Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = Fe-6.5 wt%Si alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14631 KB  
Article
Influences of (Al, Si) Equi-Molar Co-Addition on Microstructure, Mechanical Properties and Corrosion Resistance of Co-Free Fe-Rich High Entropy Alloys
by Shufeng Xie, Ziming Chen, Chuanming Qiao, Wanwan Sun, Yanzhe Wang, Junyang Zheng, Xiaoyu Wu, Lingjie Chen, Bin Kong, Chen Chen, Kangwei Xu and Jiajia Tian
Metals 2026, 16(1), 92; https://doi.org/10.3390/met16010092 - 14 Jan 2026
Viewed by 211
Abstract
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs [...] Read more.
In this paper, a series of Co-free FeCr0.6Ni0.6(AlSi)x (x = 0, 0.1, 0.12, 0.14, 0.16) high-entropy alloys (HEAs) were designed and fabricated by suction casting, and the effects of equi-molar (Al, Si) co-addition in these Fe-rich Fe-Cr-Ni-based HEAs on microstructure, mechanical properties, and corrosion resistance were systematically investigated. It is found that equi-molar (Al, Si) co-addition could cause the phase formation from FCC to FCC + BCC, while the morphologies of the phases change from dendrite-type to sideplate-type. Moreover, trade-off between strength and plasticity occurs with the increase in (Al, Si) co-addition, and the production of ultimate tensile strength and plasticity reaches the highest value when x = 0.12, while there exists a narrow region for x values to realize excellent comprehensive mechanical properties. In addition, similar corrosion resistance in 3.5 wt.% NaCl solution higher than 316L stainless steel could be realized in the HEAs with x = 0.12 and 0.14, while the latter one is slightly lower in pitting corrosion and the width of passive region, which is possibly caused by the increase in the density of phase boundaries. This work provides a novel insight on designing high-performance cost-effective Fe-rich and (Al, Si)-containing (Fe-Cr-Ni)-based HEAs combining high mechanical properties and corrosion resistance. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

17 pages, 5147 KB  
Article
Microscopic Thermal Behavior of Iron-Mediated Platinum Group Metal Capture from Spent Automotive Catalysts
by Xiaoping Zhu, Ke Shi, Chuan Liu, Yige Yang, Jinrong Zhao, Xiaolong Sai, Shaobo Wen and Shuchen Sun
J. Manuf. Mater. Process. 2026, 10(1), 34; https://doi.org/10.3390/jmmp10010034 - 13 Jan 2026
Viewed by 198
Abstract
This research investigates the micro-mechanisms and process control associated with the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs) through iron capturing. High-temperature smelting experiments, complemented by SEM-EDS and XRD analyses, demonstrate that PGMs spontaneously migrate from the slag phase [...] Read more.
This research investigates the micro-mechanisms and process control associated with the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs) through iron capturing. High-temperature smelting experiments, complemented by SEM-EDS and XRD analyses, demonstrate that PGMs spontaneously migrate from the slag phase to the iron phase, driven by interfacial energy, where they are captured to form alloy droplets with a PGM content exceeding 4 wt.%. The composite flux (CaO/H3BO3) markedly diminishes slag viscosity and enhances the density differential between slag and metal. This facilitates the aggregation, sedimentation, and separation of alloy droplets in accordance with Stokes’ law, thereby lowering the effective capture temperature from 1700 °C to 1500 °C and reducing energy consumption. Additionally, the flux inhibits the formation of detrimental Fe-Si alloys. PGMs form substitutional solid solutions that are uniformly dispersed within the iron matrix. This study provides both the theoretical and technical foundations necessary for the development of efficient, low-energy processes aimed at capturing and recovering Fe-PGMs alloys. Full article
Show Figures

