Evaluation of Aging Methods on the Surface Characteristics of Hydrochar and Germination Indices for Kale Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Materials
2.2. Hydrochar Production
2.3. Aging of Hydrochars
2.4. Hydrochar Physical Properties
2.4.1. Bulk Density
2.4.2. Porosity and Water Holding Capacity
2.5. Surface Morphology
2.6. Fourier Transform Infrared (FTIR)
2.7. Hydrochars Chemical Properties
2.8. Seed Germination Bioassay
2.9. Statistical Analysis
3. Results
3.1. Effect of Different Pre-Treatment Methods on Physical Properties of Hydrochar
3.2. Effect of Different Pre-Treatment Methods on Morphological Characteristics of Hydrochars
3.3. FTIR Analysis of Hydrochars
3.4. Effect of Pre-Treatment Methods on the Chemical Properties of Hydrochar
3.5. Effects of Aged Hydrochars on Seed Germination Indices
4. Discussion
4.1. Explanation for Physical Properties Changes
4.2. Explanation Explanation for Surface Characteristics Changes of Hydrochar
4.3. Seeds Germination Indices
5. Conclusions
- Further studies should use X-ray diffraction (XRD) and thermogravimetric analyzer (TGA) to analyze the properties of hydrochar.
- To completely eliminate the inhibitory effect, further optimization of the aging conditions is necessary.
- Plant growth experiments are needed to validate the impact of modified hydrochar on plant growth.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, X.; Zhang, W.; Fernie, A.R.; Wen, W. Combining Novel Technologies with Interdisciplinary Basic Research to Enhance Horticultural Crops. Plant J. 2022, 109, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Akram, M.T.; Janke, R.; Qadri, R.W.K.; Al-Sadi, A.M.; Farooque, A.A. Urban Horticulture for Food Secure Cities through and beyond COVID-19. Sustainability 2020, 12, 9592. [Google Scholar] [CrossRef]
- Roehrdanz, M.; Greve, T.; de Jager, M.; Buchwald, R.; Wark, M. Co-Composted Hydrochar Substrates as Growing Media for Horticultural Crops. Sci. Hortic. 2019, 252, 96–103. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Fang, J.; Gao, B.; Chen, J.; Zimmerman, A.R. Hydrochars Derived from Plant Biomass under Various Conditions: Characterization and Potential Applications and Impacts. Chem. Eng. J. 2015, 267, 253–259. [Google Scholar] [CrossRef]
- Berslin, D.; Reshmi, A.; Sivaprakash, B.; Rajamohan, N.; Kumar, P.S. Remediation of Emerging Metal Pollutants Using Environment Friendly Biochar- Review on Applications and Mechanism. Chemosphere 2022, 290, 133384. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Monisha, R.S.; Mani, R.L.; Sivaprakash, B.; Rajamohan, N.; Vo, D.-V.N. Green Remediation of Pharmaceutical Wastes Using Biochar: A Review. Environ. Chem. Lett. 2022, 20, 681–704. [Google Scholar] [CrossRef]
- Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; et al. Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis. Biofuels 2011, 2, 71–106. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Zhou, S.; Shang, H.; Luo, J.; Tsang, D.C.W. Chapter 15—Hydrothermal Carbonization for Hydrochar Production and Its Application. In Biochar from Biomass and Waste; Ok, Y.S., Tsang, D.C.W., Bolan, N., Novak, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 275–294. ISBN 978-0-12-811729-3. [Google Scholar]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of Potential Applications of Hydrochar Derived from Hydrothermal Carbonization of Biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L. Development and Characterization of Activated Hydrochars from Orange Peels as Potential Adsorbents for Emerging Organic Contaminants. Bioresour. