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Abstract: This study’s objective was to examine the protective effect and mechanism of a novel
polysaccharide (AYP) from Auricularia cornea var. Li. on alcoholic liver disease in mice. AYP was
extracted from the fruiting bodies of Auricularia cornea var. Li. by enzymatic extraction and purified
by DEAE-52 and Sephacryl S-400. Structural features were determined using high-performance
liquid chromatography, ion exchange chromatography and Fourier-transform infrared analysis.
Additionally, alcoholic liver disease (ALD) mice were established to explore the hepatoprotective
activity of AYP (50, 100 and 200 mg/kg/d). Here, our results showed that AYP presented high
purity with a molecular weight of 4.64 × 105 Da. AYP was composed of galacturonic acid, galac-
tose, glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose (molar ratio:
39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1). Notably, AYP remarkably reduced liver function impairment
(alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total choles-
terol (TC)), nitric oxide (NO) and malondialdehyde (MDA) of the liver and enhanced the activity
of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glu-
tathione (gGSH)) in mice with ALD. Meanwhile, the serum level of tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6) and interleukin-1β (IL-1β) were reduced in ALD mice treated by AYP. Further-
more, the AYPH group was the most effective and was therefore chosen to further investigate its
effect on the intestinal microbiota (bacteria and fungi) of ALD mice. Based on 16s rRNA and ITS-1
sequencing data, AYP influenced the homeostasis of intestinal microbiota to mitigate the damage of
ALD mice, possibly by raising the abundance of favorable microbiota (Muribaculaceae, Lachnospiraceae
and Kazachstania) and diminishing the abundance of detrimental microbiota (Lactobacillus, Mortierella
and Candida). This discovery opens new possibilities for investigating physiological activity in
A. cornea var. Li. and provides theoretical references for natural liver-protecting medication research.
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1. Introduction

Alcoholic liver disease (ALD) is liver damage caused by long-term excessive alcohol
consumption. It initially manifests as significant hepatocyte steatosis, which can progress
to steatohepatitis, liver fibrosis and cirrhosis [1,2]. From 2017 to 2022, the related mortality
rate of ALD has increased every year and has caused huge economic losses [3]. At present,
the study of ALD treatment has become a global research hotspot. Although ALD has a
profound harmful impact, due to its complex pathogenesis such as oxidative stress [4,5]
and cytokine-mediated inflammation [5], etc., little progress has been made in the treatment
of ALD. The emergence of the intestinal–liver axis provides new ideas on the pathogenesis
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of ALD, and the control of microbiota is critical to maintaining homeostasis of the intestinal–
liver axis [6]. However, when the host overtakes ethanol, the intestinal microbiota is
disturbed. The intestinal bacteria community is highly sensitive to ethanol; for example,
the abundance of Proteobacteria was increased, while the abundances of Firmicutes and
Bacteroides were decreased in the intestinal bacteria of ALD animals and patients with ALD
without cirrhosis [7]. In addition to the intestinal bacteria, the intestinal fungi are also
altered in ALD, and systemic exposure to mycobiota correlates with the severity of liver
damage. The role and mechanism of commensal fungi in the development of ALD were
initially investigated. One is dependent on the C-type lectin domain family 7 member
A (CLEC7A) pathway of Kupffer cells in livers, and another is mainly associated with
fungi metabolite [8]. Consequently, modulation of the intestinal microbiota is a pertinent
treatment target for ALD [9].

The most common medications for ALD are classified into three categories: supple-
mental raw materials for liver cell metabolism, opioid receptor antagonists and agents
that manage and improve alcohol metabolism, which can cause severe adverse effects [10].
Therefore, it is necessary to explore safe and effective natural products with hepatopro-
tective activity. Numerous studies have shown that targeting intestinal microbiota may
be one of the major underlying mechanisms of natural polysaccharides on ALD [11,12].
Polysaccharides from Crassostrea gigas attenuated ALD in mice by modulating intestinal bac-
teria [13]. Furthermore, polysaccharides from Wolfporia cocos ameliorated ALD in mice by
modulating the composition of intestinal bacteria and reducing the abundance of harmful
fungi [6]. Several natural polysaccharides from Sporidiobolus pararoseus [14] and Morchella
esculenta [15] have the same mechanism for ALD treatment.

Auricularia cornea var. Li. (A. cornea var. Li.), a white-body edible fungi that belongs
to the basidiomycetes and has both nutritional and medicinal value, is a variant of A.
cornea [16]. As the main bioactive compounds, A. cornea var. Li. polysaccharide has
antioxidant [17], anti-diabetic [18], immunomodulatory [19] and hepatoprotective effects [4].
Previous studies have reported that the crude polysaccharide of A. cornea var. Li. had the
strong protective effect of against alcoholic liver injury [4]. However, it is hard to clarify
the effect and mechanism of A. cornea var. Li. polysaccharide, and its role in intestinal
microbiota on mitigating ALD is not clear.