Figure 1

15 pages, 25553 KB  
Article
Effect of Fe and Si Content on Microstructure and Properties of Al-Cu-Li Alloys
by Tianyi Feng, Wei Zhao, Changlin Li, Ying Li, Xiwu Li, Zhicheng Liu, Lizhen Yan, Pengfei Xu, Hongwei Yan, Yongan Zhang, Zhihui Li and Baiqing Xiong
Materials 2026, 19(1), 147; https://doi.org/10.3390/ma19010147 - 31 Dec 2025
Viewed by 440
Abstract
This study systematically investigates the effects of Fe and Si impurities on the microstructure and mechanical properties of Al-Cu-Li alloys. Five alloy compositions with controlled Fe (0.03–0.12 wt.%) and Si (0.03–0.12 wt.%) contents were fabricated and processed through homogenization, hot extrusion, solution treatment, [...] Read more.
This study systematically investigates the effects of Fe and Si impurities on the microstructure and mechanical properties of Al-Cu-Li alloys. Five alloy compositions with controlled Fe (0.03–0.12 wt.%) and Si (0.03–0.12 wt.%) contents were fabricated and processed through homogenization, hot extrusion, solution treatment, and aging. Microstructural characterization demonstrates that Fe promotes the formation of coarse skeletal Al7Cu2Fe intermetallics, while Si facilitates the precipitation of blocky α-AlFeSi phases and eutectic Si particles. An elevated Fe content substantially deteriorates strength, ductility, and fracture toughness, primarily due to two mechanisms: the persistence of thermally stable impurity phases that serve as stress concentrators and preferential crack initiation sites throughout thermomechanical processing, and the consumption of Cu that reduces the volume fraction of primary T1 (Al2CuLi) strengthening precipitates. In contrast, Si exhibits comparatively moderate detrimental effects. The findings establish that stringent Fe control is essential for maintaining mechanical performance, whereas strategic Si adjustment offers a viable approach for cost management in recycled alloy production. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

16 pages, 7106 KB  
Article
Optimization of Synergistic Reduction of Copper Smelting Slag and Chromite for Production of Cu-Cr-Fe Master Alloys
by Yaoan Xi, Yi Qu, Sui Xie, Jinfa Liao and Baojun Zhao
Metals 2026, 16(1), 52; https://doi.org/10.3390/met16010052 - 31 Dec 2025
Viewed by 249
Abstract
Cu and Cr are the essential alloying elements for low-Ni stainless steels. An effective and economical method has been developed for the direct production of Cu-Cr-Fe master alloys through the synergistic reduction of chromite and copper smelting slag. The smelting conditions for synergy [...] Read more.
Cu and Cr are the essential alloying elements for low-Ni stainless steels. An effective and economical method has been developed for the direct production of Cu-Cr-Fe master alloys through the synergistic reduction of chromite and copper smelting slag. The smelting conditions for synergy reduction were systematically investigated by combining thermodynamic calculations and high-temperature experiments. The results indicate that synergistic reduction drives the reactions of Cr2O3, FeO, and Cu2O with carbon in a positive direction, which can increase their recovery and decrease the flux and fuel costs. The optimum slag composition was identified to control the (CaO + MgO)/(SiO2 + Al2O3) ratio between 0.62 and 0.72, where the slag is fully liquid, resulting in an efficient separation of the alloy from the slag. At 1550 °C, with 50 wt% chromite and 50 wt% copper smelting slag as raw materials, a Cu-Cr-Fe alloy containing 5.2 wt% Cu, 28.6 wt% Cr and 57.9 wt% Fe was produced, while the contents of FeO, Cu2O, and Cr2O3 in the final slag were 0.057 wt%, 0.059 wt%, and 0.23 wt%, respectively. Full article
Show Figures