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, E.; Mihajlović, M.; Petrović, J.; Anastopoulos, I.; Dosche, C.; Pashalidis, I.; Kalderis, D. Single-Stage Production of Miscanthus Hydrochar at Low Severity Conditions and Application as Adsorbent of Copper and Ammonium Ions. Bioresour. Technol. 2021, 337, 125458. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Lin, H.; Dai, L.; Qiu, R.; Tang, Y.; Wang, Y.; Duan, P.-G.; Ok, Y.S. Waste Shrimp Shell-Derived Hydrochar as an Emergent Material for Methyl Orange Removal in Aqueous Solutions. Environ. Int. 2020, 134, 105340. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption Isotherms and Kinetic Modeling of Methylene Blue Dye onto a Carbonaceous Hydrochar Adsorbent Derived from Coffee Husk Waste. Sci. Total Environ. 2020, 725, 138325. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Feng, Y.; Xue, L.; Sun, H.; Han, L.; Yang, L.; Sun, Q.; Chu, Q. Biowaste to Treasure: Application of Microbial-Aged Hydrochar in Rice Paddy Could Improve Nitrogen Use Efficiency and Rice Grain Free Amino Acids. J. Clean. Prod. 2019, 240, 118180. [Google Scholar] [CrossRef]
- de Jager, M.; Giani, L. An Investigation of the Effects of Hydrochar Application Rate on Soil Amelioration and Plant Growth in Three Diverse Soils. Biochar 2021, 3, 349–365. [Google Scholar] [CrossRef]
- Khosravi, A.; Zheng, H.; Liu, Q.; Hashemi, M.; Tang, Y.; Xing, B. Production and Characterization of Hydrochars and Their Application in Soil Improvement and Environmental Remediation. Chem. Eng. J. 2022, 430, 133142. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Gori, R.; Corsi, I.; Galletti, A.M.R.; Vitolo, S. Hydrothermal Carbonization of Sewage Sludge: A Critical Analysis of Process Severity, Hydrochar Properties and Environmental Implications. Waste Manag. 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Bargmann, I.; Rillig, M.C.; Buss, W.; Kruse, A.; Kuecke, M. Hydrochar and Biochar Effects on Germination of Spring Barley. J. Agron. Crop Sci. 2013, 199, 360–373. [Google Scholar] [CrossRef]
- Hitzl, M.; Mendez, A.; Owsianiak, M.; Renz, M. Making Hydrochar Suitable for Agricultural Soil: A Thermal Treatment to Remove Organic Phytotoxic Compounds. J. Environ. Chem. Eng. 2018, 6, 7029–7034. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M. Acidification with Nitric Acid Improves Chemical Characteristics and Reduces Phytotoxicity of Alkaline Chars. J. Environ. Manag. 2017, 191, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated Carbons Prepared from Hydrothermally Carbonized Waste Biomass Used as Adsorbents for CO2. Appl. Energy 2013, 112, 526–532. [Google Scholar] [CrossRef]
