Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,688)

Search Parameters:
Keywords = Fifth Generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5147 KB  
Article
5G RF-EMFs Mitigate UV-Induced Genotoxic Stress Through Redox Balance and p38 Pathway Regulation in Skin Cells
by Ju Hwan Kim, Hee Jin, Kyu Min Jang, Ji Eun Lee, Sanga Na, Sangbong Jeon, Hyung-Do Choi, Jung Ick Moon, Nam Kim, Kyung-Min Lim, Hak Rim Kim and Yun-Sil Lee
Antioxidants 2026, 15(1), 127; https://doi.org/10.3390/antiox15010127 - 19 Jan 2026
Viewed by 39
Abstract
The biological effects of radiofrequency electromagnetic fields (RF-EMFs) remain an unresolved scientific issue with important societal relevance, particularly in the context of the global deployment of fifth-generation (5G) wireless technologies. The skin is continuously exposed to both RF-EMFs and ultraviolet (UV) radiation, a [...] Read more.
The biological effects of radiofrequency electromagnetic fields (RF-EMFs) remain an unresolved scientific issue with important societal relevance, particularly in the context of the global deployment of fifth-generation (5G) wireless technologies. The skin is continuously exposed to both RF-EMFs and ultraviolet (UV) radiation, a well-established inducer of oxidative stress and DNA damage, making it a relevant model for assessing combined environmental exposures. In this study, we investigated whether post-exposure to 5G RF-EMFs (3.5 and 28 GHz) modulates ultraviolet A (UVA)-induced genotoxic stress in human keratinocytes (HaCaT) and murine melanoma (B16) cells. Post-UV RF-EMF exposure significantly reduced DNA damage markers, including phosphorylated histone H2AX (γH2AX) foci formation (by approximately 30–50%) and comet tail moments (by 60–80%), and suppressed intracellular reactive oxygen species (ROS) accumulation (by 56–93%). These effects were accompanied by selective attenuation of p38 mitogen-activated protein kinase (MAPK) phosphorylation (reduced by 55–85%). The magnitude of molecular protection was comparable to that observed with N-acetylcysteine treatment or pharmacological inhibition of p38 MAPK. In contrast, RF-EMF exposure did not reverse UV-induced reductions in cell viability or alterations in cell cycle distribution, indicating that its protective effects are confined to early molecular stress-response pathways rather than downstream survival outcomes. Together, these findings demonstrate that 5G RF-EMFs can facilitate recovery from UVA-induced molecular damage via redox-sensitive and p38-dependent mechanisms, providing mechanistic insight into the interaction between modern telecommunication frequencies and UV-induced skin stress. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

16 pages, 3316 KB  
Article
Characterization of the Oral and Stomach Microbial Community Structure in Patients with Intestinal Metaplasia, Dysplasia, and Gastric Cancer Through High-Throughput Sequencing
by Hokyung Song, Seon Woo Oh, Jung-Hwan Oh and Tatsuya Unno
Microorganisms 2026, 14(1), 209; https://doi.org/10.3390/microorganisms14010209 - 16 Jan 2026
Viewed by 139
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, with the highest incidence in East Asia. Although H. pylori is a well-known risk factor, carcinogenesis can occur independently of H. pylori infection, and approximately 43% of adults carry H. pylori as part [...] Read more.
Gastric cancer (GC) is the fifth most common cancer worldwide, with the highest incidence in East Asia. Although H. pylori is a well-known risk factor, carcinogenesis can occur independently of H. pylori infection, and approximately 43% of adults carry H. pylori as part of their native microbiota. This study aimed to identify potential oral and gastric microbial markers across different histological stages of GC in both H. pylori-positive and -negative patients. Buccal swabs and gastric mucosa samples were collected from patients with intestinal metaplasia, low-grade dysplasia, high-grade dysplasia, early GC, or advanced GC. Total DNA was extracted, and 16S rRNA gene amplicon sequencing was performed. Microbiome diversity generally remained stable across histological stages, with no directional shifts in community structure. Differential abundance analysis revealed higher relative abundances of Anaerostipes, Phocaeicola, and Collinsella in the gastric antrum of cancerous samples. Anaerostipes and Phocaeicola are typically enriched in the intestinal microbiota but are rarely observed in the stomach, suggesting their potential ecological and pathological relevance in gastric carcinogenesis. In H. pylori-negative patients, however, a different stage-associated abundance pattern was observed, in which Faecalibacterium, a genus predominantly associated with the intestinal environment, was less abundant in advanced gastric cancer samples than in earlier histological stages within the gastric body. These findings suggest that microbial changes during gastric cancer progression may follow different trajectories depending on H. pylori infection status. In oral samples, Haemophilus and Prevotella were more abundant in intestinal metaplasia than in low-grade dysplasia, and network analysis indicated links between Neisseria and Filifactor at oral and gastric sites. However, as the study population was limited to a single country and ethnicity, the applicability of these microbial markers should be carefully considered. Full article
(This article belongs to the Special Issue The Role of Microbiota in Cancer Development and Therapy)
Show Figures