In this research, a novel homogeneous polysaccharide enzymatically extracted from
A. cornea var. Li. was obtained after purification by DEAE-52 and Sephacryl S-400. In the
meantime, the ameliorative effect of AYP on ALD was investigated by designing a mouse
model of acute ALD. Specifically, the roles of intestinal microbiota (bacteria and fungi) in
the protective effect of AYP on ALD mice are discussed. Our work provides a new direction
in the prevention of alcohol-related diseases by natural polysaccharides.

2. Results and Discussion
2.1. Identification and Charactrization of AYP

AYP was purified by DEAE-52 and Sephacryl S-400, as depicted in Figure 1A,B,
respectively. Four fractions eluted with 0, 0.1, 0.2 and 0.3 mol/L NaCl solutions were col-
lected, and the polysaccharide produced from 0.2 mol/L NaCl was re-eluted by Sephacryl
S-400 and utilized in following research. The total polysaccharide content of AYP was
86.51 ± 0.15%, the reducing sugar content was 0.657 ± 0.48% and the protein content was
3.164 ± 0.05%, from which can be reasonably inferred that the purification in the present
work was adequate for the follow-up research.

As shown in Figure 1C, a single symmetrical peak was observed in HPGPC profiles,
verifying that AYP was a uniform polysaccharide with a molecular weight of 4.64 × 105 Da,
which was lower than that of the three fractional polysaccharides ultrasound-assisted
extracted from A. cornea var. Li (ACPN-1a: 2.18 × 106 Da, ACPA-2a: 8.5×105 Da, ACPA-1a:
5 × 105–2 × 106 Da) [20]. Not coincidentally, the molecular weight of polysaccharides
extracted from Ginkgo biloba seed by the enzymatic extraction method was lower than
that of the ultrasound-assisted extraction, which was related to the fact that enzymatic
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extraction facilitated polysaccharide entry into the extraction solvent through enzymatic
digestion [21].
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Figure 1. Characteristic analysis of the polysaccharide isolated from Auricularia cornea var. Li. DEAE-
52 column elution curve of AYP (A), Sephacryl S-400 column elution curve of AYP (B), molecular
weight peak of AYP (C), monosaccharide composition analysis of AYP (D), FT-IR spectra of AYP (E).

AYP was a heteropolysaccharide, which was composed of galacturonic acid, galactose,
glucose, arabinose, mannose, xylose, rhamnose, ribos, glucuronic acid and fucose in a molar
ratio of 39.5:32.9:23.6:18.3:6.5:5.8:5.8:3.3:2:1.1 according to the HPLC result (Figure 1D). In
contrast, EAPS, also obtained by the enzymatic extraction of A. cornea var. Li., consisted
of Fuc, Rib, Xyl, Man, Gal and Glu in a molar ratio of 8.8:1.0:26.4:8.2:10.0:58.1 [4]. The
proportion of GalA in the monosaccharide composition of AYP was much higher than that
in EAPS, maybe due to the high temperature (85 ◦C) in our study, which is in line with a
previous report that the highest extraction rate of GalA in grapevine pectin was achieved
at 90 ◦C [22]. Therefore, AYP could be a novel polysaccharide different from EAPS from
the perspective of monosaccharide composition.

The FT-IR of AYP is depicted in Figure 1E. -OH exhibited a stretching vibration at a
wavelength of 3400 cm−1 [23], and a relatively robust absorption peak at approximately
1650 cm−1 also indicated the characteristic polysaccharide absorption [24]. At 1420 cm−1,
there was another stretching vibration caused by C-H, and the characteristic absorption
peak between 1020 cm−1 and 1230 cm−1 was the stretching vibration caused by C-O-C and
C-OH [25]. The faint bands at 891 cm−1 and 832 cm−1 indicated the presence of β-linked
and α-linked sugar residues, respectively [26]. It was hypothesized that AYP is a pyranose
polysaccharide with both α and β conformations. In conclusion, a new homogeneous
polysaccharide (AYP) obtained from A. cornea var. Li. had a lower molecular weight than
that of A. cornea var. Li. polysaccharides extracted by the ultrasound method. Moreover,
lower-molecular-weight polysaccharides have stronger biological activities. Thus, it is
reasonable to speculate that AYP may have a stronger hepatoprotective effect.
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2.2. The Effect of AYP on the Liver Damage of Mice

