Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = Fe-Mn system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
56 pages, 1035 KiB  
Review
Trace Elements—Role in Joint Function and Impact on Joint Diseases
by Łukasz Bryliński, Katarzyna Brylińska, Filip Woliński, Jolanta Sado, Miłosz Smyk, Olga Komar, Robert Karpiński, Marcin Prządka and Jacek Baj
Int. J. Mol. Sci. 2025, 26(15), 7493; https://doi.org/10.3390/ijms26157493 (registering DOI) - 2 Aug 2025
Abstract
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a [...] Read more.
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a serious social problem. Risk factors for the development of these diseases include overweight and obesity, gender, and intestinal microbiome disorders. Another factor that is considered to influence joint diseases is trace elements. Under normal conditions, elements such as iron (Fe), copper (Cu), cobalt (Co), iodine (I), manganese (Mn), zinc (Zn), silver (Ag), cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni) selenium (Se), boron (B), and silicon (Si) are part of enzymes involved in reactions that determine the proper functioning of cells, regulate redox metabolism, and determine the maturation of cells that build joint components. However, when the normal concentration of the above-mentioned elements is disturbed and toxic elements are present, dangerous joint diseases can develop. In this article, we focus on the role of trace elements in joint function. We describe the molecular mechanisms that explain their interaction with chondrocytes, osteocytes, osteoblasts, osteoclasts, and synoviocytes, as well as their proliferation, apoptosis, and extracellular matrix synthesis. We also focus on the role of these trace elements in the pathogenesis of joint diseases: rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE). We describe the roles of increased or decreased concentrations of individual elements in the pathogenesis and development of joint diseases and their impact on inflammation and disease progression, referring to molecular mechanisms. We also discuss their potential application in the treatment of joint diseases. Full article
Show Figures

Figure 1

16 pages, 562 KiB  
Article
Investigation of Effects of Low Ruminal pH Values on Serum Concentrations of Macrominerals, Trace Elements, and Vitamins and Oxidative Status of Dairy Cows
by Panagiotis D. Katsoulos, Bengü Bilgiç, Duygu Tarhan, Fatma Ateş, Suat Ekin, Süleyman Kozat, Banu Dokuzeylül, Mehmet Erman Or, Emmanouil Kalaitzakis, Georgios E. Valergakis and Nikolaos Panousis
Ruminants 2025, 5(3), 35; https://doi.org/10.3390/ruminants5030035 (registering DOI) - 2 Aug 2025
Abstract
Due to the feeding system (high-concentrate diet) during the early lactation stage, ruminal pH in dairy cows follows a diurnal pattern and can remain below the critical level of 5.5 for extended periods of the day. This study aimed to evaluate the effect [...] Read more.
Due to the feeding system (high-concentrate diet) during the early lactation stage, ruminal pH in dairy cows follows a diurnal pattern and can remain below the critical level of 5.5 for extended periods of the day. This study aimed to evaluate the effect of low ruminal pH on blood concentrations of certain macrominerals, trace minerals, and fat-soluble vitamins and on the oxidative status of dairy cows during the first half of lactation. Fifty-three randomly selected lactating Holstein cows were used; blood and ruminal fluid samples were collected from all cows on days 30, 90 and 150 of lactation. Blood samples were obtained via coccygeal venipuncture, while the ruminal fluid was obtained by rumenocentesis and the pH was measured immediately after collection. Using a threshold pH of 5.5, samples were classified as normal (pH > 5.5) or low pH (pH ≤ 5.5). Serum concentrations of Ca, Mg, K, Cr, Mn, Zn, Se, and vitamins A, D3, E, and K were not significantly affected by ruminal pH, either by days in milk or by their interaction (p > 0.05). Plasma malondialdehyde and reduced glutathione followed the same trend (p > 0.05). Copper concentration was significantly higher (p < 0.05), and Fe concentration tended to be higher in cows with low pH compared to those with normal pH (p = 0.052). On day 150 of lactation, Cu, Fe, and Co concentrations were significantly higher in low-pH cows compared to normal-pH cows (p < 0.05). Low ruminal pH is associated with significant changes in serum concentrations of copper, iron, and cobalt but has no significant effect on the oxidative status of the animals or on the serum concentrations of the macro elements and fat-soluble vitamins studied. Full article
14 pages, 2802 KiB  
Article
Interactions of Fe, Mn, Zn, and Cd in Soil–Rice Systems: Implications for Reducing Cd Accumulation in Rice
by Yan Zhang, Su Jiang, Han Wang, Linfei Yu, Chunfu Li, Liqun Ding and Guosheng Shao
Toxics 2025, 13(8), 633; https://doi.org/10.3390/toxics13080633 - 28 Jul 2025
Viewed by 320
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with [...] Read more.
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with high (MY46) or low (ZS97B) Cd accumulation capacities grown in acidic and alkaline soils. Results demonstrated that Cd stress significantly inhibited plant growth, reducing plant height, shoot biomass, and grain yield in both soil types. Cd accumulation increased in roots, shoots, and grains, while Fe, Mn, and Zn concentrations decreased markedly. Molecular analysis revealed upregulation of metal transporter genes (OsIRT1, OsNRAMP1, OsNRAMP5) and the vacuolar sequestration gene (OsHMA3) in roots under Cd exposure. The translocation factor (TF) values of Mn and Zn from root to shoot were reduced in acidic soils, whereas Mn and Zn TFs exhibited an increasing trend in alkaline soils despite Cd exposure. Furthermore, correlation analyses indicated Mn and Zn play crucial roles in suppressing Cd accumulation in both acidic and alkaline soils. These findings provide critical insights for developing soil-specific strategies to reduce Cd accumulation in rice through micronutrient management. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