Figure 1

16 pages, 9291 KB  
Article
Improved Corrosion Resistance of La0.8Ce0.2Fe9.2Co0.6Si1.2 Magnetocaloric Alloys for Near-Room-Temperature Applications
by Zhihao Liao, Xichun Zhong, Xuan Huang, Cuilan Liu, Jiaohong Huang, Dongling Jiao and Raju V. Ramanujan
Magnetochemistry 2025, 11(11), 101; https://doi.org/10.3390/magnetochemistry11110101 - 18 Nov 2025
Viewed by 609
Abstract
Rare earth-rich NaZn13-type La-Fe-Si-based alloys are promising candidates for near-room-temperature magnetocaloric applications. However, their poor corrosion resistance limits practical applications. The microstructure, corrosion behavior and magnetic entropy change of La0.8Ce0.2Fe9.2Co0.6Si1.2 alloys after [...] Read more.
Rare earth-rich NaZn13-type La-Fe-Si-based alloys are promising candidates for near-room-temperature magnetocaloric applications. However, their poor corrosion resistance limits practical applications. The microstructure, corrosion behavior and magnetic entropy change of La0.8Ce0.2Fe9.2Co0.6Si1.2 alloys after annealing were systematically investigated. Annealing treatments were conducted at 1423 K for durations of 4–24 h. As annealing time increased, the α-Fe phase content decreased monotonically from ~7.81wt% to ~2.92wt%, accompanied by significant microstructural evolution. For the 4 h-annealed sample, extensive and large corroded spots were observed, attributed to micro-galvanic corrosion where the α-Fe phase (cathode) and 1:13 matrix phase (anode) formed active electrochemical pairs. Prolonged annealing reduced the corrosion current density by ~50%, directly correlating with the α-Fe phase reduction and improved microstructural homogeneity. Notably, corrosion exhibited a negligible effect on the magnetic entropy change of the alloys. This study confirms that optimizing annealing time to decrease α-Fe content and enhance microstructural uniformity represents an effective strategy to improve corrosion resistance without compromising magnetocaloric performance. Full article
(This article belongs to the Special Issue Advance of Magnetocaloric Effect and Materials)
Show Figures

Figure 1

13 pages, 3064 KB  
Article
Enhancement of Solidification Microstructure and Mechanical Properties of Al-5Si-Cu-Mg Alloy Through the Addition of Scandium and Zirconium
by Tian Li, Ling Shan, Chunwei Wang, JinHua Wu, Jianming Zheng and Kai Wang
Crystals 2025, 15(11), 981; https://doi.org/10.3390/cryst15110981 - 14 Nov 2025
Viewed by 665
Abstract
Although low-silicon Al-Si alloys have been extensively studied, further improvement in their mechanical performance remains a critical challenge. This study examines the synergistic effects of scandium (Sc) and zirconium (Zr) additions on the solidification behavior, microstructural evolution, and mechanical properties of Al-5Si-Cu-Mg alloys. [...] Read more.
Although low-silicon Al-Si alloys have been extensively studied, further improvement in their mechanical performance remains a critical challenge. This study examines the synergistic effects of scandium (Sc) and zirconium (Zr) additions on the solidification behavior, microstructural evolution, and mechanical properties of Al-5Si-Cu-Mg alloys. The Sc/Zr additions refine the α-Al grains and modify the eutectic Si morphology, with the most uniform microstructure obtained at 0.5 wt.% due to the formation of coherent Al3(Sc,Zr) dispersoids. These additions also suppress the formation of needle-like β-Al5FeSi phases and promote the transformation to compact α-Al15(Fe,Mn)3(Si,Zr,Sc)2 intermetallics, optimizing the solidification process. The yield strength increases with Sc/Zr content owing to grain-boundary and precipitation strengthening. However, the alloy without Sc/Zr exhibits the highest ultimate tensile strength and elongation, likely due to its finer secondary dendrite arm spacing and the absence of casting-induced cracks in this investigation. Although Sc/Zr additions of 0.25–0.5 wt.% contribute to microstructural refinement, the concurrent formation of porosity and coarse intermetallic compounds leads to a deterioration in ductility. Excessive Sc/Zr additions further coarsen grains and degrade the overall mechanical integrity. Full article
(This article belongs to the Special Issue Microstructure, Properties and Characterization of Aluminum Alloys)
Show Figures