- Román, S.; Valente Nabais, J.M.; Ledesma, B.; González, J.F.; Laginhas, C.; Titirici, M.M. Production of Low-Cost Adsorbents with Tunable Surface Chemistry by Conjunction of Hydrothermal Carbonization and Activation Processes. Microporous Mesoporous Mater. 2013, 165, 127–133. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Preparation of Magnetic Porous Carbon from Waste Hydrochar by Simultaneous Activation and Magnetization for Tetracycline Removal. Bioresour. Technol. 2014, 154, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Mia, S.; Dijkstra, F.A.; Singh, B. Chapter One—Long-Term Aging of Biochar: A Molecular Understanding With Agricultural and Environmental Implications. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 141, pp. 1–51. [Google Scholar]
- Quan, G.; Fan, Q.; Zimmerman, A.R.; Sun, J.; Cui, L.; Wang, H.; Gao, B.; Yan, J. Effects of Laboratory Biotic Aging on the Characteristics of Biochar and Its Water-Soluble Organic Products. J. Hazard. Mater. 2020, 382, 121071. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, T.; Liu, D.; Fu, Q.; Hou, R.; Li, Q.; Cui, S.; Li, M. Research on the Adsorption Mechanism of Cu and Zn by Biochar under Freeze-Thaw Conditions. Sci. Total Environ. 2021, 774, 145194. [Google Scholar] [CrossRef]
- Vanyan, L.; Cenian, A.; Trchounian, K. Biogas and Biohydrogen Production Using Spent Coffee Grounds and Alcohol Production Waste. Energies 2022, 15, 5935. [Google Scholar] [CrossRef]
- Abbey, L.; Yurgel, S.N.; Asunni, O.A.; Ofoe, R.; Ampofo, J.; Gunupuru, L.R.; Ajeethan, N. Changes in Soil Characteristics, Microbial Metabolic Pathways, TCA Cycle Metabolites and Crop Productivity Following Frequent Application of Municipal Solid Waste Compost. Plants 2022, 11, 3153. [Google Scholar] [CrossRef]
- Cui, H.; Li, D.; Liu, X.; Fan, Y.; Zhang, X.; Zhang, S.; Zhou, J.; Fang, G.; Zhou, J. Dry-Wet and Freeze-Thaw Aging Activate Endogenous Copper and Cadmium in Biochar. J. Clean. Prod. 2021, 288, 125605. [Google Scholar] [CrossRef]
- Junjie, G.; Yuyan, L.I.U.; Siyuan, L.I.U.; Jiawei, C. Effects of High Temperature and Freeze-Thaw Cycle Ageing on Adsorption Performance of Hydrochar and Biochar on Pollutants. Geoscience 2021, 35, 931. [Google Scholar] [CrossRef]
- Kalderis, D.; Papameletiou, G.; Kayan, B. Assessment of Orange Peel Hydrochar as a Soil Amendment: Impact on Clay Soil Physical Properties and Potential Phytotoxicity. Waste Biomass Valorization 2019, 10, 3471–3484. [Google Scholar] [CrossRef]
- Lipiec, J.; Kuś, J.; Słowińska-Jurkiewicz, A.; Nosalewicz, A. Soil Porosity and Water Infiltration as Influenced by Tillage Methods. Soil Tillage Res. 2006, 89, 210–220. [Google Scholar] [CrossRef]
- Islam, M.A.; Limon, M.S.H.; Romić, M.; Islam, M.A. Hydrochar-Based Soil Amendments for Agriculture: A Review of Recent Progress. Arab. J. Geosci. 2021, 14, 102. [Google Scholar] [CrossRef]
- Yang, R.; Guo, L.; Jin, X.; Shen, C.; Zhou, Y.; Gu, Z. Enhancement of Glucosinolate and Sulforaphane Formation of Broccoli Sprouts by Zinc Sulphate via Its Stress Effect. J. Funct. Foods 2015, 13, 345–349. [Google Scholar] [CrossRef]
- Yousefi, S.; Kartoolinejad, D.; Bahmani, M.; Naghdi, R. Effect of Azospirillum Lipoferum and Azotobacter Chroococcum on Germination and Early Growth of Hopbush Shrub (Dodonaea Viscosa L.) under Salinity Stress. J. Sustain. For. 2017, 36, 107–120. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Nguyen, X.H.; Nguyen, N.D.K.; Van, H.T.; Thai, V.N.; Le, H.N.; Pham, V.D.; Nguyen, N.A.; Nguyen, T.P.; Nguyen, T.H. H2O2 Modified-Hydrochar Derived from Paper Waste Sludge for Enriched Surface Functional Groups and Promoted Adsorption to Ammonium. J. Taiwan Inst. Chem. Eng. 2021, 126, 119–133. [Google Scholar] [CrossRef]