Figure 1

27 pages, 4055 KB  
Article
Additive Manufacturing of Layered Nb-Al2O3 Composite Granules Based on Paste Extrusion
by Tilo Zienert, Dinesh Kumar Gunasekar, Dirk Endler, Christina Faßauer and Christos G. Aneziris
Metals 2026, 16(1), 101; https://doi.org/10.3390/met16010101 - 16 Jan 2026
Viewed by 197
Abstract
How would it be possible to functionalize ceramic aggregates for use in refractories? In this work, we demonstrate how paste extrusion can be used to fabricate layered and porous Nb-Al2O3-based composite refractories for adjusting thermal and electrical conductivity. Additive [...] Read more.
How would it be possible to functionalize ceramic aggregates for use in refractories? In this work, we demonstrate how paste extrusion can be used to fabricate layered and porous Nb-Al2O3-based composite refractories for adjusting thermal and electrical conductivity. Additive manufacturing is used to generate a specific sequence of alumina and composite layers. After drying, the samples were sintered at 1600 °C, crushed, and sieved into particle sizes up to 3150 µm. The rheology of the paste revealed the intended shear-thinning behavior with microcrack formation between the yield and flow strain. The sintered material showed promising thermal-shock characteristics reaching plateau values after the third cycle without signs of further structural damage up to the fifth thermal shock. The layered microstructure was retained after crushing the composites, establishing functionalization of the refractory granules for all particle sizes. Full article
Show Figures

Figure 1

18 pages, 17892 KB  
Review
Review of Preparing Low-Dielectric Epoxy Resin Composites
by Jingwei Liu, Pingping Ming, Zijian Zhou, Tianyong Zhang, Qifeng Liu and Bing Du
Coatings 2026, 16(1), 118; https://doi.org/10.3390/coatings16010118 - 15 Jan 2026
Viewed by 134
Abstract
The rapid advancement of fifth-generation (5G) communication technologies has increased the demand for high-frequency circuits that offer high signal transmission rates and low latency. Traditional epoxy resin materials, characterized by their high dielectric constant (εr) and dielectric loss (tanδ), lead to significant signal [...] Read more.
The rapid advancement of fifth-generation (5G) communication technologies has increased the demand for high-frequency circuits that offer high signal transmission rates and low latency. Traditional epoxy resin materials, characterized by their high dielectric constant (εr) and dielectric loss (tanδ), lead to significant signal attenuation and reflection in high-frequency applications, thus limiting their suitability for modern communication devices. Accordingly, reducing the dielectric constant and dielectric loss of epoxy resins has become a prominent research focus in materials science. This paper reviews various methods for developing low-dielectric epoxy resin composites, emphasizing strategies to reduce polarization and material density. It subsequently provides a concise analysis of the advantages and current challenges associated with each technique and offers insights into potential future research directions. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