Liver function (AST and ALT) and lipid metabolism (TG and TC) in serum are ex-
tremely correlated with the severity of ALD and serve as the main indicators for determin-
ing whether the ALD model has been successfully validated [27–29]. AST, ALT, TG and TC
in the MOD group were significantly higher than the CON group (p < 0.01), suggesting
that alcohol caused injury to the liver. ALT, AST, TC and TG levels in the livers of the AYP
and Sil groups were lower than those of the MOD group (p < 0.01) (Figure 2). A previous
study reported that Echinacea polysaccharide (EPP80), which was extracted from Echinacea
purpurea, also prevented ALD in mice, but only ALT in the EPP80-L (100 mg/kg/d) group
was significantly dissimilar to the MOD group (p < 0.05), and the AST, TG and TC indexes
had no significant differences [30]. Therefore, it also indirectly indicates that the ability to
alleviate the ALD of AYP may be more potent than that of EPP80. Polysaccharides with
the highest percentage of GalA has proved to exist the highest antioxidant activity [31].
Hence, we speculated that AYP had a more effective protective activity than EPP80, which
may be due to the different molar percentages of GalA in the polysaccharide composition,
with 3.4% GalA in EPP80 [30] and 28.4% in AYP. To further confirm the hepatoprotective
activity of AYP, HE staining of the liver tissue was conducted. Normal liver exhibited
hepatic cell cords in orderly arrangements, distinct nuclei and well-defined cell borders in
the CON group (Figure 3). Compared with the CON group, the MOD group showed severe
liver damage as characterized by the loss of cellular boundaries, an indistinct hepatoplate,
cellular degeneration and evident aggregates of lipid-droplet-like vacuoles, which were
seen in most of the hepatocytes (yellow arrow). AYP and Silymarin led to a significant
improvement in these histopathologies, as evidenced by the diminution of vacuolated
cells and the increased integrity of cellular boundaries, as well as decreases in the cell
volume and the number of lipid droplet-like vacuolar aggregates visible in the cytoplasm
of hepatocytes (yellow arrow). Particularly in the AYPH group (200 mg/kg/d), the hepatic
architectures were similar to those of the CON group. The above data further confirm that
AYP had a noticeable improvement effect on the liver cells of mice with ALD.
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2.3. The Effect of AYP on the Oxidation Indicators in Mice Liver

NO, MDA, SOD, GSH-Px and GSH are significant indicators of the antioxidant status
of an organism [32,33]. In this study, alcohol significantly decreased the activities of SOD
(p < 0.01), GSH (p < 0.01) and GSH-Px (p < 0.01) and significantly increased the contents
of MDA and NO (p < 0.01). In order to prevent the pathological development of ALD,
increasing the activities of GSH, GSH-Px and SOD in the liver was beneficial in lowering
the production of reactive oxygen species caused by excessive alcohol consumption [34].
Compared to the MOD group, the levels of NO and MDA were decreased dose-dependently
in AYP and Sil groups, while AYP and Sil increased the activities of SOD, GSH and GSH-
Px (Figure 4). Polysaccharide from Lepidium meyenii (MP-1) also had a defending effect
on alcohol-induced oxidative liver damage in mice, but SOD and GSH-Px in the MP-1L
(200 mg/kg/d) group had no significant differences from the MOD group [35]. Whereas
GSH-Px in the AYPL (50 mg/kg/d) group had significant differences from the MOD group
(p < 0.05). The molecular weight may be the key, which is generally inversely proportional
to the activity [36]. Similarly, Sophorae tonkinensis Radix yielded two polysaccharides, STRP1
and STRP2, with average molecular weights of 1.30 × 104 and 1.98 × 105 Da, respectively.
The potential liver-protective effects of STRP1 were more potent than those of STRP2
against acetaminophen-induced liver damage in mice [37]. Hence, we speculated that
AYP had more effective protective activity than MP-1, which may be due to the different
molecular weights, with 1.06 × 106 Da molecular weight in MP-1 [35] and 4.64 × 105 Da
in AYP.

2.4. The Effect of AYP on the Secretion of Serum Cytokines in Mice

IL-6, TNF-α and IL-1β, which are crucial in the pathophysiology of ALD, can be
overproduced when Kupffer cells are activated by alcohol-induced endotoxin [37]. Among
these, IL-6 can lead to inflammation, fat buildup and liver tissue fibrosis [38]. Fibroblast
degradation and deposition can be produced by IL-1β [39], and TNF-α may trigger inflam-
mation by activating mononuclear macrophages [40]. The levels of three significant serum
cytokines (IL-6, TNF-α and IL-1β) were examined in the plasma to assess whether AYP had
the potential anti-inflammatory effects of IL-1β, TNF-α and IL-6, which were consistent
with the fact that the polysaccharide from Rosa rugosa significantly reduced the production
of inflammatory cytokines (Figure 5) induced by alcohol [5]. Therefore, AYP may also have
the capability to protect against ALD by inhibiting pro-inflammatory mediators.
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2.5. The Effect of AYP on the Intestinal Microbiota of Mice

Since the concept of the enterohepatic axis was introduced, more and more studies
have confirmed the role played by the intestinal microbiota in ALD [41]. Therefore, this
study investigated the role of intestinal microbiota in ALD in terms of both intestinal
bacteria and intestinal fungi.

2.5.1. The Effect of AYP on the Intestinal Bacteria of Mice

The liver is the most exposed to potentially bacterial products or metabolites [42]. The
pathogenesis of ALD is associated with intestinal bacterial disorders [43]. For instance,
patients with alcoholic cirrhosis had bacterial hyperplasia and bacterial abnormalities in
the small intestine [44]. This may be due to the fact that alcohol promotes the growth of
hazardous bacteria and upsets the original equilibrium of intestinal bacteria [45].

