Additive Manufacturing of Layered Nb-Al2O3 Composite Granules Based on Paste Extrusion
Abstract
1. Introduction
2. Materials and Methods
- 1.
- Powder mixing and resting
- 2.
- Three-dimensional printing
- 3.
- Drying and sintering
- 4.
- Crushing and sieving
2.1. Rheological Characterisation
2.2. Materials
2.3. Sample Preparation
2.4. Sample Characterization
2.4.1. Rheology of the Alumina Paste
2.4.2. Characterization of the Sintered Material
2.4.3. Particle Characterization
3. Results
3.1. Rheology
G1 E20 F1800with the feeding rate F of . The extrusion lengths of 20 mm, 30 mm, 40 mm, 100 mm and 200 mm were studied with 20, 15, 10, 5 and 5 times extrusion, respectively. In total, 5 to 10 such runs were performed to calculate the mean mass of extruded material for one G-code command. In addition, the time of extrusion was measured for each extrusion run to calculate experimentally the extrusion rate.
3.2. Micrographs
3.3. Mechanical Properties and Density
3.4. Particle Size Distribution
3.5. Phase Assemblage
3.6. Particle Morphology
4. Discussion
5. Conclusions
- The efflux of the printer should be evaluated experimentally. We observed that for our 3D printer, a large difference between the specified values (according to the G-code from the slicing software) and the actual measured extruded volume. As this value directly influences the applied shear rate (and the rheological optimization for that), we recommend to experimentally determine the volumetric flow (and rate) for a new printer or a newly developed paste.
- Our alumina paste shows the tendency for microcrack formation before flowing based on the evaluation of a pronounced maximum in shear stress below .
- The inner structure still evolves after three days resting, which must be kept in mind for printing larger parts were several batches of the paste must be produced.
- The best resting time in terms of printing quality (reaching plateau values for shear stress or viscosity as fast as possible) was 2 days, which was used also in this study to print the samples.
- The time-dependent rheological properties for a non-continuous print (dual extrusion) are strongly influencing the extrusion result. The printing process should be simulated within the rheometer and, if necessary, the printing parameter should be adjusted depending on progress of the printed the layer sequence. We planned to study such an approach in a future work.
- The MIP-derived median pore size (monomodally distributed) was 1.6 µm, which is much below the value that is necessary for the wetting (and, therefore, filling of the pores) with steel/slag (30 µm). Therefore, the (alumina) material can be used as light-weight crucible or lining material in metallurgical applications.
- The sintered material showed a promising thermal-shock performance regarding its trend of the elastic constants. The shear and the Young’s modulus reached plateau values after the third shock, which is related to the formation of microcracks increasing the resistance against thermal stress.
- The selection of the alumina raw material in combination the high porosity (49 vol.%) prevents diffusion of niobium into the alumina layers during sintering at 1600 °C in case of the composite samples. This is a very positive feature, as it means that a printed heating element, e.g., within a crucible, will not change its resistivity during application and can be constantly used without adjusting the electrical parameters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| DIW | direct ink writing |
| ICSD | Inorganic Crystal Structure Database |
| MIP | mercury intrusion porosity |
| PSD | particle size distribution |
References
- Romanczuk-ruszuk, E.; Sztorch, B.; Pakuła, D.; Gabriel, E.; Nowak, K.; Przekop, R.E. 3D Printing Ceramics-Materials for Direct Extrusion Process. Ceramics 2023, 6, 364–385. [Google Scholar] [CrossRef]
