth. To address these issues, three pre-treatment methods (water [...] Read more.
Hydrochar derived from hydrothermal carbonization (HTC) has been recognized as a potential absorbent and horticultural substrate. However, its practical application has been limited due to its low adsorption capacity and negative effects on plant growth. To address these issues, three pre-treatment methods (water washing, microbial aging, and freezing-thawing aging) were employed to further improve the physical structure and chemical properties of hydrochar. A seed germination test with kale (Brassica oleracea var. acephala D.C) was conducted to evaluate the phytotoxicity of modified hydrochars. The results showed that microbial aging considerably enhanced the physicochemical properties of the hydrochar. Specifically, under microbial aging, the bulk density of microbial-aged hydrochar (MHC) decreased by 8.1%, the porosity increased by 24.8%, and the water-holding capacity increased by 36.54% compared to fresh hydrochar (FHC). Moreover, the surfaces of MHC and freezing-thawing aged hydrochar (FTHC) were observed with rough and cracked surfaces and macro pore structures. Fourier transform infrared (FTIR) spectroscopy revealed that the functional group’s intensities of the four hydrochar materials varied, and that MHC and FTHC had more oxygen-containing groups than the others. Additionally, the surface areas of MHC and FTHC increased by 318.64% and 238.98% compared to FHC, respectively. The seed germination test indicated the strong inhibitory effect of FHC, while MHC significantly (p < 0.05) improved the seed germination rate and root development. These findings suggest that among the different pre-treatment methods, microbial aging demonstrated the greatest potential for practical application in improving the physicochemical properties of hydrochar and promoting seed germination. This study opens up new avenues for further research on improving hydrochar and suggests that future studies should focus on optimizing the aging process. Full article
Show Figures

Figure 1

13 pages, 3466 KiB  
Article
Evaluating the Influence of Nitrogen Fertilizers and Biochar on Brassica oleracea L. var. botrytis by the Use of Fourier Transform Infrared (FTIR) Spectroscopy
by Daniela Losacco, Claudia Campanale, Marina Tumolo, Valeria Ancona, Carmine Massarelli and Vito Felice Uricchio
Sustainability 2022, 14(19), 11985; https://doi.org/10.3390/su141911985 - 22 Sep 2022
Cited by 10 | Viewed by 5317
Abstract
The exponential growth of the human population requires an increasing application of nitrogen (N) fertilizers, causing environmental pollution. Biochar (B) amended soil has been suggested as a sustainable agricultural practice to improve crop yield and mitigate agricultural pollutants’ contamination. Evaluating the effect of [...] Read more.
The exponential growth of the human population requires an increasing application of nitrogen (N) fertilizers, causing environmental pollution. Biochar (B) amended soil has been suggested as a sustainable agricultural practice to improve crop yield and mitigate agricultural pollutants’ contamination. Evaluating the effect of fertilization on Brassica crops, in combination with spectral analysis, may specify changes in the chemical composition of the vegetable as a result of N fertilization. This study characterized cauliflower tissues treated with N fertilizer and biochar, employing Fourier Transform Infrared spectroscopy. The experiment was conducted in cauliflower mesocosms treated with two doses of N fertilizer (130 and 260 kg N ha−1) with or without B. Attenuated total reflectance fractions were used to characterize fractions of curds, leaves, stems, and roots in the infrared using a Fourier transform. Principal component analysis was performed to classify the main differences among cauliflower tissues concerning treatments. FTIR spectra of Brassica oleracea L. var. botrytis tissues were related to nitrogen-based agricultural practices. The specific molecules associated with functional groups in cauliflower tissues were phenols, amides, proteins, amines, and glucosinolates. Biochar amended soil resulted in higher peaks that correspond to the stretching of phenols and proteins. The application of sustainable nitrogen fertilizers might influence the absorption bands characteristic of cauliflower’s typical metabolites. The research allows the identification of Brassicaceae’s functional molecules with a potential agronomic application. Full article
Show Figures

