The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents
Abstract
:1. Introduction
2. Results
2.1. BOE Phytochemicals Characterization
2.1.1. Total Polyphenol Content
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.1.3. Liquid Chromatography–Diode Array Detection–Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI MS) Analysis
2.2. The Effect of BOE on Inflammation
2.2.1. Acute Inflammation Produced by Carrageenan
2.2.2. Subacute Experimental Inflammation
2.3. Pain Assessment
2.3.1. Antinociceptive Effect on Acute Inflammation
2.3.2. Antinociceptive Effect in Subacute Inflammation
2.4. Assessment of Oxidative Stress in Subacute Inflammation
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction
4.2. Analysis of Basic Constituents of Brassica oleracea Extract (BOE)
4.3. FTIR Analysis
4.4. Liquid Chromatography-Diode Array Detection–Electro-Spray Ionization Mass Spectrometry (HPLC-DAD-ESI MS) Analysis
4.5. Animals
4.6. Induction of Inflammation and Experimental Design
4.6.1. Carrageenan-Induced Paw Inflammation in Rats
4.6.2. Freund’s Adjuvant-Induced Inflammation
4.6.3. Routes of Administration and Rhythm of Administration
4.7. Experimental Tests
4.7.1. Timeline
4.7.2. Inflammation Assessment
4.7.3. Pain Assessment
4.7.4. Oxidative Stress Assessment
4.7.5. Chemicals
4.7.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and ethnobotanical dermatology practices in Romania and other Eastern European countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Castelão-Baptista, J.P.; Barros, A.; Martins, T.; Rosa, E.; Sardão, V.A. Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard, and Metabolic Disruption in Obesity. Nutrients 2021, 13, 4194. [Google Scholar] [CrossRef] [PubMed]
- Ray, L.R.; Alam, M.S.; Junaid, M.; Ferdousy, S.; Akter, R.; Hosen, S.M.Z.; Mouri, N.J. Brassica oleracea var. capitata f. alba: A Review on its Botany, Traditional uses, Phytochemistry and Pharmacological Activities. Mini Rev. Med. Chem. 2021, 21, 2399–2417. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Yang, B.; Lim, C.; Kim, J.-H.; Kim, H.; Cho, S. Anti-inflammatory Effects of Brassica oleracea Var. capitata L. (Cabbage) Methanol Extract in Mice with Contact Dermatitis. Pharmacogn. Mag. 2018, 14, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Pavlović, I.; Salopek-Sondi, B. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacological overview. Phytochem. Rev. 2017, 16, 117–135. [Google Scholar] [CrossRef]
- Sarandy, M.M.; Novaes, R.D.; da Matta, S.L.P.; Mezencio, J.M.d.S.; da Silva, M.B.; Zanuncio, J.C.; Gonçalves, R.V. Ointment of Brassica oleracea var. capitata Matures the Extracellular Matrix in Skin Wounds of Wistar Rats. Evid.-Based Complement. Altern. Med. 2015, 2015, e919342. [Google Scholar] [CrossRef] [PubMed]
- Dima, Ș.-O.; Constantinescu-Aruxandei, D.; Tritean, N.; Ghiurea, M.; Capră, L.; Nicolae, C.-A.; Faraon, V.; Neamțu, C.; Oancea, F. Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization. Plants 2023, 12, 3016. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Agarwal, H.; Kumar, S.V.; Lakshmi, T. Brassica oleracea Mediated Synthesis of Zinc Oxide Nanoparticles and its Antibacterial Activity against Pathogenic Bacteria. Asian J. Chem. 2018, 30, 2711–2715. [Google Scholar] [CrossRef]
- Arrais, A.; Testori, F.; Calligari, R.; Gianotti, V.; Roncoli, M.; Caramaschi, A.; Todeschini, V.; Massa, N.; Bona, E. Extracts from Cabbage Leaves: Preliminary Results towards a “Universal” Highly-Performant Antibacterial and Antifungal Natural Mixture. Biology 2022, 11, 1080. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, S.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Xu, D. Characterization of glucosinolates in 80 broccoli genotypes and different organs using UHPLC-Triple-TOF-MS method. Food Chem. 2021, 334, 127519. [Google Scholar] [CrossRef]