Figure 1

21 pages, 7853 KB  
Article
The Effect of Surface Corrosion Damage and Fe Content on the Fatigue Life of an AlSi7Mg0.6 Cast Alloy Used in the Electric Automotive Industry
by Lenka Kuchariková, Eva Tillová, Zuzana Šurdová, Mária Chalupová, Viera Zatkalíková, Edita Illichmanová and Ivana Švecová
Metals 2025, 15(11), 1222; https://doi.org/10.3390/met15111222 - 5 Nov 2025
Viewed by 657
Abstract
The aluminum casting alloy AlSi7Mg0.6 (A357) is extensively used in the automotive industry due to its favorable balance of mechanical properties, castability, lightweight characteristics, and corrosion resistance. Castings made from this alloy are often subjected to harsh service environments, where surface degradation and [...] Read more.
The aluminum casting alloy AlSi7Mg0.6 (A357) is extensively used in the automotive industry due to its favorable balance of mechanical properties, castability, lightweight characteristics, and corrosion resistance. Castings made from this alloy are often subjected to harsh service environments, where surface degradation and microstructural variability can significantly impact fatigue performance. This study investigates the combined effects of surface corrosion damage and higher Fe content on the fatigue life of the AlSi7Mg0.6 alloy, using a rotating bending fatigue test under simultaneous corrosion exposure in a 3.5 wt. % NaCl solution. The effect of corrosion and Fe content on fatigue life was then investigated and analyzed using Wöhler curves and scanning electron microscopy (SEM). The results demonstrate that the corrosion-fatigue interaction accelerated the kinetics of the fatigue process, while the fracture mechanism and crack initiation places are not fundamentally altered compared to alloys in the state without corrosion damage. A comparison of the fatigue lifetime of samples in an air environment and a corrosive environment shows that the corrosive environment (3.5% NaCl) reduces the fatigue lifetime of alloys without T6 by an average of 7.5 MPa and alloys after T6 by 6 MPa. The results are probably due to the penetration of chloride ions into casting defects located on the surface of the samples. Surface pits formed during corrosion act as stress concentrators, increasing the likelihood of stress-induced failure. Microstructural feature morphology, especially Fe-rich intermetallic phases, influences crack propagation mechanisms. Full article
(This article belongs to the Special Issue Advances in Microstructure and Properties of Light Alloys)
Show Figures

Graphical abstract

14 pages, 6629 KB  
Article
Near-Zero Thermal Expansion and High Strength in Multi-Phase La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1/Ag Compounds Produced Through Spark Plasma Sintering
by Yuyu Wang, Kai Xu, Hanyang Qian, Rui Cai, Xiang Lu and Jian Liu
Metals 2025, 15(10), 1131; https://doi.org/10.3390/met15101131 - 11 Oct 2025
Viewed by 637
Abstract
The significant negative thermal expansion (NTE) that occurs in La(Fe,Si)13-based alloys during magnetic transition make them promising to combine with positive thermal expansion (PTE) materials to obtain near-zero thermal expansion (NZTE) materials. However, La(Fe,Si)13-based alloys with NTE generally show [...] Read more.
The significant negative thermal expansion (NTE) that occurs in La(Fe,Si)13-based alloys during magnetic transition make them promising to combine with positive thermal expansion (PTE) materials to obtain near-zero thermal expansion (NZTE) materials. However, La(Fe,Si)13-based alloys with NTE generally show intrinsic poor mechanical properties. Here, thermal expansion properties are optimized by adding Ag in La0.6Ce0.4(Fe0.91Co0.09)11.9Si1.1 to form a multi-phase structure exhibiting enhanced compressive strength. Through spark plasma sintering (SPS) and annealing, the samples consisted of α-Fe(Co,Si), NaZn13-type, and LaAg2 phases. When the annealing temperature reaches 1323 K, LaAg2 disappears and is replaced by La2O3. The LaAg2 phase and α-Fe(Co,Si) phase contribute as PTE materials to compensate for the NTE of the NaZn13-type phase. Near-zero thermal expansion was achieved in the temperature range of 240–294 K, with a coefficient of thermal expansion (CTE) of 3.5 ppm/K at a 9.581 at.% Ag content. Benefiting from the uniform phase distribution and coordinated deformation, the samples obtained high mechanical strengths, with fracture stresses of 1481.1 MPa for the 15 wt.% Ag sample. This work provides a promising route for high-strength and near-zero thermal expansion Ag/La(Fe,Si)13 composites. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Figure 1