14 pages, 1632 KiB  
Article
Is the Mineral Content of Muscle Tissue (Longissimus Lumborum) in Cattle Finished During the Rainy Season in the Eastern Amazon Influenced by Different Farming Systems?
by Ana Paula Damasceno Ferreira, Jamile Andréa Rodrigues da Silva, Miguel Pedro Mourato, José António Mestre Prates, Thomaz Cyro Guimarães de Carvalho Rodrigues, André Guimarães Maciel e Silva, Andrea Viana da Cruz, Adriny dos Santos Miranda Lobato, Welligton Conceição da Silva, Elton Alex Corrêa da Silva, Antônio Marcos Quadros Cunha, Vanessa Vieira Lourenço-Costa, Éder Bruno Rebelo da Silva, Tatiane Silva Belo and José de Brito Lourenço-Júnior
Animals 2025, 15(15), 2186; https://doi.org/10.3390/ani15152186 - 25 Jul 2025
Viewed by 262
Abstract
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to [...] Read more.
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to assess whether the mineral content of muscle tissue (longissimus lumborum) in cattle finished during the rainy season in the Eastern Amazon is influenced by different farming systems. The treatments consisted of four systems (three pasture production systems and one feedlot system). 1. native wetland pasture in Santa Cruz do Arari (Mesoregion of Marajó); 2. native wetland pasture in Monte Alegre (Mesoregion of Baixo Amazonas); 3. cultivated dryland pasture in São Miguel do Guamá (Mesoregion of Nordeste Paraense); and 4. Confinement in Santa Izabel do Pará (Metropolitan Region of Belém). The analyses were carried out on samples of the longissimus lumborum muscle tissue of 48 male, castrated, crossbred Nelore cattle, twelve per breeding system, from commercial farms, destined for meat production, finished during the rainiest period of the year (between January and June). In systems 1 and 2, the animals were slaughtered in licensed slaughterhouses; the animals in systems 3 and 4 were slaughtered in commercial slaughterhouses. Food sampling and chemical analysis, soil sample collection and analysis, longissimus lumborum muscle tissue collection, sample preparation and digestion, and inductively coupled plasma optical emission spectrometry were evaluated. The experimental design was completely randomized in a linear model with four rearing systems and one period (rainy). The data was compared using the Statistical Analysis Systems (SAS) program. All analyses were carried out considering a significance level of 0.05. Samples of the diets offered (pasture and concentrate) were also collected. The Amazon systems influenced the macro- and micromineral content in the muscles of cattle (p < 0.05). The interaction between pasture systems vs. confinement showed differences in the minerals calcium (Ca), magnesium (Mg), phosphorus (P), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) (p < 0.05). However, there was no difference in the values of sodium (Na), potassium (K), and sulfur (S) between the rearing systems (p > 0.05). By contrast, the cultivated pasture system vs. extensive pasture showed differences in all the elements evaluated (p < 0.05). The rearing systems of the Eastern Amazon influenced the mineral content of beef, which continues to be an excellent source of macro- and microminerals and can compose the human diet. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