Figure 1

14 pages, 12031 KiB  
Article
Combined Use of Spent Mushroom Substrate Biochar and PGPR Improves Growth, Yield, and Biochemical Response of Cauliflower (Brassica oleracea var. botrytis): A Preliminary Study on Greenhouse Cultivation
by Ivan Širić, Ebrahem M. Eid, Mostafa A. Taher, Mohamed H. E. El-Morsy, Hanan E. M. Osman, Pankaj Kumar, Bashir Adelodun, Sami Abou Fayssal, Boro Mioč, Željko Andabaka, Madhumita Goala, Sonika Kumari, Archana Bachheti, Kyung Sook Choi and Vinod Kumar
Horticulturae 2022, 8(9), 830; https://doi.org/10.3390/horticulturae8090830 - 8 Sep 2022
Cited by 61 | Viewed by 5549
Abstract
This paper investigated the impact of the combined use of spent mushroom substrate (SMS) biochar and plant-growth-promoting rhizobia (PGPR) on the growth, yield, and biochemical response of cauliflower (Brassica oleracea var. botrytis). A preliminary study was conducted under greenhouse condition using [...] Read more.
This paper investigated the impact of the combined use of spent mushroom substrate (SMS) biochar and plant-growth-promoting rhizobia (PGPR) on the growth, yield, and biochemical response of cauliflower (Brassica oleracea var. botrytis). A preliminary study was conducted under greenhouse condition using six treatments (sextuplicate) as control (no addition), T1 (PGPR), T2 (5 g/Kg biochar), T3 (5 g/Kg biochar + PGPR), T4 (10 g/Kg biochar), and T5 (10 g/Kg biochar + PGPR) under greenhouse conditions. The Scanning Electron Microscopy (SEM-Zeiss), Energy Dispersive Spectroscopy (EDS), and Fourier’s transform infrared spectroscopy (FTIR) analyses showed that biochar produced from slow pyrolysis of SMS had advantageous structural, functional, and morphological properties for agricultural use. Results showed that SMS biochar addition aids the acceleration of soil nutrient properties. SMS biochar and PGPR application also significantly (p < 0.05) improved the selected growth, yield, and biochemical parameters of cauliflower. In particular, the highest cauliflower yield (550.11 ± 10.05 g), fresh plant biomass (1.66 ± 0.04 Kg), dry plant biomass (149.40 ± 4.18 g), plant height (22.09 ± 0.14 cm), root length (11.20 ± 0.05 cm), plant spread (28.35 ± 0.18 cm), and the number of leaves (12.50 ± 0.50) were observed in T5 treatment. Similarly, the best values for biochemical parameters and enzyme activities such as total chlorophyll (TC: 3.13 ± 0.07 mg/g), superoxide dismutase (SOD: 79.12 ± 1.29 µg/g), catalase (CAT: 55.70 ± 2.52 µg/g), peroxidase (POD 30.18 ± 0.37 µg/g), total phenolics (TP: 19.50 ± 0.31 mg/g), ascorbic acid (AA: 14.18 ± 0.55 mg/g), and total carotenoids (TCT: 150.17 ± 8.20 µg/100 g) were also recorded in the T5 treatment. The application of SMS biochar and PGPR showed a positive correlation with growth, yield, and biochemical response of cauliflower, as indicated by the Pearson correlation analysis. The findings of this study suggest efficient recycling of mushroom industry waste for biochar production and the use of PGPR to improve nutrient utilization in sustainable agriculture. Full article
(This article belongs to the Collection Sustainable Mushroom Cultivation)
Show Figures