- Kiki, G.A.; Pop, R.M.; Sabin, O.; Bocsan, I.C.; Chedea, V.S.; Socaci, S.A.; Pârvu, A.E.; Finsia, E.; Francis, T.; Mathieu, Z.; et al. Polyphenols from Dichrostachys cinerea Fruits Anti-Inflammatory, Analgesic, and Antioxidant Capacity in Freund’s Adjuvant-Induced Arthritic Rat Model. Molecules 2022, 27, 5445. [Google Scholar] [CrossRef]
- Renner, I.E.; Fritz, V.A. Using Near-infrared reflectance spectroscopy (NIRS) to predict glucobrassicin concentrations in cabbage and brussels sprout leaf tissue. Plant Methods 2020, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hierro, J.M.; Valverde, J.; Villacreces, S.; Reilly, K.; Gaffney, M.; González-Miret, M.L.; Heredia, F.J.; Downey, G. Feasibility Study on the Use of Visible–Near-Infrared Spectroscopy for the Screening of Individual and Total Glucosinolate Contents in Broccoli. J. Agric. Food Chem. 2012, 60, 7352–7358. [Google Scholar] [CrossRef] [PubMed]
- Redha, A.A.; Langston, F.; Nash, G.R.; Bows, J.R.; Torquati, L.; Gidley, M.J.; Cozzolino, D. Determination of glucosinolates in broccoli (Brassica oleracea var. italica) by combining mid-infrared (MIR) spectroscopy with chemometrics. Int. J. Food Sci. Technol. 2023, 58, 5679–5688. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Iori, R.; Piekarska, A.; Namieśnik, J.; Bartoszek, A. Convenient identification of desulfoglucosinolates on the basis of mass spectra obtained during liquid chromatography-diode array-electrospray ionisation mass spectrometry analysis: Method verification for sprouts of different Brassicaceae species extracts. J. Chromatogr. A 2013, 1278, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, J.; Yu, D.; Chen, S.; Ye, X.; Zhang, Z. Analysis of Processing Effects on Glucosinolate Profiles in Red Cabbage by LC-MS/MS in Multiple Reaction Monitoring Mode. Molecules 2021, 26, 5171. [Google Scholar] [CrossRef]
- Dai, B.; Hu, Z.; Li, H.; Yan, C.; Zhang, L. Simultaneous determination of six flavonoids from Paulownia tomentosa flower extract in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 978–979, 54–61. [Google Scholar] [CrossRef]
- Koley, T.K.; Khan, Z.; Oulkar, D.; Singh, B.; Maurya, A.; Banerjee, K. High resolution LC-MS characterization of phenolic compounds and the evaluation of antioxidant properties of a tropical purple radish genotype. Arab. J. Chem. 2020, 13, 1355–1366. [Google Scholar] [CrossRef]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Hoffmann, H.; Andernach, L.; Kanzler, C.; Hanschen, F.S. Novel transformation products from glucosinolate-derived thioglucose and isothiocyanates formed during cooking. Food Res. Int. 2022, 157, 111237. [Google Scholar] [CrossRef]
- Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci. 2018, 25, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, A.; Marček, T.; Šubarić, D.; Jozinović, A.; Babić, J.; Miličević, B.; Sinković, K.; Šubarić, D.; Ačkar, Đ. Comparative Evaluation of Bioactive Compounds and Volatile Profile of White Cabbages. Molecules 2020, 25, 3696. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.K.; Rajauria, G.; Abu-Ghannam, N.; Gupta, S. Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of Selected Irish Brassica Vegetables. Nat. Prod. Commun. 2011, 6, 1934578X1100600923. [Google Scholar] [CrossRef]
- Ayadi, J.; Debouba, M.; Rahmani, R.; Bouajila, J. Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022, 27, 6008. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.T. Glucosinolates in the human diet. Bioavailability and implications for health. Phytochem. Rev. 2002, 1, 183–188. [Google Scholar] [CrossRef]