16 pages, 12504 KB  
Article
Effect of Si Content on the Mechanical Behavior, Corrosion Resistance, and Passive Film Characteristics of Fe–Co–Ni–Cr–Si Medium-Entropy Alloys
by Sen Yang, Ran Wei, Xin Wei, Jiayi Cao and Jiepeng Ren
Coatings 2025, 15(10), 1137; https://doi.org/10.3390/coatings15101137 - 1 Oct 2025
Viewed by 901
Abstract
The nominal compositions of Fe65Co10−xNi10−xCr15Si2x (x = 1, 2, and 3 at.%) medium-entropy alloys (MEAs) were designed and fabricated by vacuum arc melting. Their microstructure, hardness, and mechanical properties were [...] Read more.
The nominal compositions of Fe65Co10−xNi10−xCr15Si2x (x = 1, 2, and 3 at.%) medium-entropy alloys (MEAs) were designed and fabricated by vacuum arc melting. Their microstructure, hardness, and mechanical properties were systematically characterized. Corrosion behavior was evaluated in 3.5 wt.% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. The investigated MEAs exhibit a dual-phase microstructure composed of face-centered cubic (FCC) and body-centered-cubic (BCC) phases. With increasing Si content, yield strength and ultimate tensile strength increase, while uniform elongation decreases. Hardness also increases with increasing Si content. For the x = 3 MEA, the yield strength, ultimate tensile strength, and hardness of are ~518 MPa, ~1053 MPa, and 262 ± 4.8 HV, respectively. The observed strengthening can be primarily attributed to solid solution strengthening effect by Si. Polarization curves indicate that the x = 3 MEA exhibits the best corrosion resistance with the lowest corrosion current density ((0.401 ± 0.19) × 10−6 A × cm−2) and corrosion rate ((4.65 ± 0.19) × 10–2 μm × year−1)). Equivalent electric circuit analysis suggests the formation of a stable passive oxide film on the MEAs. This conclusion is supported by the capacitive behavior, high impedance values (> 104 Ω cm2) at low frequencies, and phase angles within a narrow window of 80.05°~80.64° in the medium-frequency region. The passive-film thickness was calculated and the corrosion morphology was analyzed by SEM. These results provide a reference for developing high-strength, corrosion-resistant, medium-entropy alloys. Full article
Show Figures

Figure 1

16 pages, 6965 KB  
Article
Upcycling RDF with Mill Scale and Waste Glass for Eco-Friendly Ferrosilicon Alloy Synthesis via Carbothermic Reduction
by Krishmanust Sunankingphet, Thanaporn Chandransu, Sitichoke Amnuanpol and Somyote Kongkarat
Recycling 2025, 10(5), 182; https://doi.org/10.3390/recycling10050182 - 25 Sep 2025
Viewed by 688
Abstract
This study investigates the valorization of refuse-derived fuel (RDF), waste glass, and mill scale for sustainable ferrosilicon alloy production, contributing to zero-waste practices. RDF was blended with anthracite at ratios of 100, 90, 80, 70, 60 and 50 wt% (designated R1–R6) and applied [...] Read more.
This study investigates the valorization of refuse-derived fuel (RDF), waste glass, and mill scale for sustainable ferrosilicon alloy production, contributing to zero-waste practices. RDF was blended with anthracite at ratios of 100, 90, 80, 70, 60 and 50 wt% (designated R1–R6) and applied as a reducing agent in the carbothermic reduction of SiO2 and Fe2O3, thereby decreasing reliance on conventional fossil-based reductants. Ferrosilicon synthesis was conducted at 1550 °C using glass–mill scale blends with reducing agents R1–R6, producing samples named blends A–F. XRD analysis confirmed that the metallic products consisted predominantly of the FeSi intermetallic phase, with characteristic (110) and (310) peaks at 2θ ≈ 45.02° and 78°. The metallic products appeared as numerous small, shiny droplets, with yields ranging from 14.85 to 19.47 wt%; blends D–F exhibited the highest yields. In contrast, blends A–C produced metals with higher Si contents (23.34–27.11 wt%) due to enhanced SiO2 reduction and efficient Si incorporation into the Fe matrix. Gas analysis and oxygen removal showed that blend B achieved the highest CO generation and reduction extent. Cl removal during RDF heat treatment indicated minimal potential for dioxin and furan formation. Overall, blends A and C were identified as optimal, providing high Si content, satisfactory metallic yield, and reduced CO/CO2 emissions, demonstrating the effectiveness of RDF-based carbons for environmentally friendly ferrosilicon production. Full article
(This article belongs to the Topic Converting and Recycling of Waste Materials)
Show Figures