According to Figure S1A, the dilution curved for all samples tended toward asymp-
totes, indicating that the sequencing data covered the vast majority of bacterial diversity.
The OTU Venn diagram was created under the condition of 97% similarity to analyze the
intestinal bacteria composition in mice. In total, 453 OTUs were found in the four categories
and could be performed normally for the next analysis (Figure S1B). Furthermore, the
rank abundance curve revealed that the sample species were abundant and consistent
(Figure S1C).

Alpha diversity refers to the analysis of biodiversity within a particular area or ecosys-
tem, which consists predominantly of the calculation of diversity indices such as the Chao1
richness index, Shannon diversity index and Simpson index [46]. The ACE and Chao1
indices are utilized to represent the species in the sample [47]. The Shannon index and the
Simpson index can both be used to measure the diversity of bacteria.



Molecules 2023, 28, 8003 7 of 19

There was a highly significant difference (p < 0.01) in the Simpson and Shannon
indices between the MOD and CON groups (Table 1). There was no statistical change in
the ACE and Chao1 indices, but indices in the MOD group rose visually. These results
support that alcohol consumption increased the number and decreased the diversity of
intestinal bacteria [48]. There were highly significant differences (p < 0.01) in the ACE,
Chao1 and Simpson indices among the Sil group, the AYP group and the MOD group,
and there were significant differences (p < 0.05) in the Shannon indices between the AYP
group and the MOD group, indicating that AYP affected the abundance and diversity of
intestinal bacteria in ALD mice. The similarity of different samples in species diversity
can be compared through β diversity (PCA and PLS-DA) analysis [49]. Following alcohol
induction, PLS-DA and PCA demonstrated that the MOD group and CON group were well
differentiated, indicating that alcohol modified the structure of intestinal bacteria. The AYP
group had a significantly distinct composition of intestinal bacteria with the MOD group
but was comparable to the CON and Sil groups (Figure S1D,E). Similarly, Dendrobium leaf
extract enhanced α diversity and β diversity results in intestinal bacteria in ALD rats [50].
Therefore, α and β diversity suggest that AYP could prevent the changes of intestinal
bacteria caused by ALD.

Table 1. α-diversity indexes of intestinal bacteria.

ACE Chao1 Simpson Shannon

CON 521.429 ± 14.231 533.166 ± 9.466 0.979 ± 0.004 ## 6.645 ± 0.178 ##

MOD 533.133 ± 13.329 538.946 ± 10.888 0.961 ± 0.003 ** 6.326 ± 0.114 **
Sil 464.096 ± 10.631 **## 468.206 ± 13.210 **## 0.969 ± 0.000 **## 6.235 ± 0.01 **

AYP 481.839 ± 7.224 **## 484.193 ± 6.489 **## 0.981 ± 0.0027 ## 6.890 ± 0.056 *##

Data are expressed as mean ± SD (n = 5). * p < 0.05, ** p < 0.01 vs. MOD. ## p < 0.01 vs. CON.

To determine the particular taxa associated with AYP, relative abundance at the phylum
level was evaluated. F/B was the abundance ratio of Firmicutes and Bacteroidetes, which
can indicate the overall microbial composition of the intestinal tract [51]. There was a
highly significant difference the F/B values between the MOD group and the CON group.
This phenomenon was consistent with previous studies in which ethanol feeding to mice
significantly reduced the abundance of Bacteroidetes [52], while no significant changes were
observed in the abundance of Firmicutes (Figure 6A), indicating that the intestinal ecosystem
was disturbed. When treated with AYP by gavage, there was a highly significant difference
in F/B values between the AYP group and the MOD group (p < 0.01), and the therapeutic
effect of the AYP group was superior to the Sil group (Figure 6B).

LEfSe analysis is a species analysis technique used to identify enriched bacteria be-
tween groups and is primarily used to identify species with significant differences in
abundance [53]. As shown in Figure 6C, Lachnospiraceae (Lachnospiraceae_NK4A136_group
and uncultured_bacterium_f_Lachnospiraceae), Bacteroidaceae (Bacteroides) and Prevotellaceae
(Alloprevotella), etc., were the characteristic bacteria in the CON group. Veillonellaceae (uncul-
tured_bacterium_f_Veillonellaceae) was the characteristic bacteria in the Sil group. Muribacu-
laceae (uncultured_bacterium_f_Muribaculaceae) and Streptococcaceae (Streptococcus) were the
specialized microorganisms in the AYP group. Lactobacillaceae (Lactobacillus), Ruminococ-
caceae (Ruminococcaceae_UCG_014), Erysipelotrichaceae (Allobaculum) Saccharimonadaceae (Can-
didatus_Saccharimonas) and Dubosiella, etc., were the specialized microorganisms in the
MOD group.

Meanwhile, the relationship between biochemical indicators and intestinal bacteria
was evaluated using Spearman correlation analysis [54]. As shown in Figure 6D, nine
genera were positively correlated with indices of liver function and cytokines, while
seven genera were positively correlated with indices of antioxidants. The correlation
heatmap showed that Lactobacillus, Allobaculum, Dubosiella, Ruminococcaceae_UCG-014 and
Candidatus_Saccharimonas were positively associated with the content of TC, TG, AST, ALT,
NO and MDA in the liver and serum cytokines, whereas they were negatively related
with the liver GSH, GSH-Px and SOD. The opposite results were reflected in Bacteroides,
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uncultured_bacterium_f_Lachnospiraceae, Alloprevotella, Lachnospiraceae_NK4A136_group and
uncultured_bacterium_f_Muribaculaceae.
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Figure 6. Effects of AYP on gut bacterial composition. Relative abundance of gut bacteria at the
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on KEGG (E). (* 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001).