- Santín-Márquez, R.; Alarcón-Aguilar, A.; López-Diazguerrero, N.E.; Chondrogianni, N.; Königsberg, M. Sulforaphane—Role in aging and neurodegeneration. Geroscience 2019, 41, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024, 12, 1169. [Google Scholar] [CrossRef] [PubMed]
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a Dietary Anti-Inflammatory Agent: Current Therapeutic Standing. Molecules 2020, 25, 4073. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liang, Q.-H.; Xiong, X.-G.; Wang, Y.; Zhang, Z.-H.; Sun, M.-J.; Lu, X.; Wu, D. Anti-Inflammatory Effects of p-Coumaric Acid, a Natural Compound of Oldenlandia diffusa, on Arthritis Model Rats. Evid.-Based Complement. Altern. Med. 2018, 2018, 5198594. [Google Scholar] [CrossRef]
- Ge, L.; Jiang, Y.; Li, Y.; Xie, Q.; Miao, Y.; Wu, Z.; Zeng, X. Caffeoylquinic acids isolated from Lonicera japonica Thunb. as TAK1 inhibitors protects against LPS plus IFN-γ-stimulated inflammation by interacting with KEAP1-regulated NRF2 activation. Biomed. Pharmacother. 2023, 165, 115038. [Google Scholar] [CrossRef]
- Rokayya, S.; Li, C.J.; Zhao, Y.; Li, Y.; Sun, C.H. Cabbage (Brassica oleracea L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac. J. Cancer Prev. 2014, 14, 6657–6662. [Google Scholar] [CrossRef] [PubMed]
- Vornoli, A.; Vizzarri, F.; Della Croce, C.M.; Grande, T.; Palazzo, M.; Árvay, J.; Pucci, L.; Gabriele, M.; Matteucci, M.; Paolini, M.; et al. The hypolipidemic, anti-inflammatory and antioxidant effect of Kavolì® aqueous extract, a mixture of Brassica oleracea leaves, in a rat model of NAFLD. Food Chem. Toxicol. 2022, 167, 113261. [Google Scholar] [CrossRef] [PubMed]
- Kasarello, K.; Köhling, I.; Kosowska, A.; Pucia, K.; Lukasik, A.; Cudnoch-Jedrzejewska, A.; Paczek, L.; Zielenkiewicz, U.; Zielenkiewicz, P. The Anti-Inflammatory Effect of Cabbage Leaves Explained by the Influence of bol-miRNA172a on FAN Expression. Front. Pharmacol. 2022, 13, 846830. [Google Scholar] [CrossRef]
- Fehrenbacher, J.C.; Vasko, M.R.; Duarte, D.B. Models of Inflammation: Carrageenan- or Complete Freund’s Adjuvant (CFA)–Induced Edema and Hypersensitivity in the Rat. Curr. Protoc. Pharmacol. 2012, 56, 5.4.1–5.4.4. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.K.; Basbaum, A.I. Early antinociception delays edema but does not reduce the magnitude of persistent pain in the formalin test. J. Pain 2000, 1, 218–228. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kar, S.K.; Roy, K.; Sengupta, C. Exploring effects of different nonsteroidal anti-inflammatory drugs on malondialdehyde profile. Acta Pol. Pharm. 2006, 63, 83–88. [Google Scholar]
- Pop, R.M.; Socaciu, C.; Pintea, A.; Buzoianu, A.D.; Sanders, M.G.; Gruppen, H.; Vincken, J.-P. UHPLC/PDA–ESI/MS Analysis of the Main Berry and Leaf Flavonol Glycosides from Different Carpathian Hippophaë rhamnoides L. Varieties. Phytochem. Anal. 2013, 24, 484–492. [Google Scholar] [CrossRef]
- Conti, M.; Morand, P.C.; Levillain, P.; Lemonnier, A. Improved fluorometric determination of malonaldehyde. Clin. Chem. 1991, 37, 1273–1275. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994, 233, 380–385. [Google Scholar] [CrossRef]
- Vats, P.; Singh, V.K.; Singh, S.N.; Singh, S.B. Glutathione metabolism under high-altitude stress and effect of antioxidant supplementation. Aviat. Space Environ. Med. 2008, 79, 1106–1111. [Google Scholar] [CrossRef]
- Janaszewska, A.; Bartosz, G. Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma. Scand. J. Clin. Lab. Investig. 2002, 62, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Flohé, L.; Otting, F. Superoxide dismutase assays. Methods Enzymol. 1984, 105, 93–104. [Google Scholar] [CrossRef] [PubMed]