24 pages, 9486 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Viewed by 254
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

23 pages, 2483 KiB  
Article
A Unionid Mussel Biodiversity Hotspot Experiencing Unexplained Declines: Evaluating the Influence of Chemical Stressors Using Caged Juveniles
by W. Aaron Wilson, Christine Bergeron, Jennifer Archambault, Jason Unrine, Jess Jones, Braven Beaty, Damian Shea, Peter R. Lazaro, Jody L. Callihan, Jennifer J. Rogers and W. Gregory Cope
Diversity 2025, 17(8), 503; https://doi.org/10.3390/d17080503 - 22 Jul 2025
Viewed by 281
Abstract
Unionid mussel populations in a section of the Clinch River in Virginia, USA, has declined substantially, but the causes of the decline remain unknown. To investigate this zone of decline (ZOD), we deployed juvenile freshwater mussels (Villosa iris in 2012 and Lampsilis [...] Read more.
Unionid mussel populations in a section of the Clinch River in Virginia, USA, has declined substantially, but the causes of the decline remain unknown. To investigate this zone of decline (ZOD), we deployed juvenile freshwater mussels (Villosa iris in 2012 and Lampsilis fasciola in 2013) in both cages and silos at sites within the Clinch River System. We analyzed mussel tissues for trace element and organic contaminant concentrations, shells for trace elements, and environmental media (total water, dissolved water, particulate sediment, and bedload sediment) for both inorganic and organic contaminants. We found a few differences between mussels deployed in cages and those deployed in silos: survival was slightly lower in cages due to periodic sedimentation. Our results identified the ZOD based on the accumulation of trace elements (notably As, Cu, Fe, Mn, Ni, and Sr), polycyclic aromatic hydrocarbons (PAHs), and δ15N enrichment, with especially high concentrations found in the human-impacted tributaries, Dumps Creek and Guest River. Some correlations were found between environmental media and both mussel tissues and shells. In particular, PAHs and Mn had several significant relationships between bioaccumulated concentrations and environmental concentrations. Finally, Co, Cu, Fe, and V in soft tissues negatively correlated with mussel growth, whereas bioaccumulated PAH concentrations correlated negatively with resident mussel densities. Full article
(This article belongs to the Special Issue Freshwater Biodiversity Hotspots in 2025)
Show Figures

Figure 1

21 pages, 3984 KiB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Viewed by 364
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