Figure 1

13 pages, 1929 KiB  
Article
Effect of Ionic Liquids in the Elaboration of Nanofibers of Cellulose Bagasse from Agave tequilana Weber var. azul by Electrospinning Technique
by Enrique Márquez-Ríos, Miguel Ángel Robles-García, Francisco Rodríguez-Félix, José Antonio Aguilar-López, Francisco Javier Reynoso-Marín, José Agustín Tapia-Hernández, Francisco Javier Cinco-Moroyoqui, Israel Ceja-Andrade, Ricardo Iván González-Vega, Arturo Barrera-Rodríguez, Jacobo Aguilar-Martínez, Edgar Omar-Rueda-Puente and Carmen Lizette Del-Toro-Sánchez
Nanomaterials 2022, 12(16), 2819; https://doi.org/10.3390/nano12162819 - 17 Aug 2022
Cited by 8 | Viewed by 2246
Abstract
The objective of this paper was to report the effect of ionic liquids (ILs) in the elaboration of nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by the electrospinning method. The ILs used were 1-butyl-3-methylimidazolium chloride (BMIMCl), and DMSO was added [...] Read more.
The objective of this paper was to report the effect of ionic liquids (ILs) in the elaboration of nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by the electrospinning method. The ILs used were 1-butyl-3-methylimidazolium chloride (BMIMCl), and DMSO was added as co-solvent. To observe the effect of ILs, this solvent was compared with the organic solvent TriFluorAcetic acid (TFA). The nanofibers were characterized by transmission electron microscopy (TEM), X-ray, Fourier transform-infrared using attenuated total reflection (FTIR-ATR) spectroscopy, and thermogravimetric analysis (TGA). TEM showed different diameters (ranging from 35 to 76 nm) of cellulose nanofibers with ILs (CN ILs). According to X-ray diffraction, a notable decrease of the crystalline structure of cellulose treated with ILs was observed, while FTIR-ATR showed two bands that exhibit the physical interaction between cellulose nanofibers and ILs. TGA revealed that CN ILs exhibit enhanced thermal properties due to low or null cellulose crystallinity. CN ILs showed better characteristics in all analyses than nanofibers elaborated with TFA organic solvent. Therefore, CN ILs provide new alternatives for cellulose bagasse. Due to their small particle size, CN ILs could have several applications, including in food, pharmaceutical, textile, and material areas, among others. Full article
Show Figures

Graphical abstract

18 pages, 1776 KiB  
Article
Simultaneous Monitoring of the Evolution of Chemical Parameters in the Fermentation Process of Pineapple Fruit Wine Using the Liquid Probe for Near-Infrared Coupled with Chemometrics
by Sumaporn Kasemsumran, Antika Boondaeng, Kraireuk Ngowsuwan, Sunee Jungtheerapanich, Waraporn Apiwatanapiwat, Phornphimon Janchai, Jiraporn Meelaksana and Pilanee Vaithanomsat
Foods 2022, 11(3), 377; https://doi.org/10.3390/foods11030377 - 28 Jan 2022
Cited by 7 | Viewed by 3647
Abstract
This study used Fourier transform-near-infrared (FT-NIR) spectroscopy equipped with the liquid probe in combination with an efficient wavelength selection method named searching combination moving window partial least squares (SCMWPLS) for the determination of ethanol, total soluble solids, total acidity, and total volatile acid [...] Read more.
This study used Fourier transform-near-infrared (FT-NIR) spectroscopy equipped with the liquid probe in combination with an efficient wavelength selection method named searching combination moving window partial least squares (SCMWPLS) for the determination of ethanol, total soluble solids, total acidity, and total volatile acid contents in pineapple fruit wine fermentation using Saccharomyces cerevisiae var. burgundy. Two fermentation batches were produced, and the NIR spectral data of the calibration samples in the wavenumber range of 11,536–3952 cm−1 were obtained over ten days of the fermentation period. SCMWPLS coupled with second derivatives searched and optimized spectral intervals containing useful information for building calibration models of four parameters. All models were validated by test samples obtained from an independent fermentation batch. The SCMWPLS models showed better predictions (the lowest value of prediction error and the highest value of residual predictive deviation) with acceptable statistical results (under confidence limits) among the results achieved by using the whole region. The results of this study demonstrated that FT-NIR spectroscopy using a liquid probe coupled with SCMWPLS could select the optimized wavelength regions while reducing spectral points and increasing accuracy for simultaneously monitoring the evolution of four chemical parameters in pineapple fruit wine fermentation. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