- Peng, E.; Zhang, D.; Ding, J. Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Adv. Mater. 2018, 30, 1802404. [Google Scholar] [CrossRef] [PubMed]
- Lamnini, S.; Elsayed, H.; Lakhdar, Y.; Baino, F.; Smeacetto, F.; Bernardo, E. Robocasting of advanced ceramics: Ink optimization and protocol to predict the printing parameters—A review. Heliyon 2022, 8, e10651. [Google Scholar] [CrossRef]
- Hossain, S.S.; Lu, K. Recent progress of alumina ceramics by direct ink writing: Ink design, printing and post-processing. Ceram. Int. 2023, 49, 10199–10212. [Google Scholar] [CrossRef]
- Rueschhoff, L.; Costakis, W.; Michie, M.; Youngblood, J.; Trice, R. Additive Manufacturing of Dense Ceramic Parts via Direct Ink Writing of Aqueous Alumina Suspensions. Int. J. Appl. Ceram. Technol. 2016, 13, 821–830. [Google Scholar] [CrossRef]
- Elbadawi, M.; Mosalagae, M.; Reaney, I.; Meredith, J. Guar gum: A novel binder for ceramic extrusion. Ceram. Int. 2017, 43, 16727–16735. [Google Scholar] [CrossRef]
- Mamatha, S.; Biswas, P.; Ramavath, P.; Das, D.; Johnson, R. 3D printing of complex shaped alumina parts. Ceram. Int. 2018, 44, 19278–19281. [Google Scholar] [CrossRef]
- Mahboubizadeh, S.; Kazemi, A.; Khodaei, M. Optimizing the Printability of 3D Printed Alumina Parts Fabricated by Direct Ink Writing. Adv. J. Chem. Sect. A 2025, 8, 1776–1788. [Google Scholar] [CrossRef]
- Schlordt, T.; Schwanke, S.; Keppner, F.; Fey, T.; Travitzky, N.; Greil, P. Robocasting of alumina hollow filament lattice structures. J. Eur. Ceram. Soc. 2013, 33, 3243–3248. [Google Scholar] [CrossRef]
- Hossain, S.S.; Akhtar, F. Development of tunable porous alumina monolith using hollow microspheres via extrusion-based 3D printing. J. Eur. Ceram. Soc. 2024, 44, 6620–6628. [Google Scholar] [CrossRef]
- Weichelt, M.; Wahl, L.; Travitzky, N.; Fey, T. Co-extrusion of alumina core-shell structures fabricated by robocasting. Open Ceram. 2025, 23, 100805. [Google Scholar] [CrossRef]
- Chan, S.S.L.; Sesso, M.L.; Franks, G.V. Direct ink writing of hierarchical porous alumina-stabilized emulsions: Rheology and printability. J. Am. Ceram. Soc. 2020, 103, 5554–5566. [Google Scholar] [CrossRef]
- Jauk, J.; Vašatko, H.; Gosch, L.; Ristoski, K.; Füssl, J.; Stavric, M. Coextrusion of Clay-Based Composites: Using a Multi-Material Approach to Achieve Gradient Porosity in 3D-Printed Ceramics. Ceramics 2023, 6, 2243–2255. [Google Scholar] [CrossRef]
- del Mazo-Barbara, L.; Ginebra, M.P. Rheological characterisation of ceramic inks for 3D direct ink writing: A review. J. Eur. Ceram. Soc. 2021, 41, 18–33. [Google Scholar] [CrossRef]
- Przybyła, S.; Kwiatkowski, M.; Kwiatkowski, M.; Hebda, M. Optimization of Ceramic Paste Composition for 3D Printing via Robocasting. Materials 2024, 17, 4560. [Google Scholar] [CrossRef] [PubMed]
- Gourdonnaud, D.; Pateloup, V.; Junger, A.; Bourret, J.; Chartier, T.; Geffroy, P.M. Correlation between filament deposition path, microstructural and mechanical properties of dense alumina parts printed by robocasting. J. Eur. Ceram. Soc. 2024, 44, 1027–1035. [Google Scholar] [CrossRef]
- Zienert, T.; Endler, D.; Hubálková, J.; Eusterholz, M.; Boll, T.; Heilmaier, M.; Günay, G.; Weidner, A.; Biermann, H.; Kraft, B.; et al. Coarse-grained refractory composite castables based on alumina and niobium. Adv. Eng. Mater. 2022, 24, 2200296. [Google Scholar] [CrossRef]
- Günay, G.; Zienert, T.; Endler, D.; Aneziris, C.G.; Biermann, H.; Weidner, A. High-temperature compressive behavior of refractory alumina-niobium composite material. Adv. Eng. Mater. 2022, 24, 2200292. [Google Scholar] [CrossRef]
- Günay, G.; Zienert, T.; Endler, D.; Aneziris, C.G.; Biermann, H.; Weidner, A. Influence of particle size and fabrication method on mechanical properties of Nb-Al2O3 refractory composites under compressive loads at high temperatures. Ceram. Int. 2025, 51, 9619–9629. [Google Scholar] [CrossRef]