13 pages, 694 KB  
Article
Radiation Oncology Follow-Up of Prostate Cancer Survivors Following Completion of Radiotherapy: A Population-Based Study
by Joshua O. Cerasuolo, Jonathan Sussman, Ian S. Dayes, Rinku Sutradhar, Manaf Zargoush and Hsien Seow
Curr. Oncol. 2026, 33(1), 49; https://doi.org/10.3390/curroncol33010049 - 15 Jan 2026
Viewed by 97
Abstract
Prostate cancer survivors require coordinated long-term care after treatment. We examined patterns of follow-up care and identified characteristics associated with the frequency of radiation oncology (RO) visits during survivorship. We conducted a population-based cohort study of men diagnosed with prostate cancer between April [...] Read more.
Prostate cancer survivors require coordinated long-term care after treatment. We examined patterns of follow-up care and identified characteristics associated with the frequency of radiation oncology (RO) visits during survivorship. We conducted a population-based cohort study of men diagnosed with prostate cancer between April 2010 and March 2019 in Ontario, Canada, who underwent first-line radiotherapy. Survivorship began three years following radiation. Using a recurrent event framework, we identified demographic and clinical characteristics associated with the rate of RO follow-up. Survivors seeking RO follow-up declined by 46.2% over five years of survivorship. Higher-risk characteristics, such as higher ISUP grade, higher stage, detectable prostate-specific antigen (PSA) score, and receipt of brachytherapy and/or hormones, were associated with more frequent RO visits. For instance, relative to International Society of Urological Pathology (ISUP) Grade 1, those with Grades 3 through 5 experienced follow-up rates that were 20%, 25%, and 34% higher, respectively. Despite concordance between patient risk and rate of RO follow-up, 23.6% of survivors continued to visit their RO providers into their fifth year of survivorship, more than half of whom were ISUP grades 1–2. Primary care follow-up remained stable. While frequency of RO follow-up appropriately reflected patient risk profile, many low-risk survivors still sought long-term RO-led care. This suggests an opportunity to encourage lower-risk prostate cancer survivors to seek follow-up care with their general practitioner. Full article
Show Figures

Figure 1

33 pages, 729 KB  
Review
A Comprehensive Review of Energy Efficiency in 5G Networks: Past Strategies, Present Advances, and Future Research Directions
by Narjes Lassoued and Noureddine Boujnah
Computers 2026, 15(1), 50; https://doi.org/10.3390/computers15010050 - 12 Jan 2026
Viewed by 246
Abstract
The rapid evolution of wireless communication toward Fifth Generation (5G) networks has enabled unprecedented performance improvement in terms of data rate, latency, reliability, sustainability, and connectivity. Recent years have witnessed an excessive deployment of new 5G networks worldwide. This deployment lead to an [...] Read more.
The rapid evolution of wireless communication toward Fifth Generation (5G) networks has enabled unprecedented performance improvement in terms of data rate, latency, reliability, sustainability, and connectivity. Recent years have witnessed an excessive deployment of new 5G networks worldwide. This deployment lead to an exponential growth in traffic flow and a massive number of connected devices requiring a new generation of energy-hungry base stations (BSs). This results in increased power consumption, higher operational costs, and greater environmental impact, making energy efficiency (EE) a critical research challenge. This paper presents a comprehensive survey of EE optimization strategies in 5G networks. It reviews the transition from traditional methods such as resources allocation, energy harvesting, BS sleep modes, and power control to modern artificial intelligence (AI)-driven solutions employing machine learning, deep reinforcement learning, and self-organizing networks (SON). Comparative analyses highlight the trade-offs between energy savings, network performance, and implementation complexity. Finally, the paper outlines key open issues and future directions toward sustainable 5G and beyond-5G (B5G/Sixth Generation (6G)) systems, emphasizing explainable AI, zero-energy communications, and holistic green network design. Full article
Show Figures