Specific microbial signatures have the capability to differentiate distinct compli-
cations of alcohol consumption in alcoholic patients [55]. Lachnospiraceae and Murib-
aculaceae produce butyrate, which are powerful indicators of a healthy intestinal, pro-
duced butyrate [56–58]. A related report revealed that the incidence of ALD was sig-
nificantly correlated with the abundance of Lachnospiraceae and Muribaculaceae [59]. Un-
cultured_bacteria_f_Lachnospiraceae and Lachnospiraceae_NK4A136_group were reported to
have the potential ability to enhance the host antioxidant capacity [60], which coincides
with the positive correlation between antioxidant indices observed in this investigation.
Additionally, uncultured_bacterium_f_Muribaculaceae could inhibit the activation of CD8+ T
cells to resist immune stimulation and correlate negatively with inflammation [61], which
was enriched in the administration group. Veillonellaceae convert lactic acid into propionic
acid and have anti-inflammatory properties [62]. Alloprevotella is able to stimulate SCFAs
production and is inversely correlated with liver indicators and inflammatory factors [63].
Families of Ruminococcaeae are enriched with ardent drinkers. This microbiota signature
indicates whether frequent consumers develop alcohol-related hepatitis [64]. Alcohol expo-
sure increased Ruminococcaceae_UCG-014 abundance in mice [56]. Allobaculum was multiply
enriched in non-alcoholic fatty liver [57]. Candidatus_Saccharimonas was enriched in a type
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2 diabetes mouse model and positively correlated with liver indices in agreement with our
experiment [58]. Dubosiella was enriched in autoimmune hepatitis and positively correlated
with liver indicators and inflammatory factors [65], which is in agreement with the present
study. Lactobacillaceae is usually present in the intestines as a probiotic [66]. Interestingly,
alcohol feeding resulted in an increase in the relative abundance of Lactobacillus [67]. A
previous shotgun metagenomic analysis of ALD demonstrated that the increase in Lacto-
bacillus was primarily attributable to oral species (such as Lactobacillus salivarius) and did
not include Lactobacillus rhamnosus as well [68]. There are two possible mechanisms for the
higher abundance of Lactobacillus in ALD, one being an alcohol-induced disturbance in
bile acid metabolism [69,70], and the other attributed to its metabolic capacity, for example,
the ability to metabolize ethanol [71]. In conclusion, we hypothesized that AYP exerted
hepatoprotective effects against ALD by accelerating the abundance of helpful bacteria
(Lachnospiraceae and Muribaculaceae) and diminishing the abundance of detrimental bacteria
like Lactobacillus.

In addition, KEGG family was displayed in the PICRUSt software [72], which was
displayed in the heatmap along with the significance and abundance of the leading
70 metabolic pathways as determined by Duncan’s test (p < 0.05). As shown in Figure 6E,
alcohol upregulated nine metabolic pathways that were all downregulated by AYP, includ-
ing amino sugar and nucleotide sugar metabolism, phenylalanine, tyrosine and trypto-
phan biosynthesis, propanoate metabolism, glycerophospholipid metabolism, thiamine
metabolism, etc. Additionally, AYP reversed 39 metabolic pathways that alcohol down-
regulated, including purine metabolism, fatty acid biosynthesis, cysteine and methionine
metabolism, starch and sucrose metabolism, glycerolipid metabolism, etc. Phenylalanine,
tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism and fatty acid
biosynthesis had captured our attention.

The biosynthesis of phenylalanine, tyrosine and tryptophan was increased by alco-
hol [73,74]. Inflammatory factors such as TNF-α and IL-6 had a positive correlation with
phenylalanine levels, which were reported to be produced by Lactobacillus [75]. Strongly
associated with hepatic steatosis were microbial metabolites of aromatic amino acids (e.g.,
phenylalanine, tyrosine, tryptophan), specifically phenylacetic acid [76]. As a precursor
to phenylacetic acid, elevated phenylalanine may be metabolized to phenylacetic acid
and further contribute to liver disease [77]. The variation in amino acid levels may be
attributable to increased protein degradation and oxidative stress [78]. Thus, AYP increased
antioxidant activity (GSH-PX, GSH, SOD) and reduced inflammatory factors (IL-6, TNF-
α) (Figure 5B,C), which may be related to the phenylalanine, tyrosine and tryptophan
biosynthesis, especially the production of phenylalanine and metabolites by Lactobacillus.