Figure 1

15 pages, 3956 KB  
Article
Novel Alloy Designed Electrical Steel for Improved Performance in High-Frequency Electric Machines
by Carl Slater, Xiyun Ma, Gwendal Lagorce, Juliette Soulard and Claire Davis
Metals 2025, 15(10), 1066; https://doi.org/10.3390/met15101066 - 23 Sep 2025
Viewed by 948
Abstract
The increase in electrification and desire for greater electrical motor efficiency under a range of operating conditions for different products (e.g., household appliances, automotive and aerospace) is driving innovative motor designs and demands for higher performing electrical steels. Improvements in the magnetic, electrical [...] Read more.
The increase in electrification and desire for greater electrical motor efficiency under a range of operating conditions for different products (e.g., household appliances, automotive and aerospace) is driving innovative motor designs and demands for higher performing electrical steels. Improvements in the magnetic, electrical and/or mechanical properties of electrical steels are required for high-volume electric motors and recent advances include steels with increased silicon (Si) content (from <3.5 wt% Si up to 6.5 wt%). Whilst the 6.5 wt% Si steels provide increased motor performance at high frequencies, the formation of a brittle BCC B2/D03 phase means that they cannot be cold-rolled, and therefore the production route involves siliconization after the required thickness strip is produced. The advances in computationally driven alloy design, coupled with physical metallurgical understanding, allow for more adventurous alloy design for electrical steels, outside the traditional predominantly Fe-Si compositional space. Two alloys representing a new alloy family called HiPPES (High-Performing and Processable Electrical Steel), based on low cost commonly used steel alloying elements, have been developed, cast, rolled, heat-treated, and both magnetically and mechanically tested. These alloys (with nominal compositions of Fe-3.2Mn-3.61Si-0.63Ni-0.75Cr-0.15Al-0.4Mo and Fe-2Mn-4.5Si-0.4Ni-0.75Cr-0.09Al) offer improvements compared to current ≈3 wt% Si grades: in magnetic performance (>25% magnetic loss reduction at >1 kHz), and in tensile strength (>33% increase in tensile strength with similar elongation value). Most importantly, they are maintaining processability to allow for full-scale commercial production using traditional continuous casting, hot and cold rolling, and annealing. The new alloys also showed improved resilience to grain size, with the HiPPES materials showing a <5% variance in loss at frequencies greater than 400 Hz for grain sizes between 55 and 180 µm. Comparatively, a commercial M250-35A material showed a 40% increase in loss for the same range. The paper reports on the alloy design approach used, the microstructures, and the mechanical, electrical and magnetic properties of the developed novel electrical steels compared to conventional ≈3 wt% Si and 6.5 wt% Si material. Full article
(This article belongs to the Special Issue Electrical Steels)
Show Figures