Figure 1

44 pages, 7079 KB  
Editorial
Mobile Network Softwarization: Technological Foundations and Impact on Improving Network Energy Efficiency
by Josip Lorincz, Amar Kukuruzović and Dinko Begušić
Sensors 2026, 26(2), 503; https://doi.org/10.3390/s26020503 - 12 Jan 2026
Viewed by 225
Abstract
This paper provides a comprehensive overview of mobile network softwarization, emphasizing the technological foundations and its transformative impact on the energy efficiency of modern and future mobile networks. In the paper, a detailed analysis of communication concepts known as software-defined networking (SDN) and [...] Read more.
This paper provides a comprehensive overview of mobile network softwarization, emphasizing the technological foundations and its transformative impact on the energy efficiency of modern and future mobile networks. In the paper, a detailed analysis of communication concepts known as software-defined networking (SDN) and network function virtualization (NFV) is presented, with a description of their architectural principles, operational mechanisms, and the associated interfaces and management frameworks that enable programmability, virtualization, and centralized control in modern mobile networks. The study further explores the role of cloud computing, virtualization platforms, distributed SDN controllers, and resource orchestration systems, outlining how they collectively support mobile network scalability, automation, and service agility. To assess the maturity and evolution of mobile network softwarization, the paper reviews contemporary research directions, including SDN security, machine-learning-assisted traffic management, dynamic service function chaining, virtual network function (VNF) placement and migration, blockchain-based trust mechanisms, and artificial intelligence (AI)-enabled self-optimization. The analysis also evaluates the relationship between mobile network softwarization and energy consumption, presenting the main SDN- and NFV-based techniques that contribute to reducing mobile network power usage, such as traffic-aware control, rule placement optimization, end-host-aware strategies, VNF consolidation, and dynamic resource scaling. Findings indicate that although fifth-generation (5G) mobile network standalone deployments capable of fully exploiting softwarization remain limited, softwarized SDN/NFV-based architectures provide measurable benefits in reducing network operational costs and improving energy efficiency, especially when combined with AI-driven automation. The paper concludes that mobile network softwarization represents an essential enabler for sustainable 5G and future beyond-5G systems, while highlighting the need for continued research into scalable automation, interoperable architectures, and energy-efficient softwarized network designs. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

34 pages, 1481 KB  
Article
Claiming Food Ethics as a Pillar of Food Security
by Ioana Mihaela Balan, Teodor Ioan Trasca, Nicoleta Mateoc-Sirb, Bogdan Petru Radoi, Ciprian Ioan Rujescu, Monica Ocnean, Flaviu Bob, Liviu Athos Tamas, Adrian Daniel Gencia and Alexandru Jadaneant
Foods 2026, 15(2), 255; https://doi.org/10.3390/foods15020255 - 10 Jan 2026
Viewed by 241
Abstract
This article explores the integration of food ethics as a proposed fifth and emerging pillar of food security, complementing the four dimensions established by the FAO 1996 framework (availability, accessibility, utilization, and stability). Using Romania as a case study, the research combines descriptive [...] Read more.
This article explores the integration of food ethics as a proposed fifth and emerging pillar of food security, complementing the four dimensions established by the FAO 1996 framework (availability, accessibility, utilization, and stability). Using Romania as a case study, the research combines descriptive statistical analysis, legislative review, and conceptual interpretation to examine how moral responsibility, social equity, and food citizenship shape sustainable food systems. Quantitative data from Eurostat (2020–2022) reveal that Romania generates over 3.4 million tons of food waste annually, with households accounting for more than half of the total. This wasted abundance coexists with persistent food insecurity, affecting 14.7% of the population who cannot afford a protein-based meal even once every second day. Given the short time series (n = 3), including the entire data that was reported to date and the exclusive use of secondary data, the statistical results are interpreted descriptively and, where applicable, exploratorily. In this context, the findings demonstrate that food waste is not merely an issue of economic inefficiency, but rather a profound ethical and social imbalance. This research argues for the conceptual recognition of an ethical pillar within the food security framework linking moral awareness, responsible consumption, and equitable access to food. By advancing food ethics as a normative and societal foundation of sustainable food systems, this article offers a framework relevant for policy design, civic engagement, and collective responsibility, reframing food security beyond a purely technical objective. Full article
Show Figures