- Reza, M.T.; Rottler, E.; Herklotz, L.; Wirth, B. Hydrothermal Carbonization (HTC) of Wheat Straw: Influence of Feedwater PH Prepared by Acetic Acid and Potassium Hydroxide. Bioresour. Technol. 2015, 182, 336–344. [Google Scholar] [CrossRef]
- Wang, B.; Fu, H.; Han, L.; Xie, H.; Xue, L.; Feng, Y.; Xing, B. Physicochemical Properties of Aged Hydrochar in a Rice-Wheat Rotation System: A 16-Month Observation. Environ. Pollut. 2021, 272, 116037. [Google Scholar] [CrossRef]
- Nakkeeran, C.; Selvakumari, P.; Kasthury, T.; Kumar, R.T. FTIR Analysis on Nilavembu Kudineer Churanam and Acetominaphen. J. Chem. Pharm. Res. 2016, 8, 634–639. [Google Scholar]
- Michael, P.S. Roles of Leucaena Leucocephala (Lam.) on Sandy Loam Soil PH, Organic Matter, Bulk Density, Water-Holding Capacity and Carbon Stock Under Humid Lowland Tropical Climatic Conditions. Bulg. J. Soil Sci. 2019, 4, 33–45. [Google Scholar]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of Biochar and Hydrochar Addition on Water Retention and Water Repellency of Sandy Soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Chatir, E.M.; El Hadrami, A.; Ojala, S.; Brahmi, R. Production of Activated Carbon with Tunable Porosity and Surface Chemistry via Chemical Activation of Hydrochar with Phosphoric Acid under Oxidizing Atmosphere. Surf. Interfaces 2022, 30, 101849. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, B.; Fang, J.; Zou, W.; Dong, L.; Cao, C.; Zhang, J.; Li, Y.; Wang, H. Chemically Activated Hydrochar as an Effective Adsorbent for Volatile Organic Compounds (VOCs). Chemosphere 2019, 218, 680–686. [Google Scholar] [CrossRef]
- Hua, Y.; Zheng, X.; Xue, L.; Han, L.; He, S.; Mishra, T.; Feng, Y.; Yang, L.; Xing, B. Microbial Aging of Hydrochar as a Way to Increase Cadmium Ion Adsorption Capacity: Process and Mechanism. Bioresour. Technol. 2020, 300, 122708. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Wahab, L.M.; Gonnermann, H.M.; Nittrouer, J.A. Effect of Freeze-Thaw Cycling on Grain Size of Biochar. PLoS ONE 2018, 13, e0191246. [Google Scholar] [CrossRef] [PubMed]
- Panikov, N.S.; Flanagan, P.W.; Oechel, W.C.; Mastepanov, M.A.; Christensen, T.R. Microbial Activity in Soils Frozen to below −39 °C. Soil Biol. Biochem. 2006, 38, 785–794. [Google Scholar] [CrossRef]
- Jing, F.; Liu, Y.; Chen, J. Insights into Effects of Ageing Processes on Cd-Adsorbed Biochar Stability and Subsequent Sorption Performance. Environ. Pollut. 2021, 291, 118243. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sohi, S.P.; Jing, F.; Chen, J. Oxidative Ageing Induces Change in the Functionality of Biochar and Hydrochar: Mechanistic Insights from Sorption of Atrazine. Environ. Pollut. 2019, 249, 1002–1010. [Google Scholar] [CrossRef]
- Suarez, E.; Tobajas, M.; Mohedano, A.F.; Reguera, M.; Esteban, E.; de la Rubia, A. Effect of Garden and Park Waste Hydrochar and Biochar in Soil Application: A Comparative Study. Biomass Convers. Biorefinery 2023, 1–15. [Google Scholar] [CrossRef]
- McMillan, R.; Quideau, S.A.; MacKenzie, M.D.; Biryukova, O. Nitrogen Mineralization and Microbial Activity in Oil Sands Reclaimed Boreal Forest Soils. J. Environ. Qual. 2007, 36, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, H.; Zhou, L.; Lewis, B.J.; Ye, Y.; Tian, J.; Li, G.; Dai, L. Effect of Freezing-Thawing on Nitrogen Mineralization in Vegetation Soils of Four Landscape Zones of Changbai Mountain. Ann. For. Sci. 2011, 68, 943–951. [Google Scholar] [CrossRef]