Figure 1

19 pages, 8293 KB  
Article
Influence of Mn in Balancing the Tensile and Electrical Conductivity Properties of Al-Mg-Si Alloy
by Jiaxing He, Jiangbo Wang, Jian Ding, Yao Wang and Wenshu Qi
Metals 2025, 15(8), 923; https://doi.org/10.3390/met15080923 - 21 Aug 2025
Cited by 1 | Viewed by 1165
Abstract
This study investigated the influence of manganese (Mn) on microstructure evolution and property optimization in Al-0.6Mg-0.58Si-0.24Fe-xMn alloys under both as-cast and hot-extruded conditions. The balance mechanisms of Mn in tensile properties and electrical conductivity of Al-Mg-Si alloy were elucidated, achieving synergistic optimization of [...] Read more.
This study investigated the influence of manganese (Mn) on microstructure evolution and property optimization in Al-0.6Mg-0.58Si-0.24Fe-xMn alloys under both as-cast and hot-extruded conditions. The balance mechanisms of Mn in tensile properties and electrical conductivity of Al-Mg-Si alloy were elucidated, achieving synergistic optimization of strength-elongation-conductivity. For non-equilibrium solidified as-cast alloys, JMatPro simulations coupled with Fe-rich phase size statistics reveal an inhibitory effect of Mn on β-Al5FeSi phase formation. Matthiessen’s rule analysis quantitatively clarifies Mn-induced resistivity variations through solid solution and phase morphology modifications. In hot-extruded alloys, TEM characterization was used to analyze the structure of Al-Fe-Mn-Si quaternary compounds and clarify their combined effects with typical Mg2Si phases on dislocation and subgrain configurations. The as-cast Al-0.6Mg-0.58Si-0.24Fe-0.18Mn alloy demonstrate comprehensive properties with ultimate tensile strength, elongation and electrical conductivity. The contributions of dislocations, grain boundaries and precipitates to resistivity are relatively minor, so the main source of resistivity in hot-extruded alloys is still Mn. The hot-extruded alloy containing 0.18 wt.% Mn still has better properties, with a tensile strength of 176 MPa, elongation of 24% and conductivity of 48.07 %IACS. Full article
Show Figures

Figure 1

16 pages, 4468 KB  
Article
Enhancing Fatigue Lifetime of Secondary AlZn10Si8Mg Alloys Through Shot Peening: Influence of Iron Content and Surface Defects
by Denisa Straková, Zuzana Šurdová, Eva Tillová, Lenka Kuchariková, Martin Mikolajčík, Denisa Závodská and Mario Guagliano
Materials 2025, 18(16), 3901; https://doi.org/10.3390/ma18163901 - 20 Aug 2025
Viewed by 4420
Abstract
The rising demand for aluminium and environmental concerns highlight the need for a circular economy using recycled alloys. This study examines the effect of shot peening on the high-cycle fatigue life of secondary AlZn10Si8Mg alloys with different iron contents: Alloy A (0.14 wt.% [...] Read more.
The rising demand for aluminium and environmental concerns highlight the need for a circular economy using recycled alloys. This study examines the effect of shot peening on the high-cycle fatigue life of secondary AlZn10Si8Mg alloys with different iron contents: Alloy A (0.14 wt.% Fe) and Alloy B (0.56 wt.% Fe). Although both alloys showed similar tensile properties, Alloy B had higher porosity and finer β-Al5FeSi intermetallics. Shot peening was applied at 100% and 1000% coverage to evaluate changes in surface roughness, porosity, residual stresses, and fatigue performance. The treatment significantly reduced surface-connected porosity via plastic deformation, enhancing fatigue life despite increased roughness. Fatigue tests showed a 21% increase in fatigue limit for Alloy A and a 6% gain for Alloy B at higher coverage. Fractographic analysis revealed that 95% of fatigue cracks initiated at surface pores. Residual stress measurements confirmed compressive stresses were limited to the near-surface layer, with minimal influence on subsurface crack propagation. Overall, shot peening proves to be an effective method for improving fatigue resistance in recycled aluminium alloys, even in alloys with elevated iron content, reinforcing their potential for structural applications under cyclic loading. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Alloys)
Show Figures