Figure 1

32 pages, 3734 KB  
Article
A Hierarchical Framework Leveraging IIoT Networks, IoT Hub, and Device Twins for Intelligent Industrial Automation
by Cornelia Ionela Bădoi, Bilge Kartal Çetin, Kamil Çetin, Çağdaş Karataş, Mehmet Erdal Özbek and Savaş Şahin
Appl. Sci. 2026, 16(2), 645; https://doi.org/10.3390/app16020645 - 8 Jan 2026
Viewed by 290
Abstract
Industrial Internet of Things (IIoT) networks, Microsoft Azure Internet of Things (IoT) Hub, and device twins (DvT) are increasingly recognized as core enablers of adaptive, data-driven manufacturing. This paper proposes a hierarchical IIoT framework that integrates industrial IoT networking, DvT for asset-level virtualisation, [...] Read more.
Industrial Internet of Things (IIoT) networks, Microsoft Azure Internet of Things (IoT) Hub, and device twins (DvT) are increasingly recognized as core enablers of adaptive, data-driven manufacturing. This paper proposes a hierarchical IIoT framework that integrates industrial IoT networking, DvT for asset-level virtualisation, system-level digital twins (DT) for cell orchestration, and cloud-native services to support the digital transformation of brownfield, programmable logic controller (PLC)-centric modular automation (MA) environments. Traditional PLC/supervisory control and data acquisition (SCADA) paradigms struggle to meet interoperability, observability, and adaptability requirements at scale, motivating architectures in which DvT and IoT Hub underpin real-time orchestration, virtualisation, and predictive-maintenance workflows. Building on and extending a previously introduced conceptual model, the present work instantiates a multilayered, end-to-end design that combines a federated Message Queuing Telemetry Transport (MQTT) mesh on the on-premises side, a ZigBee-based backup mesh, and a secure bridge to Azure IoT Hub, together with a systematic DvT modelling and orchestration strategy. The methodology is supported by a structured analysis of relevant IIoT and DvT design choices and by a concrete implementation in a nine-cell MA laboratory featuring a robotic arm predictive-maintenance scenario. The resulting framework sustains closed-loop monitoring, anomaly detection, and control under realistic workloads, while providing explicit envelopes for telemetry volume, buffering depth, and latency budgets in edge-cloud integration. Overall, the proposed architecture offers a transferable blueprint for evolving PLC-centric automation toward more adaptive, secure, and scalable IIoT systems and establishes a foundation for future extensions toward full DvT ecosystems, tighter artificial intelligence/machine learning (AI/ML) integration, and fifth/sixth generation (5G/6G) and time-sensitive networking (TSN) support in industrial networks. Full article
(This article belongs to the Special Issue Novel Technologies of Smart Manufacturing)
Show Figures

Figure 1

25 pages, 16788 KB  
Article
Spatiotemporal Characteristics and Possible Causes of the Collapse of the Northern Hemisphere Polar Vortex
by Jinqi Li, Yu Zhang and Yaohui Li
Atmosphere 2026, 17(1), 69; https://doi.org/10.3390/atmos17010069 - 7 Jan 2026
Viewed by 316
Abstract
Changes in atmospheric circulation can be influenced by the collapse characteristics of the polar vortex, a significant system in the Northern Hemisphere. This study reveals the spatiotemporal evolution and causative mechanisms of the collapse of the Northern Hemisphere polar vortex, as well as [...] Read more.
Changes in atmospheric circulation can be influenced by the collapse characteristics of the polar vortex, a significant system in the Northern Hemisphere. This study reveals the spatiotemporal evolution and causative mechanisms of the collapse of the Northern Hemisphere polar vortex, as well as the polar vortex collapse criteria, Mann–Kendall test, mutation year extraction, and physical mechanism analyses, based on the fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5) data for 1980–2024. The main conclusions are as follows: (1) The collapse events, which primarily occurred in spring, and the collapse time exhibited a U-shaped trend. (2) The collapse period exhibited significant spatiotemporal nonuniformity, with shorter periods in 10–100 hPa, larger variations in 100–300 hPa, and longer periods in 300–500 hPa. (3) The collapse mutation propagated downward to lower layers, beginning in 10–30 hPa and concentrating between 1995 and 2005. (4) The momentum flux and heat flux exhibit meridionally concentrated structures in the middle–lower stratosphere. The transition layer forms a region of momentum and energy accumulation. In the lower levels, the heat flux weakens. (5) The polar vortex collapse results from enhanced lower-stratospheric instability, weakened transition-layer disturbances, and upward energy transfer from low-level convergence, together forming a characteristic U-shaped collapse structure. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