Glycerophospholipid metabolism is regarded as metabolic pathway associated with
liver injury phenotypes [79]. As the primary constituents of cell membranes, glycerophos-
pholipids are crucial for cellular functions (such as molecular transport, protein function
and signal transduction) associated with inflammation, metabolic syndrome and fibro-
sis [80]. The upregulated fecal levels of glycerophospholipids and their metabolites indicate
that the cell membrane may be damaged. The damaged colon tissue may have contributed
to the increased fecal glycerophospholipid levels [76]. SCFAs are catabolic products of fatty
acids with various disease-preventive effects, whereas fatty acids are produced by intesti-
nal bacteria and the downregulation of fatty acid biosynthesis may indicate disruption of
intestinal bacteria [81]. We speculated that AYP may reverse alcohol-induced metabolic
abnormalities by enriching the intestinal bacteria to produce SCFAs and other metabolites.

2.5.2. The Effect of AYP on the Intestinal Fungi of Mice

Intestinal fungi also serve a crucial role in the pathogenesis of ALD [82]. To investigate
the effect of AYP on intestinal fungi, ITS-1 rDNA sequencing was performed on mouse
feces from each cohort.

Indicators of alpha diversity are shown in Table 2. The α index of the MOD group
showed an increasing trend, consisting of reports that chronic ethanol intake increased
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fungal abundance and diversity [83], which indicate that alcohol changed the abundance
of intestinal fungi while AYP reversed this trend. According to PLS-DA data (Figure 7A),
there were no differences in clustering within groups, but there were differences between
groups. The intestinal fungi composition of the AYP group was very different from that of
the MOD group and similar to that of the CON group.

Table 2. α-diversity indexes of intestinal fungi.

ACE Chao1 Simpson Shannon

CON 595.656 ± 127.861 454.586 ± 112.503 0.967 ± 0.007 * 6.680 ± 0.117 **
MOD 647.149 ± 294.838 506.445 ± 130.516 0.986 ± 0.0106 7.169 ± 0.228

Sil 715.839 ± 96.040 389.859 ± 30.940 0.923 ± 0.011 ** 6.109 ± 0.133 **
AYP 604.215 ± 135.579 405.881 ± 54.869 0.967 ± 0.014 * 6.730 ± 0.258 *

Data are expressed as mean ± SD (n = 5). * p < 0.05, ** p < 0.01 vs. MOD.
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correlation analysis (F). Correlation analysis of the intestinal bacteria and fungi (G) (* 0.01 < p < 0.05,
** 0.001 < p < 0.01, *** p < 0.001).

Investigation of the intestinal fungi in mice with ALD showed that the intestine was
composed of three main fungi, including Ascomycota, Basidiomycota and Mortierellomycota
(Figure 7B). The ratio of Basidiomycota/Ascomycota (B/A) is usually defined as an indicator
of fungal dysbiosis [84]. The B/A of the MOD group was considerably different from
that of the CON group, indicating that the intestinal fungi were destroyed by alcohol and
that this ratio was restored after AYP and Sil administration (Figure 7C). Moreover, the
abundance of Mortierellomycota was upregulated by alcohol and reversed by AYP. Juvenile
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ruminants are prone to diarrhea and Mortierellomycota, a fungus specific to juvenile yaks and
positively associated with diarrhea in comparison to adult yaks [85], which was decreased
in abundance after AYP treatment.

In addition, the genus levels of Kazachstania and Mortierella also deserved our attention,
with Kazachstania abundance decreasing significantly in the MOD group while Mortierella
abundance increased significantly in the MOD group, while Sil and AYP reversed this
trend (Figure 7D). Moreover, LEfSe analysis results showed that Mortierellaceae (Mortierella),
Saccharomycetaceae (Kazachstania), Arthrobotrys and Entoloma were significantly enriched in
the MOD group, the Sil group and the AYP group, respectively (Figure 7E). Furthermore,
correlations between the relative abundance and cytokines, antioxidant and liver function
parameters in mice of genus levels are shown in Figure 7F. Kazachstania, Fusarium and
Cladosporium were negatively correlated with liver indicators, as well as cytokines, and
positively correlated with antioxidant indicators, while Mortierella, Candida and Chaetomium
showed the opposite trend. The downregulation of Kazachstania abundance in alcohol
use disorder has been reported [86]. However, little research has been done on the func-
tion of Kazachstania, which is crucial for developing a healthy porcine microbiome and
supporting the growth of SCFA-producing bacteria [87,88]. Fusarium and Cladosporium
were altered due to alcohol intake in alcoholic liver disease and have anti-inflammatory
and immunoprotective effects [83,89]. A high abundance of Mortierella was identified in
calves with diarrhea [85]. However, the relative proportions of Candida albicans increased
in patients with alcoholic hepatitis, which was positively correlated with AST levels and
were rod cytotoxic, increasing mortality in mice [90]. Thus, AYP may be able to counteract
alcohol-induced liver damage by adjusting the B/A ratio, adjusting the abundance of
beneficial fungi, like Kazachstania, as well as harmful fungi, such as Mortierella and Candida.