- Zienert, T.; Farhani, M.; Dudczig, S.; Aneziris, C.G. Coarse-grained refractory composites based on Nb-Al2O3 and Ta-Al2O3 castables. Ceram. Int. 2018, 44, 16809–16818. [Google Scholar] [CrossRef]
- Wick-Joliat, R.; Schroffenegger, M.; Penner, D. Multi-material ceramic material extrusion 3D printing with granulated injection molding feedstocks. Ceram. Int. 2023, 49, 6361–6367. [Google Scholar] [CrossRef]
- Naumenko, V.; Zyatkevich, D.; Vedel, D.; Derevyanko, O.; Myslyvchenko, O.; Lytvyn, R.; Zgalat-lozynskyy, O. 3D Printing of MoSi2-Based Ceramic Heaters Using the Robocasting Method. Powder Metall. Met. Ceram. 2024, 63, 343–351. [Google Scholar] [CrossRef]
- Rowlands, W.; Vaidhyanathan, B. Additive manufacturing of barium titanate based ceramic heaters with positive temperature coefficient of resistance (PTCR). J. Eur. Ceram. Soc. 2019, 39, 3475–3483. [Google Scholar] [CrossRef]
- Zienert, T.; Endler, D.; Hubálková, J.; Günay, G.; Weidner, A.; Biermann, H.; Kraft, B.; Wagner, S.; Aneziris, C.G. Synthesis of Niobium-Alumina Composite Aggregates and Their Application in Coarse-Grained Refractory Ceramic-Metal Castables. Materials 2021, 14, 6453. [Google Scholar] [CrossRef]
- Zienert, T.; Endler, D.; Brachhold, N.; Weiner, M.; Schmidtchen, M.; Prahl, U.; Aneziris, C.G. Characterization of niobium-alumina refractory aggregates synthesized by castable technology. Adv. Eng. Mater. 2022, 24, 2200407. [Google Scholar]
- Kraft, B.; Wagner, S.; Hoffmann, M.J. Field Assisted Sintering of Nb-Al2O3 Composite Materials and Investigation of Electrical Conductivity. Adv. Eng. Mater. 2022, 24, 2200063. [Google Scholar] [CrossRef]
- Herschel, W.H.; Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid-Zeitschrift 1926, 39, 291–300. [Google Scholar] [CrossRef]
- Zhou, S.; Cai, Q.; Tirichenko, I.S.; Vilchez, V.; Gavalda-Diaz, O.; Bouville, F.; Saiz, E. Additive manufacturing of Al2O3 with engineered interlayers and high toughness through multi-material co-extrusion. Acta Mater. 2023, 246, 118704. [Google Scholar] [CrossRef]
- Feilden, E. Additive Manufacturing of Ceramics and Ceramic Composites via Robocasting. Ph.D. Thesis, Imperial College London, Department of Materials, London, UK, 2017. [Google Scholar] [CrossRef]
- Maillard, M.; Chevalier, J.; Gremillard, L.; Baeza, G.P.; Courtial, E.J.; Marion, S.; Garnier, V. Optimization of mechanical properties of robocast alumina parts through control of the paste rheology. J. Eur. Ceram. Soc. 2023, 43, 2805–2817. [Google Scholar] [CrossRef]
- M’barki, A.; Bocquet, L.; Stevenson, A. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. Sci. Rep. 2017, 7, 6017. [Google Scholar] [CrossRef]
- DIN EN 993-1:2019-03; Methods of Test for Dense Shaped Refractory Products—Part 1: Determination of Bulk Density, Apparent Porosity and True Porosity; German Version EN 993-1:2018. DIN Media GmbH: Berlin, Germany, 2019.
- DIN EN 843-2:2007-03; Advanced Technical Ceramics—Mechanical Properties of Mnolithic Ceramics at Room Temperature—Part 2: Determination of Young’s Modulus, Shear Modulus and Poisson’s Ratio; German Version EN 84-2:2006. DIN Media GmbH: Berlin, Germany, 2007.
- DIN EN 993-11:2008-03; Methods of Test for Dense Shaped Refractory Products—Part 11: Determination If Resistance to Thermal Shock; German Version EN 993-11:2007. DIN Media GmbH: Berlin, Germany, 2008.
- DIN EN 993-6:2019-03; Methods of Test for (Dense) Shaped Refractory Products—Part 6: Determination of Modulus of Rupture at Ambient Temperature; German Version EN 993-6:2018. DIN Media GmbH: Berlin, Germany, 2019.
- Weiner, M.; Schmidtchen, M.; Prahl, U. A New Approach for Sintering Simulation of Irregularly Shaped Powder Particles—Part I: Model Development and Case Studies. Adv. Eng. Mater. 2022, 24, 2101513. [Google Scholar] [CrossRef]
- Mooney, M. Explicit formulas for slip and fluidity. J. Rheol. 1931, 2, 210–222. [Google Scholar] [CrossRef]
- Izak, P. Fundamentals of Rheology in Ceramic Processing; AGH University Press: Krakow, Poland, 2025. [Google Scholar]