14 pages, 7306 KiB  
Article
Influence of Gear Set Loading on Surface Damage Forms for Gear Teeth with DLC Coating
by Edyta Osuch-Słomka, Remigiusz Michalczewski, Anita Mańkowska-Snopczyńska, Michał Gibała, Andrzej N. Wieczorek and Emilia Skołek
Coatings 2025, 15(7), 857; https://doi.org/10.3390/coatings15070857 - 21 Jul 2025
Viewed by 249
Abstract
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is [...] Read more.
An analysis of the working surfaces of cylindrical gears after scuffing shock tests allowed for the assessment of the effect of loading conditions on the form of damage to the tooth surfaces. Unlike the method of scuffing under severe conditions, where loading is applied gradually, the presented tests employed direct maximum loading—shock loading—without prior lapping of the gears under lower loads. This loading method significantly increases the vulnerability of the analyzed components to scuffing, enabling an evaluation of their limit in terms of operational properties. To identify the changes and the types of the teeth’s working surface damage, the following microscopy techniques were applied: scanning electron microscopy (FE-SEM) with EDS microanalyzer, optical interferential profilometry (WLI), atomic force microscope (AFM), and optical microscopy. The results allowed us to define the characteristic damage mechanisms and assess the efficiency of the applied DLC coatings when it comes to resistance to scuffing in shock scuffing conditions. Tribological tests were performed by means of an FZG T-12U gear test rig in a power circulating system to test cylindrical gear scuffing. The gears were made from 18CrNiMo7-6 steel and 35CrMnSiA nano-bainitic steel and coated with W-DLC/CrN. Full article
Show Figures

Figure 1

20 pages, 2590 KiB  
Article
Application of Fused Filament Fabrication in Preparation of Ceramic Monolithic Catalysts for Oxidation of Gaseous Mixture of Volatile Aromatic Compounds
by Filip Car, Dominik Horvatić, Vesna Tomašić, Domagoj Vrsaljko and Zoran Gomzi
Catalysts 2025, 15(7), 677; https://doi.org/10.3390/catal15070677 - 11 Jul 2025
Viewed by 401
Abstract
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed [...] Read more.
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed ceramic monolithic carriers was investigated using fused filament fabrication. A mixed manganese and iron oxide, MnFeOx, was used as the catalytically active layer, which was applied to the monolithic substrate by wet impregnation. The approximate geometric surface area of the obtained carrier was determined to be 53.4 cm2, while the mass of the applied catalytically active layer was 50.3 mg. The activity of the prepared monolithic catalysts for the oxidation of BTEX was tested at different temperatures and space times. The results obtained were compared with those obtained with commercial monolithic catalysts made of ceramic cordierite with different channel dimensions, and with monolithic catalysts prepared by stereolithography. In the last part of the work, a kinetic analysis and the modeling of the monolithic reactor were carried out, comparing the experimental results with the theoretical results obtained with the 1D pseudo-homogeneous and 1D heterogeneous models. Although both models could describe the investigated experimental system very well, the 1D heterogeneous model is preferable, as it takes into account the heterogeneity of the reaction system and therefore provides a more realistic description. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

19 pages, 2883 KiB  
Article
Health Risk Assessment and Accumulation of Potentially Toxic Elements in Capsella bursa-pastoris (L.) Medik
by Ivana Mikavica, Dragana Ranđelović, Miloš Ilić, Marija Simić, Jelena Petrović, Marija Koprivica and Jelena Mutić
Processes 2025, 13(7), 2222; https://doi.org/10.3390/pr13072222 - 11 Jul 2025
Viewed by 266
Abstract
Capsella bursa-pastoris (L.) Medik (C. bursa-pastoris) is an underexplored medicinal herb and bioindicator of potentially toxic elements (PTEs). Its broad traditional utilization combined with its high capacity for PTE accumulation may endanger human health. Herein, we investigated the concentrations and mobility [...] Read more.
Capsella bursa-pastoris (L.) Medik (C. bursa-pastoris) is an underexplored medicinal herb and bioindicator of potentially toxic elements (PTEs). Its broad traditional utilization combined with its high capacity for PTE accumulation may endanger human health. Herein, we investigated the concentrations and mobility of PTEs (Ba, Co, Cr, Cu, Fe, Mn, Ni, Sr, and Zn) in the urban soil–C. bursa-pastoris system and comprehensively assessed potential health risks associated with exposure to contaminated soils, plant and herbal extracts. Cu, Zn, Sr, and Mn were the most abundant in soils and predominantly phytoavailable. The calculated values of the geo-accumulation index (Igeo) indicated moderate to heavy Cu, Zn, and Sr contamination in the soil. C. bursa-pastoris demonstrated two strategies for PTEs—the exclusion of Ba, Cr, Mn, and Sr, and the accumulation of Cu, Ni, Co, and Fe. Principal Component Analysis (PCA) classified samples from four cities based on the PTE levels in soils, plants, and herbal extracts. Although plant tissues contained elevated levels of PTEs, the estimated daily intake (EDI), target hazard quotient (THQ), and lifetime carcinogenic risk (LCR) demonstrated no significant health risks from consuming C. bursa-pastoris and its extracts. The obtained results indicated the higher sensitivity of children to the hazardous effects of PTEs compared to adults. Extensive risk assessments of polluted soils and inhabiting plants are crucial in PTE monitoring. This study underscored its importance and delivered new insights into the contamination of medicinal herbs, aiming to contribute to implementing safety policies in public health protection. Full article
Show Figures