- Dalias, P.; Anderson, J.M.; Bottner, P.; Coûteaux, M.-M. Temperature Responses of Net Nitrogen Mineralization and Nitrification in Conifer Forest Soils Incubated under Standard Laboratory Conditions. Soil Biol. Biochem. 2002, 34, 691–701. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of Feedstock Type, Production Method, and Pyrolysis Temperature on Biochar and Hydrochar Properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Li, L.; Shi, Q.; Hou, J.; Zhang, R.; Zhang, S.; Chen, J. Nonthermal Air Plasma Dehydration of Hydrochar Improves Its Carbon Sequestration Potential and Dissolved Organic Matter Molecular Characteristics. Sci. Total Environ. 2019, 659, 655–663. [Google Scholar] [CrossRef]
- Dong, X.; Li, G.; Lin, Q.; Zhao, X. Quantity and Quality Changes of Biochar Aged for 5years in Soil under Field Conditions. CATENA 2017, 159, 136–143. [Google Scholar] [CrossRef]
- Hu, C.; Zheng, Y.; Tong, C.; Zhang, D. Effects of Exogenous Melatonin on Plant Growth, Root Hormones and Photosynthetic Characteristics of Trifoliate Orange Subjected to Salt Stress. Plant Growth Regul. 2022, 97, 551–558. [Google Scholar] [CrossRef]
- Msimbira, L.A.; Smith, D.L. The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. Front. Sustain. Food Syst. 2020, 4, 106. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Kołtowski, M. Changes of Total and Freely Dissolved Polycyclic Aromatic Hydrocarbons and Toxicity of Biochars Treated with Various Aging Processes. Environ. Pollut. 2018, 237, 65–73. [Google Scholar] [CrossRef]
Element | FHC | WHC | WHC | FTHC |
---|---|---|---|---|
C | 76.8 | 75.7 | 69.3 | 72.1 |
N | 5.9 | 5.9 | 8.4 | 6.9 |
O | 17.3 | 18.4 | 22.4 | 21.1 |
Treatment | Germination Rate (%) | Germination Energy (%) | Germination Index | Seed Vigour Index |
---|---|---|---|---|
Control | 82.2 ab | 64.4 a | 13.49 a | 9.02 2.76 a |
FHC | 28.9 c | 6.7 b | 2.52 | 1.49 c |
WHC | 68.9 b | 40.0 b | 9.17 b | 6.90 bc |
MHC | 86.7 a | 48.9 ab | 11.81 ab | 7.13 ab |
FTHC | 71.1 ab | 46.7 ab | 10.17 ab | 5.31 b |
p-value | 0.004 | 0.018 | 0.002 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, D.; He, Q.; Mousavi, S.M.N.; Abbey, L. Evaluation of Aging Methods on the Surface Characteristics of Hydrochar and Germination Indices for Kale Seeds. Horticulturae 2023, 9, 545. https://doi.org/10.3390/horticulturae9050545
Qin D, He Q, Mousavi SMN, Abbey L. Evaluation of Aging Methods on the Surface Characteristics of Hydrochar and Germination Indices for Kale Seeds. Horticulturae. 2023; 9(5):545. https://doi.org/10.3390/horticulturae9050545
Chicago/Turabian StyleQin, Dengge, Quan He, Seyed Mohammad Nasir Mousavi, and Lord Abbey. 2023. "Evaluation of Aging Methods on the Surface Characteristics of Hydrochar and Germination Indices for Kale Seeds" Horticulturae 9, no. 5: 545. https://doi.org/10.3390/horticulturae9050545
APA StyleQin, D., He, Q., Mousavi, S. M. N., & Abbey, L. (2023). Evaluation of Aging Methods on the Surface Characteristics of Hydrochar and Germination Indices for Kale Seeds. Horticulturae, 9(5), 545. https://doi.org/10.3390/horticulturae9050545