17 pages, 33989 KiB  
Article
Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques
by Carlos I. Cardona, Hector A. Tinoco, Luis Perdomo-Hurtado, Juliana López-Guzmán and Daniel A. Pereira
Appl. Sci. 2021, 11(19), 9346; https://doi.org/10.3390/app11199346 - 8 Oct 2021
Cited by 6 | Viewed by 3290
Abstract
Colombian coffee production is well-known, and selective manual harvesting plays a vital task in guaranteeing high ripe coffee fruit rates in this process, leading to its known worldwide aroma and flavor. To maintain this quality approach, selective harvesting methods based on mechanical vibrations [...] Read more.
Colombian coffee production is well-known, and selective manual harvesting plays a vital task in guaranteeing high ripe coffee fruit rates in this process, leading to its known worldwide aroma and flavor. To maintain this quality approach, selective harvesting methods based on mechanical vibrations are a promising alternative for developing technologies that could accomplish the challenging Colombian coffee production context. In this study, a vibrations analysis in coffee fruits at three ripening stages was carried out to evaluate the dynamic behavior at two frequency windows: 10 to 100 Hz and 100 to 1000 Hz. Two groups of fruits previously classified in the CIELab color space were chosen for the vibration test study samples. Time and frequency signals were characterized via FFT (fast Fourier transform), and bump wavelets were determined to obtain the frequency–time magnitude scalograms. The measurements were obtained in three degrees of freedom over the fruits: one for measuring the input force (computed in voltage way) and the other two measured by the velocity. The results revealed frequency ranges with specific resonant peaks between 24 and 45 Hz, and close to 700 Hz, where the ripe fruits presented higher magnitudes in the calculated parameters. FFT of the velocity and scaled mechanical impedance were used to estimate these frequency ranges. This work is an important step to identify a “vibrational fingerprint” of each Coffea arabica var. Castillo fruit-ripening stage. However, we consider that more experiments should be performed to reconstruct the modal shape in each resonance. In future studies, fatigue analysis could show which are the most effective frequency ranges to detach the ripe fruits from the perspective of a real selective coffee-harvesting scenario. Full article
(This article belongs to the Topic Applied Sciences in Functional Foods)
Show Figures