Graphical abstract

15 pages, 3736 KiB  
Article
Molecular Characterization of a Restriction Endonuclease PsaI from Pseudomonas anguilliseptica KM9 and Sequence Analysis of the PsaI R-M System
by Beata Furmanek-Blaszk, Iwona Mruk and Marian Sektas
Int. J. Mol. Sci. 2025, 26(14), 6548; https://doi.org/10.3390/ijms26146548 - 8 Jul 2025
Viewed by 193
Abstract
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence [...] Read more.
A restriction enzyme PsaI, an isoschizomer of the type II restriction endonuclease HindIII, has been purified to homogeneity from Gram-negative bacilli Pseudomonas anguilliseptica KM9 found in a wastewater treatment plant in Poland. Experimental data revealed that R.PsaI is highly active in the presence of Co2+, Mg2+, and Zn2+ and reached a maximal level of activity between 2.5 and 10 mM while its activity was significantly decreased in the presence of Ca2+, Fe2+, Mn2+, and Ni2+. Moreover, we found that the purified R.PsaI did not require NaCl for enzyme activity. Restriction cleavage analysis followed by sequencing confirmed 5′-AAGCTT-3′ as the recognition site. The genes for restriction–modification system PsaI were identified and characterized. Downstream of the psaIM gene, we noticed an ORF that shares extensive similarity with recombinase family protein specifically involved in genome rearrangements. Sequence analysis revealed that the PsaI R-M gene complex showed striking nucleotide sequence similarity (>98%) with the genes of the PanI R-M system from a P. anguilliseptica MatS1 strain identified in a soil sample from Sri Lanka. Full article
(This article belongs to the Special Issue Genetic Engineering in Microbial Biotechnology)
Show Figures