30 pages, 5730 KB  
Article
Indoor UAV 3D Localization Using 5G CSI Fingerprinting
by Mohsen Shahraki, Ahmed Elamin and Ahmed El-Rabbany
ISPRS Int. J. Geo-Inf. 2026, 15(1), 24; https://doi.org/10.3390/ijgi15010024 - 5 Jan 2026
Viewed by 308
Abstract
Fifth-generation (5G) wireless networks have been widely deployed across various applications, including indoor positioning. This paper presents a model for 3D indoor localization of an unmanned aerial vehicle (UAV) using 5G millimeter-wave technology. Wireless InSite software is used to simulate a real-world environment [...] Read more.
Fifth-generation (5G) wireless networks have been widely deployed across various applications, including indoor positioning. This paper presents a model for 3D indoor localization of an unmanned aerial vehicle (UAV) using 5G millimeter-wave technology. Wireless InSite software is used to simulate a real-world environment and extract channel state information from multiple 5G next-generation NodeBs (gNBs), which is then used to generate channel frequency response (CFR) images. These images are employed in a fingerprinting method, where a deep convolutional neural network is trained for accurate position prediction. The model is trained across multiple scenarios involving changes in the number of gNBs, receiver positions, and spacing. In all scenarios, the model is tested using a UAV flying along a trajectory at variable speed. It is shown that a mean positioning error (MPE) of 0.36 m in 2D and 0.43 m in 3D is achieved when twelve gNBs with receivers spaced at 0.25 m are used. In addition, the corresponding root mean square error (RMSE) values of 0.32 m (2D) and 0.33 m (3D) further confirm the stability of the localization performance by indicating a low dispersion of positioning errors. This demonstrates that high positioning accuracy is feasible, even when synchronization errors and hardware imperfections exist. Full article
(This article belongs to the Special Issue Indoor Mobile Mapping and Location-Based Knowledge Services)
Show Figures

Figure 1

12 pages, 755 KB  
Case Report
Novel SIM1 Variants Expanding the Spectrum of SIM1-Related Obesity
by Idris Mohammed, Wesam S. Ahmed, Tara Al-Barazenji, Hajar Dauleh, Donald R. Love and Khalid Hussain
Int. J. Mol. Sci. 2026, 27(1), 533; https://doi.org/10.3390/ijms27010533 - 5 Jan 2026
Viewed by 207
Abstract
Monogenic forms of severe early-onset obesity often involve genetic disruptions in the hypothalamic leptin-melanocortin pathway. Pathogenic variants in the SIM1 gene, a key transcription factor required for the development of the paraventricular nucleus, are a known cause of Prader–Willi-like syndrome, characterized by hyperphagia, [...] Read more.
Monogenic forms of severe early-onset obesity often involve genetic disruptions in the hypothalamic leptin-melanocortin pathway. Pathogenic variants in the SIM1 gene, a key transcription factor required for the development of the paraventricular nucleus, are a known cause of Prader–Willi-like syndrome, characterized by hyperphagia, severe obesity, and developmental delay. We performed targeted next-generation sequencing of 52 obesity-associated genes on a cohort of pediatric patients with severe early-onset obesity. Identified variants were analyzed for population frequency and predicted pathogenicity using in silico tools. The structural impact of the novel missense variants was assessed using protein domain modeling with AlphaFold3. We identified five rare SIM1 variants in eleven patients. Four were heterozygous nonsynonymous variants: one frameshift in the bHLH domain (p.Ser18Ter), one frameshift in the Per-ARNT-Sim domain (p.His143Ter), and two missense variants, p.Pro30Ala and p.Ser663Leu. Structural modeling suggested that the missense variants are likely to disrupt critical protein–protein interactions. The fifth variant was a synonymous change, c.1173G>A, p.(Ser391Ser), which was detected in five unrelated patients. Bioinformatic analysis predicted that this variant could alter splicing. Structural modeling suggested that the missense variants interfere with SIM1 function. This study expands the mutational spectrum of SIM1-linked monogenic obesity, reporting novel likely pathogenic frameshift variants, a missense variant, and a recurrent synonymous variant with a potential splice-site effect. The majority of the variants are predicted to affect the SIM1 protein. Our findings strengthen the critical role of the SIM1 gene in hypothalamic development and energy homeostasis. The results underscore the importance of including the SIM1 gene in genetic testing panels for children with severe obesity and hyperphagia, enabling precise diagnosis and potential future personalized management. Functional in vitro or in vivo validation of these variants is required to confirm their pathogenicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