Fungi and bacteria interact intimately in the stomach, altering health and disease [82].
Bacteria and fungi are the most studied gastrointestinal microbiota in ALD, but their effects,
mechanisms and cross-border interactions are still unknown. For instance, rodent models
of ALD with AYP lack research on the interactions between intestinal bacteria and fungi.
Consequently, we conducted a fungal–bacterial correlation investigation (Figure 7G) to
ascertain how fungi and bacteria impacted AYP for ALD. At the genus level, the trans-
kingdom association between intestinal bacteria and fungi with the top 30 abundance
shown here was statistically significant (p < 0.05).

Among them, we focused on studying the correlation between bacteria and fungi
which were regulated by AYP and related to physiological and biochemical indicators. Ben-
eficial bacteria (uncultured_bacterium_f_Muribaculaceae, uncultured_bacterium_Veillonellaceae,
uncultured_bacterium_f_Lachnospiraceae and Alloprevptella) enriched by AYP were negatively
correlated with harmful fungi (Mortierella, Byssochlamys and Dactylonectria). Moreover,
harmful bacteria (Allobaculum, Lactobacillus and Ruminococcaceae_UCG-014) were posi-
tively correlated with harmful fungi (Candida, Moritierella, Penicillium and Aspergillus)
but negatively correlated with Kazachstania, Fusarium, Curvibasidum and Cladosporium.
Kazachstania was positively related to the beneficial intestinal bacteria community (uncul-
tured_bacterium_f_Muribaculaceae, uncultured_bacterium_Veillonellaceae, uncultured_bacterium_
f_Lachnospiraceae, Alistipes and Erysipelatoclostridium), suggesting that there might be a
co-dependence for both kingdoms. These negatively correlated intestinal microbiota may
have a competitive or inhibitory role in the mitigation mechanism of AYP on alcoholic
liver injury.

Kazachstania slooffiae is a pig-specific species of intestinal fungus that may play a sig-
nificant function in host health [91] and can produce some bioactive substances, such as
peptides, formic acid and dehydroascorbic acid [92]. Candida albicans (C. albicans) is a
commensal fungus in the human intestinal tract, and its relative proportion was elevated
in patients with AUD and alcoholic hepatitis patients [93], where albicans interacted with
bacteria through mechanisms involving the formation and alteration of biofilms and compe-
tition with Lactobacillus rhamnosus GG [94,95]. The abundance of Moritierella was negatively
correlated with Alloprevotella, uncultured_bacterium_Veillonellaceae, uncultured_bacterium_f_
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Lachnospiraceae and Ruminococcaceae_UCG-014. The abundance of beneficial bacteria such as
Alloprevotella, Veillonella, uncultured bacteria_f_Lachnospiraceae and Ruminococcus_UCG-014
were significantly reduced in the intestine of Bauer’s pigeons with diarrhea [96]. These
results suggest extensive co-variation associations between intestinal bacteria and fungi,
including those that might be involved in the process of AYP alleviating alcohol damage.
However, to confirm whether intestinal bacteria and fungi are new targets for the AYP
treatment of ALD and to elucidate their potential cause–effect relationships and bacteria
and fungi interactions, more experiments, such as FMT, co-housing, and germ-free mice,
will be conducted in our follow-up study.

3. Materials and Methods
3.1. Materials and Reagents

A. cornea var. Li. was provided and identified by Prof. Qi Wang (Engineering Research
Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University).
Silymarin was acquired from a neighborhood pharmacy (Tasly Sants, Tianjin, China.).
AST (aspartate aminotransferase, C010-2-1), ALT (alanine aminotransferase, C009-2-1), TG
(triglyceride, A110-1-1), TC (total cholesterol, A111-1-1), NO (nitric oxide, A013-2-1), MDA
(malondialdehyde, A003-1-2), SOD (superoxide dismutase, A001-3-2), GSH-Px (glutathione
peroxidase, A005-1-2), GSH (glutathione, A006-2-1) and TP (total protein, A045-4-2) kits
were purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). IL-6
(interleukin-6, MU30044), IL-1β (interleukin-1β, MU30369) and TNF-α (tumor necrosis
factor-α, MU30030) ELISA kits were obtained from the Bioswamp Company (Wuhan,
China). The rest of the pharmaceuticals and reagents were of analytical grade.

3.2. Extraction and Purification

The crude polysaccharide was obtained referencing the method of previous exper-
imental report with slight modifications [4], and the crude polysaccharide was purified
to obtain the AYP. A. cornea var. Li particles were extracted for three hours with a 0.4%
pectinase solution (solid–liquid ratio of 1:80 g/mL, pH 5, extraction temperature of 50 ◦C)
and then immersed for one hour in 85 ◦C water. The concentration of the supernatant
was then precipitated with ethanol. After deproteinization using the Sevag method and
dialysis [97], unprocessed polysaccharides were obtained. The crude polysaccharides were
purified with DEAE-52 and Sephacryl S-400, then freeze-dried to produce an amorphous
polysaccharide.