Figure 1

20 pages, 2028 KiB  
Article
Chemical Profile, Antioxidant Capacity, and Antimicrobial Activity of Essential Oils Extracted from Three Different Varieties (Moldoveanca 4, Vis Magic 10, and Alba 7) of Lavandula angustifolia
by Mihaela Alexandra Bogdan, Simona Bungau, Delia Mirela Tit, Dana Carmen Zaha, Aurelia Cristina Nechifor, Tapan Behl, Dorina Chambre, Andreea Ioana Lupitu, Lucian Copolovici and Dana Maria Copolovici
Molecules 2021, 26(14), 4381; https://doi.org/10.3390/molecules26144381 - 20 Jul 2021
Cited by 35 | Viewed by 4289
Abstract
Chemical composition, antioxidant capacity, and antimicrobial activity of lavender essential oils (LEOs) extracted from three different varieties of Lavandula angustifolia Mill. (1-Moldoveanca 4, 2-Vis magic 10, and 3-Alba 7) have been determined. These plants previously patented in the Republic of Moldova were cultivated [...] Read more.
Chemical composition, antioxidant capacity, and antimicrobial activity of lavender essential oils (LEOs) extracted from three different varieties of Lavandula angustifolia Mill. (1-Moldoveanca 4, 2-Vis magic 10, and 3-Alba 7) have been determined. These plants previously patented in the Republic of Moldova were cultivated in an organic agriculture system in the northeastern part of Romania and then harvested in 3 consecutive years (2017–2019) to obtain the essential oils. From the inflorescences in the complete flowering stage, the LEOs were extracted by hydrodistillation. Then, their composition was analyzed by gas chromatography coupled with mass spectrometry (GC-MS) and by Fourier Transformed Infrared spectroscopy (FT-IR). The major identified constituents are as follows: linalool (1: 32.19–46.83%; 2: 29.93–30.97%; 3: 31.97–33.77%), linalyl acetate (1: 17.70–35.18%; 2: 27.55–37.13%; 3: 28.03–35.32%), and terpinen-4-ol (1: 3.63–7.70%; 2: 3.06–7.16%; 3: 3.10–6.53%). The antioxidant capacity as determined by ABTS and DPPH assays indicates inhibition, with the highest activity obtained for LEO var. Alba 7 from 2019. The in vitro antimicrobial activities of the LEOs and combinations were investigated as well, by using the disk diffusion method and minimum inhibitory concentration (MIC) against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538), Gram-negative Pseudomonas aeruginosa (ATCC 27858), Escherichia coli (ATCC 25922), the yeast Candida albicans (ATCC 10231), and clinical isolates. Our results have shown that LEOs obtained from the three studied varieties of L. angustifolia manifest significant bactericidal effects against tested microorganisms (Staphylococcus aureus and Escherichia coli), and antifungal effects against Candida albicans. The mixture of LEOs (Var. Alba 7) and geranium, respectively, in tea tree EOs, in different ratios, showed a significant enhancement of the antibacterial effect against all the studied strains, except Pseudomonas aeruginosa. Full article
(This article belongs to the Special Issue Plant Extracts: Technologies, Characterizations and Applications)
Show Figures

Graphical abstract

16 pages, 2340 KiB  
Article
Combinations of Freeze-Dried Amorphous Vardenafil Hydrochloride with Saccharides as a Way to Enhance Dissolution Rate and Permeability
by Gabriela Wiergowska, Dominika Ludowicz, Kamil Wdowiak, Andrzej Miklaszewski, Kornelia Lewandowska and Judyta Cielecka-Piontek
Pharmaceuticals 2021, 14(5), 453; https://doi.org/10.3390/ph14050453 - 11 May 2021
Cited by 8 | Viewed by 3789
Abstract
To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients—hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)—were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous [...] Read more.
To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients—hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)—were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous form of VAR was obtained as a result of the freeze-drying process. Confirmation of the identity of the amorphous dispersion of VAR was obtained through the use of comprehensive analysis techniques—X-ray powder diffraction (PXRD) and differential scanning calorimetry (DSC), supported by FT-IR (Fourier-transform infrared spectroscopy) coupled with density functional theory (DFT) calculations. The amorphous mixtures of VAR increased its apparent solubility compared to the crystalline form. Moreover, a nearly 1.3-fold increase of amorphous VAR permeability through membranes simulating gastrointestinal epithelium as a consequence of the changes of apparent solubility (Papp crystalline VAR = 6.83 × 10−6 cm/s vs. Papp amorphous VAR = 8.75 × 10−6 cm/s) was observed, especially for its combinations with β-CD in the ratio of 1:5—more than 1.5-fold increase (Papp amorphous VAR = 8.75 × 10−6 cm/s vs. Papp amorphous VAR:β-CD 1:5 = 13.43 × 10−6 cm/s). The stability of the amorphous VAR was confirmed for 7 months. The HPMC and β-CD are effective modifiers of its apparent solubility and permeation through membranes simulating gastrointestinal epithelium, suggesting a possibility of a stronger pharmacological effect. Full article
Show Figures

Graphical abstract

Back to TopTop