Figure 1

20 pages, 356 KiB  
Review
Soil Properties and Microelement Availability in Crops for Human Health: An Overview
by Lucija Galić, Vesna Vukadinović, Iva Nikolin and Zdenko Lončarić
Crops 2025, 5(4), 40; https://doi.org/10.3390/crops5040040 - 7 Jul 2025
Viewed by 392
Abstract
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). [...] Read more.
Microelement deficiencies, often termed “hidden hunger”, represent a significant global health challenge. Optimal human health relies on adequate dietary intake of essential microelements, including selenium (Se), zinc (Zn), copper (Cu), boron (B), manganese (Mn), molybdenum (Mo), iron (Fe), nickel (Ni), and chlorine (Cl). In recent years, there has been a growing focus on vitality and longevity, which are closely associated with the sufficient intake of essential microelements. This review focuses on these nine elements, whose bioavailability in the food chain is critically determined by their geochemical behavior in soils. There is a necessity for an understanding of the sources, soil–plant transfer, and plant uptake mechanisms of these microelements, with particular emphasis on the influence of key soil properties, including pH, redox potential, organic matter content, and mineral composition. There is a dual challenge of microelement deficiencies in agricultural soils, leading to inadequate crop accumulation, and the potential for localized toxicities arising from anthropogenic inputs or geogenic enrichment. A promising solution to microelement deficiencies in crops is biofortification, which enhances nutrient content in food by improving soil and plant uptake. This strategy includes agronomic methods (e.g., fertilization, soil amendments) and genetic approaches (e.g., marker-assisted selection, genetic engineering) to boost microelement density in edible tissues. Moreover, emphasizing the need for advanced predictive modeling techniques, such as ensemble learning-based digital soil mapping, enhances regional soil microelement management. Integrating machine learning with digital covariates improves spatial prediction accuracy, optimizes soil fertility management, and supports sustainable agriculture. Given the rising global population and the consequent pressures on agricultural production, a comprehensive understanding of microelement dynamics in the soil–plant system is essential for developing sustainable strategies to mitigate deficiencies and ensure food and nutritional security. This review specifically focuses on the bioavailability of these nine essential microelements (Se, Zn, Cu, B, Mn, Mo, Fe, Ni, and Cl), examining the soil–plant transfer mechanisms and their ultimate implications for human health within the soil–plant–human system. The selection of these nine microelements for this review is based on their recognized dual importance: they are not only essential for various plant metabolic functions, but also play a critical role in human nutrition, with widespread deficiencies reported globally in diverse populations and agricultural systems. While other elements, such as cobalt (Co) and iodine (I), are vital for health, Co is primarily required by nitrogen-fixing microorganisms rather than directly by all plants, and the main pathway for iodine intake is often marine-based rather than soil-to-crop. Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
14 pages, 2206 KiB  
Article
Neodymium Exerts Biostimulant and Synergistic Effects on the Nutrition and Biofortification of Lettuce with Zinc
by Imelda Rueda-López, Fernando C. Gómez-Merino, María G. Peralta Sánchez and Libia I. Trejo-Téllez
Horticulturae 2025, 11(7), 776; https://doi.org/10.3390/horticulturae11070776 - 2 Jul 2025
Viewed by 333
Abstract
This research aimed to evaluate the effects of different concentrations of neodymium (Nd: 0, 2.885, 5.770, and 8.655 mg L−1, referred to as Nd0, Nd1, Nd2, and Nd3, respectively) and zinc (Zn: 0.1, 0.2, and 0.3 mg L−1, designated [...] Read more.
This research aimed to evaluate the effects of different concentrations of neodymium (Nd: 0, 2.885, 5.770, and 8.655 mg L−1, referred to as Nd0, Nd1, Nd2, and Nd3, respectively) and zinc (Zn: 0.1, 0.2, and 0.3 mg L−1, designated as Zn1, Zn2, and Zn3, respectively), as well as their combined interaction, on the nutritional content of lettuce (Lactuca sativa) cv. Ruby Sky. The seedlings were grown in a floating hydroponic system under greenhouse conditions. After 48 days of treatment, leaf samples were collected to determine their nutrient content. Leaf contents of N, P, Ca, Mg, S, Fe, Mn, B, and Nd were higher with the Nd1 (2.885 mg Nd L−1 + Zn1 (0.1 mg Zn L−1) treatment. The Nd3 (8.655 mg Nd L−1) + Zn3 (0.3 mg Zn L−1) treatment significantly increased the leaf contents of Cu and Zn. The K content was higher in leaves treated with Nd2 (5.770 mg Nd L−1) + Zn3 (0.3 mg Zn L−1). The joint application of Nd and Zn had positive effects on the nutrition of hydroponic lettuce, and Nd promoted the biofortification of lettuce by increasing leaf Zn content. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Graphical abstract