30 pages, 5886 KB  
Article
Energy Efficiency Through Waste-Heat Recovery: Hybrid Data-Centre Cooling in District Heating Applications
by Damir Požgaj, Boris Delač, Branimir Pavković and Vedran Medica-Viola
Appl. Sci. 2026, 16(1), 323; https://doi.org/10.3390/app16010323 - 28 Dec 2025
Viewed by 617
Abstract
Growing demand for computing resources is increasing electricity use and cooling needs in data centres (DCs). Simultaneously, it creates opportunities for decarbonisation through the integration of waste heat (WH) into district heating (DH) systems. Such integration reduces primary energy (PE) consumption and emissions, [...] Read more.
Growing demand for computing resources is increasing electricity use and cooling needs in data centres (DCs). Simultaneously, it creates opportunities for decarbonisation through the integration of waste heat (WH) into district heating (DH) systems. Such integration reduces primary energy (PE) consumption and emissions, particularly in low-temperature DH networks. In this study, the possibility for utilisation of WH from DC hybrid cooling system into third generation (3G), fourth generation (4G), and fifth generation (5G) DH systems is investigated. The work is based on the dynamic simulations in TRNSYS. The model of the hybrid cooling system consists of a direct liquid cooling (DLC) loop (25–30 °C) and a chilled water rack coolers (CRCC) loop (10–15 °C). For 3G DH, a high-temperature water-to-water heat pump (HP) is applied to ensure the required water temperature in the system. Measured meteorological and equipment data are used to reproduce real DC operating conditions. Relative to the reference system, integrating WH into 5G DH reduces PE consumption and CO2 emissions by 88%. Results indicate that integrating WH into 5G DH and 4G DH minimises global cost and achieves a payback period of less than one year, whereas 3G DH, requiring high-temperature HPs, achieves 14 years. This approach to integrating waste heat from a hybrid DLC+CRCC DC cooling system is technically feasible, economically and environmentally viable for planning future urban integrations of waste heat into DH systems. Full article
Show Figures