Graphical abstract

18 pages, 19489 KB  
Article
Oxidation Kinetics, Morphology Evolution, and Formation Mechanisms of the High-Temperature Oxide Scale for Cr-Alloyed Automotive Beam Steels
by Jiang Chang, Yuantao Hu, Yonggang Yang, Chen Jiang, Jianling Liu, Borui Zhang, Xiong Yang and Zhenli Mi
Materials 2025, 18(16), 3774; https://doi.org/10.3390/ma18163774 - 12 Aug 2025
Cited by 1 | Viewed by 763
Abstract
The oxidation behaviors of varying Cr-alloyed automotive beam steels—0.015 wt.% Cr, 0.15 wt.% Cr, and 1 wt.% Cr—were investigated using isothermal oxidation experiments. The morphologies of the oxide scale were characterized, and the formation mechanisms were analyzed to understand the change in the [...] Read more.
The oxidation behaviors of varying Cr-alloyed automotive beam steels—0.015 wt.% Cr, 0.15 wt.% Cr, and 1 wt.% Cr—were investigated using isothermal oxidation experiments. The morphologies of the oxide scale were characterized, and the formation mechanisms were analyzed to understand the change in the oxidation kinetics of the investigated steels. The results show that a small amount of Cr, up to 0.15 wt.%, can reduce oxidation kinetics; the addition of Cr at 1 wt.% causes the oxidation rate to decline at a low isothermal temperature, but the hindrance effect expires when the oxidation temperature is above 1050 °C. The oxidation scale, including the inner FeO layer, the intermediate Fe3O4 layer, and the outer Fe2O3 layer, exhibits a morphological evolution from marble-like to pore-like, then whisker-like, flocculation-like, fine oxide grains, and finally coarse oxide grains. With increasing Cr addition, the thickness of the FeO layer decreases significantly, leading to a reduction in the total thickness of the oxidation scale. During the oxidation process of the investigated steel with 0.15 wt.% Cr, a Cr-rich layer and FeO-(Cr, Fe, Mn)3O4 eutectic form; meanwhile, FeO-(Cr, Fe)2O3 eutectic and Si-rich oxides, as well as a (Cr, Si)-rich layer, occur in the oxidation scale when 1 wt.% Cr is added to the steel. The occurrence of voids in the (Cr, Si)-rich layer is responsible for the increasing oxidation kinetics of the 1 wt.% Cr steel when the isothermal temperature is above 1050 °C, and the optimal Cr concentration in automotive beam steel is 0.15 wt.%, considering both oxidation resistance and cost. Full article
Show Figures

Figure 1

18 pages, 6124 KB  
Article
Extraction of Alumina and Alumina-Based Cermets from Iron-Lean Red Muds Using Carbothermic Reduction of Silica and Iron Oxides
by Rita Khanna, Dmitry Zinoveev, Yuri Konyukhov, Kejiang Li, Nikita Maslennikov, Igor Burmistrov, Jumat Kargin, Maksim Kravchenko and Partha Sarathy Mukherjee
Sustainability 2025, 17(15), 6802; https://doi.org/10.3390/su17156802 - 26 Jul 2025
Cited by 1 | Viewed by 1256
Abstract
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 [...] Read more.
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 wt.% Fe2O3, 22.2 wt.% Al2O3, 20.0 wt.% SiO2, 1.2 wt.% CaO, 12.2 wt.% Na2O) and its 2:1 blends with Fe2O3 and red mill scale (MS). Synthetic graphite was used as the reductant. Carbothermic reduction of RM and blends was carried out in a Tamman resistance furnace at 1650 °C for 20 min in an Ar atmosphere. Reduction residues were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), elemental mapping and X-ray diffraction (XRD). Small amounts of Fe3Si alloys, alumina, SiC and other oxide-based residuals were detected in the carbothermic residue of 100% RM. A number of large metallic droplets of Fe–Si alloys were observed for RM/Fe2O3 blends; no aluminium was detected in these metallic droplets. A clear segregation of alumina was observed as a separate phase. For the RM/red MS blends, a number of metallic Fe–Si droplets were seen embedded in an alumina matrix in the form of a cermet. This study has shown the regeneration of alumina and the formation of alumina-based cermets, Fe–Si alloys and SiC during carbothermic reduction of RM and its blends. This innovative recycling strategy could be used for extracting value-added resources from iron-lean RMs, thereby enhancing process productivity, cost-effectiveness of alumina regeneration, waste utilization and sustainable developments in the field. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Figure 1

Back to TopTop