- Wern, H. Single Crystal Elastic Constants and Calculated Bulk Properties—A Handbook; Logos Verlag: Berlin, Germany, 2004; ISBN 3-8325-0533-4. [Google Scholar]
- Terao, N. Structure des Carbures de Niobium. Jpn. J. Appl. Phys. 1964, 3, 104–111. [Google Scholar] [CrossRef]
- Bowman, A.; Wallace, T.; Yarnell, J.; Wenzel, R. The crystal structure of niobium monoxide. Acta Crystallogr. 1966, 21, 843. [Google Scholar] [CrossRef]
- Edwards, J.W.; Speiser, R.; Johnston, H.L. High Temperature Structure and Thermal Expansion of Some Metals as Determined by X-Ray Diffraction Data. I. Platinum, Tantalum, Niobium, and Molybdenum. J. Appl. Phys. 1951, 22, 424–428. [Google Scholar] [CrossRef]
- Maslen, E.; Streltsov, V.; Streltsova, N.; Ishizawa, N.; Satow, Y. Synchrotron X-ray study of the electron density in α-Al2O3. Acta Crystallogr. Sect. B 1993, 49, 973–980. [Google Scholar] [CrossRef]
- Hasselman, D. Microcracking as a mechanism for improving thermal shock resistance and thermal insulating properties of ceramic materials. High Temp.-High Press. 1976, 8, 237–239. [Google Scholar]
- Storti, E.; Neumann, M.; Zienert, T.; Hubálková, J.; Aneziris, C.G. Metal-Ceramic Beads Based on Niobium and Alumina Produced by Alginate Gelation. Materials 2021, 14, 5483. [Google Scholar] [CrossRef]
- Storti, E.; Neumann, M.; Zienert, T.; Hubálková, J.; Aneziris, C.G. Full and hollow metal-ceramic beads based on tantalum and tantalum-alumina produced by alginate gelation. Adv. Eng. Mater. 2022, 24, 2200381. [Google Scholar] [CrossRef]

















| E in mm | in g | in s | in cm3/s | in 1/s |
|---|---|---|---|---|
| estimated | ||||
| 8 | 0.089 | 0.519 | 0.067 | 43.65 |
| 13 | 0.145 | 0.741 | 0.077 | 49.91 |
| experimentally determined | ||||
| 20 | 0.230 | 0.974 | 0.093 | 60.38 |
| 30 | 0.335 | 1.444 | 0.091 | 59.33 |
| 40 | 0.437 | 1.854 | 0.092 | 60.28 |
| 100 | 1.124 | 3.820 | 0.115 | 75.25 |
| 200 | 2.240 | 7.154 | 0.123 | 80.08 |
| Time | k | n | |||||||
|---|---|---|---|---|---|---|---|---|---|
| in Days | in mPa·s2 | in kPa | in Pa | in Pa | in kPa | ||||
| 1 | 0.18 | 372.1 | 0.0025 | 0.0079 | 0.0308 | 926.6 | 1392 | 94.16 | |
| 2 | 0.20 | 238.0 | 0.0042 | 0.0077 | 0.0391 | 1019.2 | 1372 | 77.37 | |
| 3 | 0.12 | 198.9 | 0.0019 | 0.0040 | 0.0645 | 384.0 | 1186 | 64.27 |
| Time in Days | in mm | |||
|---|---|---|---|---|
| ≥20 [29] | ||||
| 1 | 401.6 | 0.1705 | 0.1397 | 37.1 |
| 2 | 233.5 | 0.1634 | 0.1243 | 40.8 |
| 3 | 518.0 | 0.0643 | −0.0002 | 15.4 |
| Aggregate Class | in µm | in µm | in µm | Comment |
|---|---|---|---|---|
| 0–45 µm | 0.2 | 6.5 | 25.2 | this work |
| 45–500 µm | 0.2 | 29.8 | 392.2 | |
| 500–1000 µm | 354.5 | 729.0 | 1094.6 | |
| 0–45 µm | 0.2 | 11.7 | 50.4 | casted |
| 45–500 µm | 1.5 | 83.6 | 324.6 | 65 vol.% Nb [24] |
| 500–1000 µm | 199.7 | 461.2 | 701.4 | |
| 0–45 µm | 0.5 | 15.8 | 47.4 | casted |
| 45–500 µm | 9.6 | 82.4 | 338.1 | 60 vol.% Nb [25] |
| 500–1000 µm | 228.3 | 483.0 | 712.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zienert, T.; Gunasekar, D.K.; Endler, D.; Faßauer, C.; Aneziris, C.G. Additive Manufacturing of Layered Nb-Al2O3 Composite Granules Based on Paste Extrusion. Metals 2026, 16, 101. https://doi.org/10.3390/met16010101
Zienert T, Gunasekar DK, Endler D, Faßauer C, Aneziris CG. Additive Manufacturing of Layered Nb-Al2O3 Composite Granules Based on Paste Extrusion. Metals. 2026; 16(1):101. https://doi.org/10.3390/met16010101
Chicago/Turabian StyleZienert, Tilo, Dinesh Kumar Gunasekar, Dirk Endler, Christina Faßauer, and Christos G. Aneziris. 2026. "Additive Manufacturing of Layered Nb-Al2O3 Composite Granules Based on Paste Extrusion" Metals 16, no. 1: 101. https://doi.org/10.3390/met16010101
APA StyleZienert, T., Gunasekar, D. K., Endler, D., Faßauer, C., & Aneziris, C. G. (2026). Additive Manufacturing of Layered Nb-Al2O3 Composite Granules Based on Paste Extrusion. Metals, 16(1), 101. https://doi.org/10.3390/met16010101