Figure 1

27 pages, 6672 KB  
Article
How Do Different Precipitation Products Perform in a Dry-Climate Region?
by Noelle Brobst-Whitcomb and Viviana Maggioni
Atmosphere 2026, 17(1), 5; https://doi.org/10.3390/atmos17010005 - 20 Dec 2025
Viewed by 299
Abstract
Dry climate regions face heightened risks of flooding and infrastructure damage even with minimal rainfall. Climate change is intensifying this vulnerability by increasing the duration, frequency, and intensity of precipitation events in areas that have historically experienced arid conditions. As a result, accurate [...] Read more.
Dry climate regions face heightened risks of flooding and infrastructure damage even with minimal rainfall. Climate change is intensifying this vulnerability by increasing the duration, frequency, and intensity of precipitation events in areas that have historically experienced arid conditions. As a result, accurate precipitation estimation in these regions is critical for effective planning, risk mitigation, and infrastructure resilience. This study evaluates the performance of five satellite- and model-based precipitation products by comparing them against in situ rain gauge observations in a dry-climate region: The fifth generation European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) (analyzing maximum and minimum precipitation rates separately), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2), the Western Land Data Assimilation System (WLDAS), and the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG). The analysis focuses on both average daily rainfall and extreme precipitation events, with particular attention to precipitation magnitude and the accuracy of event detection, using a combination of statistical metrics—including bias ratio, mean error, and correlation coefficient—as well as contingency statistics such as probability of detection, false alarm rate, missed precipitation fraction, and false precipitation fraction. The study area is Palm Desert, a mountainous, arid, and urban region in Southern California, which exemplifies the challenges faced by dry regions under changing climate conditions. Among the products assessed, WLDAS ranked highest in measuring total precipitation and extreme rainfall amounts but performed the worst in detecting the occurrence of both average and extreme rainfall events. In contrast, IMERG and ERA5-MIN demonstrated the strongest ability to detect the timing of precipitation, though they were less accurate in estimating the magnitude of rainfall per event. Overall, this study provides valuable insights into the reliability and limitations of different precipitation estimation products in dry regions, where even small amounts of rainfall can have disproportionately large impacts on infrastructure and public safety. Full article
Show Figures

Figure 1

26 pages, 6425 KB  
Article
Analysis of Disinfectant Efficacy Against Tomato Brown Rugose Fruit Virus: Surface and Method Effects in Greenhouse Production
by Erika Janet Zamora-Macorra, Crystal Linda Merino-Domínguez, Carlos Ramos-Villanueva, Irvin Mauricio Mendoza-Espinoza, Elizabeth Cadenas-Castrejón and Katia Aviña-Padilla
Agronomy 2026, 16(1), 15; https://doi.org/10.3390/agronomy16010015 - 20 Dec 2025
Viewed by 1104
Abstract
Tomato brown rugose fruit virus (ToBRFV) has become a major threat to global tomato production due to its exceptional mechanical transmissibility and virion stability. Effective sanitation is essential for containment, yet the performance of commonly used disinfectants on greenhouse-relevant surfaces remains poorly characterized. [...] Read more.
Tomato brown rugose fruit virus (ToBRFV) has become a major threat to global tomato production due to its exceptional mechanical transmissibility and virion stability. Effective sanitation is essential for containment, yet the performance of commonly used disinfectants on greenhouse-relevant surfaces remains poorly characterized. This study evaluated multiple disinfectant formulations, applied by spraying or dipping, on polyethylene film, pruning shears, and human hands. After controlled inoculation with a standardized inoculum, treated surfaces were swabbed and extracts mechanically inoculated onto Nicotiana rustica L. Lesion number was visually quantified, and lesion area was measured using a computational image-analysis pipeline. Fifth-generation quaternary ammonium compounds (5°QAS) showed the highest virucidal activity on smooth, non-porous surfaces, reducing lesion numbers to fewer than 10 per leaf at 800–1000 ppm and maintaining infection severities below 1%. Glutaraldehyde at 500 ppm also performed strongly, achieving severities as low as 0.20% on plastic. Metallic pruning shears consistently retained infectious particles, with untreated controls exceeding 100 lesions per leaf and treated samples showing incomplete inactivation. Mechanical agents such as powdered milk and soap reduced infection but did not eliminate transmission. No clear dose–response trend was observed. The two most effective treatments, 5°QAS at 800–1000 ppm and glutaraldehyde at 500 ppm, significantly reduced or prevented systemic infection in tomato assays. These findings demonstrate that sanitation efficacy depends on formulation, surface type, and application method, providing operationally relevant guidelines for ToBRFV management. Full article
Show Figures

Figure 1

Back to TopTop