No. | Rt (min) | Lambda Max (nm) | [M + H]+ m/z | Tentative Identification | References |
---|---|---|---|---|---|
1 | 3.1 | 220, 280, 350sh | 380 | Desulfo-glucoraphanin | [15] |
2 | 4.7 | 220, 270 | 308 | Hydroxycinnamic acid para coumaric acid | [10] |
3 | 8.1 | 260 | 422 | Glucoerucin | [16] |
4 | 8.9 | 275 | 354/355 | Caffeoylquinic acid | [10] |
5 | 12.2 | 225, 310 | 386 | Synapoyl glucoside acid | [10] |
6 | 13.2 | 220, 240sh, 275, 325 | 433 | Apigenin-glucoside | [17] |
7 | 13.6 | 220, 275 | 433 | Kaempherol rhamnoside | [18] |
8 | 14.2 | 220, 280, 290, 315sh | 521 | Isorhamnetin 3-o acetyl glucoside | [19] |
9 | 14.7 | 220, 250, 315 | 565 | Apigenin-apiosyl-glucoside | [18] |
10 | 15.8 | 220, 280 | 437 | Glucoraphanin | [20] |
11 | 16.5 | 280, 320sh | 569 | Quercetin 3-o-6-benzoyl-galactoside | [21] |
12 | 18.2 | 225, 80 | 391 | Desulfo-glucobrassicin | [15] |
Time | Control | NSAID p.o | BOE p.o | NSAID Topic | BOE Topic | p |
---|---|---|---|---|---|---|
0 min | 9.65 ± 2.69 (38.6%) | 9.8 ± 2.58 (39.2%) | 9.40 ± 7.05 (37.6%) | 9.45 ± 4.92 (37.8%) | 9.15 ± 4.6 (36.6%) | NS |
90 min | 9.1 ± 1.83 (34.4%) | 11.60 ± 4.14 (46.4%) * | 7.45 ± 3.20 (29.8%) | 5.55 ± 1.32 (22.2%) */** | 5.9 ± 1.94 (23.6%) */** | <0.001 |
180 min | 7.4 ± 1.71 (29.6%) | 10.27 ± 2.98 (41.1%) | 8.57 ± 2.88 (34.3%) | 8.60 ± 2.47 (34.4%) | 10.7 ± 6.68 (42.8%) | NS |
270 min | 7.92 ± 2.73 (31.7%) | 9.15 ± 3.21 (36.6%) | 9.63 ± 3.37 (38.5%) | 7.50 ± 3.71 (30%) | 8.7 ± 5.9(34.8%) | NS |
360 min | 6.9 ± 2.06 (27.6%) | 7.6 ± 2.53 (30.4%) | 6.35 ± 1.92 (25.4%) | 6.00 ± 1.84 (24%) ** | 6.2 ± 1.49 (24.8%) ** | NS |
Time | Control | NSAID p.o | BOE p.o | NSAID Topic | BOE Topic | p |
---|---|---|---|---|---|---|
0 h | 7.3 ± 2.68 | 6.8 ± 2.86 | 5.3 ± 1.15 | 6.95 ± 1.75 | 5 ± 1.2 | NS |
24 h | 4.75 ± 2.4 | 5.55 ± 1.12 | 5.8 ± 1.03 | 5.45 ± 1.03 | 5.5 ± 2.73 | NS |
72 h | 8 ± 1.56 | 7.25 ± 1.37 | 7.35 ± 2.67 | 6.2 ± 1.82 * | 5.2 ± 1.97 * | 0.02 |
168 h | 7.9 ± 2.41 | 5.25 ± 1.7 | 6.55 ± 1.48 | 6.16 ± 0.76 | 5.85 ± 1.47 | NS |
Groups/Abbrev. | Administrated Substances/Dose | Route | |
---|---|---|---|
Acute Inflammation—Single Dose | Subacute Inflammation—Daily Doses, 1 Week Treatment | ||
Group 1—Control inflammation | Normal saline solution | Normal saline solution | topic |
Group 2—NSAID p.o | Diclofenac (10 mg/kg BW) | Diclofenac (5 mg/kg BW) | p.o |
Group 3—BOE p.o | BOE (4 mL/kg BW) | BOE (4 mL/kg BW) | p.o |
Group 4—NSAID topic | Diclofenac 0.5 mL gel 5% | Diclofenac 0.5 mL gel 5% | topic |
Group 5—BOE topic | BOE 0.5 mL BOE | BOE 0.5 mL | topic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabin, O.; Pop, R.M.; Bocșan, I.C.; Chedea, V.S.; Ranga, F.; Grozav, A.; Levai, A.-M.; Buzoianu, A.D. The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents. Molecules 2024, 29, 3448. https://doi.org/10.3390/molecules29153448
Sabin O, Pop RM, Bocșan IC, Chedea VS, Ranga F, Grozav A, Levai A-M, Buzoianu AD. The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents. Molecules. 2024; 29(15):3448. https://doi.org/10.3390/molecules29153448
Chicago/Turabian StyleSabin, Octavia, Raluca Maria Pop, Ioana Corina Bocșan, Veronica Sanda Chedea, Floricuța Ranga, Adriana Grozav, Antonia-Mihaela Levai, and Anca Dana Buzoianu. 2024. "The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents" Molecules 29, no. 15: 3448. https://doi.org/10.3390/molecules29153448
APA StyleSabin, O., Pop, R. M., Bocșan, I. C., Chedea, V. S., Ranga, F., Grozav, A., Levai, A. -M., & Buzoianu, A. D. (2024). The Anti-Inflammatory, Analgesic, and Antioxidant Effects of Polyphenols from Brassica oleracea var. capitata Extract on Induced Inflammation in Rodents. Molecules, 29(15), 3448. https://doi.org/10.3390/molecules29153448