3.3. Structural and Polysicochemical Analysis of AYP

Total polysaccharide content and reducing sugar content were separately determined
by the phenol-sulfuric acid method [98] and 3, 5-dinitrobenzene sulfonic acid (DNS)
method [99]. Total protein content was determined using the Coomassie bright blue
G250 assay [100]. Meanwhile, the chemical composition of AYP was determined by measur-
ing the absorbance by the microplate reader (SPARK 10M, TECAN, Zurich, Switzerland).
The molecular weight of AYP was determined using high-performance gel permeation
chromatography (HPGPC-ELSD). Monosaccharide composition was analyzed by ion ex-
change chromatography [101]. AYP and KBr were uniformly combined and pressed into
transparent particles for Fourier-transform infrared spectrometer (FT-IR) analysis [102].

3.4. Animal Experiment
3.4.1. Experimental Animals and Procedures

The animal experiments were supervised by the Ethics Committee for Laboratory
Animals at Jilin Agricultural University and conducted in accordance with the China
Animal Welfare Legislation (ethical approval code: 20230317001). In total, 60 SPF-grade
Kunming male mice (18–22 g) were obtained from Liaoning Changsheng Biotechnology
Co., Ltd. (License number: SCXK (Liao) 2015-0001). Mice were maintained with a specific
diet and unfettered access to water at 22 ± 2 ◦C, humidity levels of 50% and a 12 h light and
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12 h dark cycle. The alcohol liver model and polysaccharide administration method were
utilized to conduct the animal experimentation [5] (Figure 8). In brief, after acclimatization
to standard laboratory conditions for one week, all the mice were divided into six groups,
with ten mice in each group as follows: the CON group—mice treated with saline as a
negative control, the MOD group—ALD of mice as a model control, the Sil group—ALD of
mice treated with 100 mg/kg/d Silymarin as a positive control, the AYPL group—ALD
of mice treated with 50 mg/kg/d AYP, the AYPM group—ALD of mice treated with
100 mg/kg/d AYP, the AYPH group—ALD of mice treated with 200 mg/kg/d AYP. In
the first two weeks, all the mice except for those in the CON group were forced to gavage
with 40% ethanol. In the following two weeks, 40% ethanol was gavaged in all groups
except the CON group, and after two hours, each group was gavaged with the appropriate
therapeutic drug.
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Figure 8. Grouping diagram of the animal experiments.

After the final gavage, rodents were fasted alone for 12 h before being euthanized for
the collection of serum, liver and cecum. The liver and the contents of the cecum were
promptly gathered and frozen at −80 ◦C. The study protocol on experimental animals in
this research has been registered at https://preclinicaltrials.eu (27 November 2023) under
the registration number PCTE0000437.

3.4.2. Measurements of Liver Damage

The volume ratio of liver tissue to 0.9% sodium chloride solution was 1:9, with suffi-
cient grinding at a low temperature and high speed. According to the kit’s instructions,
the ALT, AST, TG and TC levels in the supernatant were measured after centrifugation at
low temperatures [103]. Fixed in 10% paraformaldehyde, the mouse liver samples were
processed to obtain 5 µm paraffin-embedded sections. The sections were stained with
hematoxylin and eosin (H&E).

https://preclinicaltrials.eu
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3.4.3. Measurements of Liver Oxidative Stress, and Serum Cytokines

The volume ratio of liver tissue to 0.9% sodium chloride solution was 1:9, and the
supernatant was taken by centrifugation after sufficient grinding at a low temperature and
high speed. According to the kit’s instructions, the levels of NO, MDA and the activities of
SOD, GSH and GSH-Px in the supernatant were measured after determination of protein
content by TP kit. Serum levels of TNF-α, IL-6 and IL-1β were measured through an ELISA
kit based on the instructions supplied by the manufacturer [104].

3.4.4. Analysis of the Intestinal Bacteria and Fungi

Genomic DNA were obtained from the contents of the cecum with the PowerSoil DNA
Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA). Each sample had three replicates
that were measured. Biomarker Technologies selected the Illumina Novaseq technology to
amplify and sequence the V3-V4 regions of 16S rDNA and ITS-1 (Beijing, China) [27,60].

3.5. Statistical Analysis

The results were analyzed using Duncan’s test in the one-way ANOVA of SPSS soft-
ware and expressed as the mean (standard error of the mean (SEM)) (26.0). p < 0.01 was
considered extremely statistically significant, and p < 0.05 was considered statistically sig-
nificant. For subsequent data processing, GraphPad Prism 9 and Origin 2021 were utilized.

4. Conclusions

In this study, we obtained a new type of polysaccharide (AYP) with a clear structure
and a protective effect against ALD. Moreover, we explored the effects of AYP on ALD
from the analysis of intestinal bacteria, fungi and their correlation for the first time, which
lays the experimental foundation for the prevention of alcoholic-related diseases by natural
polysaccharides and opens up a new direction. Indeed, we will use electron microscopic
scanning, X-ray diffraction method, nuclear magnetic resonance, atomic force spectroscopy
and molecular dynamics simulation technology to identify the final structure of purified
AYP in the future. At the same time, we will also use the proteome and metabolomics to
elucidate the molecular mechanism of AYP protection from ALD and further elucidate its
structure–activity relationship with AYP in future research.

Supplementary Materials: The following supporting information can be downloaded at: https://
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