23 pages, 7080 KiB  
Article
Distribution Characteristics of High-Background Elements and Assessment of Ecological Element Activity in Typical Profiles of Ultramafic Rock Area
by Jingtao Shi, Junjian Liu, Suduan Hu and Jiangyulong Wang
Toxics 2025, 13(7), 558; https://doi.org/10.3390/toxics13070558 - 30 Jun 2025
Viewed by 370
Abstract
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements [...] Read more.
This study investigates the weathering crust composite of serpentine, pyroxenite and granite in the Niangniangmiao area, the weathering crusts inside and outside the mining area were compared respectively, systematically revealing the distribution patterns, migration pathways, and ecological element activity characteristics of high-background elements (e.g., chromium (Cr) and nickel (Ni)) through precise sampling, the Tessier five-step sequential extraction method, and a migration coefficient model. Key findings include: (1) Element distribution and controlling mechanisms: The average Cr and Ni contents in the serpentinite profile are significantly higher than those in pyroxenite. However, the semi-weathered pyroxenite layer exhibits an inverted Cr enrichment ratio in relation to serpentinite, 1.8× and 1.2×, respectively, indicating that mineral metasomatic sequences driven by hydrothermal alteration dominate element differentiation; the phenomenon of inverted enrichment of high-background elements occurs in the weathering crust profiles of the two basic rocks. (2) Dual impacts of mining activities on heavy metal enrichment: Direct mining increases topsoil Cr content in serpentinite by 40% by disrupting parent material homology, while indirect activities introduce exogenous Zn and Cd (Spearman correlation coefficients with Cr/Ni are from ρ = 0.58 to ρ = 0.72). Consequently, the bioavailable fraction ratio value of Ni outside the mining area (21.14%) is significantly higher than that within the area (14.30%). (3) Element speciation and ecological element activity: Over 98% of Cr in serpentine exists in residual fractions, whereas the Fe-Mn oxide-bound fraction (F3) of Cr in extra-mining pyroxenite increases to 5.15%. The element activity in ecological systems ranking of Ni in soil active fractions (F1 + F2 = 15%) follows the order: granite > pyroxenite > serpentine. Based on these insights, a scientific foundation for targeted remediation in high-background areas (e.g., prioritizing the treatment of semi-weathered pyroxenite layers) can be provided. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

20 pages, 3618 KiB  
Review
Superoxide Dismutases in Immune Regulation and Infectious Diseases
by Tong Liu, Jiajin Shang and Qijun Chen
Antioxidants 2025, 14(7), 809; https://doi.org/10.3390/antiox14070809 - 30 Jun 2025
Viewed by 575
Abstract
Superoxide dismutases (SODs) maintain redox homeostasis through the catalytic dismutation of superoxide anions, thereby affording protection to organisms against oxidative damage. The SOD family, encompassing Cu/Zn-SOD, Mn-SOD, Fe-SOD, and Ni-SOD, exhibits structural diversity and constitutes a multilevel antioxidant defense system with discrete subcellular [...] Read more.
Superoxide dismutases (SODs) maintain redox homeostasis through the catalytic dismutation of superoxide anions, thereby affording protection to organisms against oxidative damage. The SOD family, encompassing Cu/Zn-SOD, Mn-SOD, Fe-SOD, and Ni-SOD, exhibits structural diversity and constitutes a multilevel antioxidant defense system with discrete subcellular localizations. Beyond their antioxidant functions, SODs also function as immunomodulatory proteins, regulating the maturation, proliferation, and differentiation of immune cells. They further fulfill a crucial role in host responses to parasitic infections. The current review synthesizes and critically evaluates extant research to comprehensively delineate the molecular architecture of SODs, their intricate post-translational modification (PTM) networks, and their dual regulatory mechanisms at the interface of immunomodulation and pathological processes. This review establishes a critical framework for elucidating the biological significance of redox homeostasis maintenance. Full article
(This article belongs to the Special Issue Advances in Oxidoreductases)
Show Figures

Figure 1

Back to TopTop