Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (868)

Search Parameters:
Keywords = Erk1/2 (p44/p42 MAPK)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1628 KiB  
Review
The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers
by Ammar Ansari, Aleksandra Szczesnowska, Natalia Haddad, Ahmed Elbediwy and Nadine Wehida
Non-Coding RNA 2025, 11(4), 61; https://doi.org/10.3390/ncrna11040061 - 6 Aug 2025
Abstract
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the [...] Read more.
Female cancers such as breast and gynaecological cancers contribute to a significant global health burden and are a leading cause of fatality among women. With current treatment options often limited by resistance to cytotoxic drugs, side effects and lack of specificity to the cancer, there is a pressing need for alternative treatments. Recent research has highlighted the promising role of non-coding RNAs (ncRNA) in regulating these issues and providing more targeted approaches to suppressing key cancer pathways. This review explores the involvement of the various types of non-coding RNAs in regulating key oncogenic pathways, namely, the MAPK, PI3K/Akt/mTOR, Wnt/β-catenin and p53 pathways, in a range of female cancers such as breast, cervical, ovarian and endometrial cancers. Evidence from a multitude of studies suggests that non-coding RNAs function as double-edged swords, serving as both oncogenes and tumour suppressors, depending on their expression and cellular interactions. By mapping and investigating these regulatory interactions, this review demonstrates the complexity and dual functionality of ncRNAs in cancer. Understanding these complex mechanisms is essential for the development of new and effective ncRNA-based diagnostic methods and targeted therapies in female cancer treatment. Full article
Show Figures

Figure 1

16 pages, 2701 KiB  
Article
The Lysine at Position 177 Is Essential to Limit the Inhibitory Capacities of Sprouty4 Protein in Normal and Cancer-Derived Cells
by Maximilian Schiwek, Kathrin Ruhdorfer, Christoph Pfurner and Hedwig Sutterlüty
Int. J. Mol. Sci. 2025, 26(15), 7353; https://doi.org/10.3390/ijms26157353 - 30 Jul 2025
Viewed by 241
Abstract
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to [...] Read more.
The Sprouty (Spry) proteins modulate signalling and regulate processes like cellular migration and proliferation. Here, we investigated a Spry4 alteration substituting a lysine at position 177 to an arginine, based on a mutation found in Kallmann syndrome, a genetically heterogeneous disease connected to reduced fibroblast growth factor receptor1 (FGFR) signalling. Using growth curves to evaluate proliferative and scratch assays to determine migrative capacities of the cells, in normal fibroblasts as well as in osteosarcoma-derived cells, we demonstrate that the modified Spry4K177R version hinders both processes, which the unaltered protein cannot do under the same conditions. The inhibition of these processes was accompanied by lower relative phospho-extracellular-signal-regulated kinases (pERK) levels in response to serum induction, indicating that activation of MAPK was less efficient. In contrast to the situation in these cells of mesenchymal origin, in lung cancer-derived cell lines both variants of Spry4 were able to interfere with proliferation of tested cells, and in the cells with elevated FGFR1 expression the Spry4 proteins with an alteration at codon 177 were even more effective. In summary, these data indicate that the lysine at position 177 restricts the ability of Spry4 to inhibit signal transduction at least in cells with high FGFR1 levels. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sprouty Proteins in Cancer)
Show Figures

Figure 1

21 pages, 2670 KiB  
Article
Regulatory Effect of PGE2-EP2/EP4 Receptor Pathway on Staphylococcus aureus-Induced Inflammatory Factors in Dairy Cow Neutrophils
by Yi Zhao, Chao Wang, Bo Liu, Shuangyi Zhang, Yongfei Wang, Yinghong Qian, Zhiguo Gong, Jiamin Zhao, Xiaolin Yang, Yuting Bai and Wei Mao
Biomolecules 2025, 15(8), 1062; https://doi.org/10.3390/biom15081062 - 22 Jul 2025
Viewed by 265
Abstract
Naturally occurring prostaglandin E2 (PGE2) influences cytokine production regulation in bovine neutrophils exposed to Staphylococcus aureus Rosenbach. Here, we employed bovine neutrophils as the primary experimental system, and administered specific inhibitors targeting various receptors, which were subsequently exposed to S. [...] Read more.
Naturally occurring prostaglandin E2 (PGE2) influences cytokine production regulation in bovine neutrophils exposed to Staphylococcus aureus Rosenbach. Here, we employed bovine neutrophils as the primary experimental system, and administered specific inhibitors targeting various receptors, which were subsequently exposed to S. aureus. Cytokine expression levels in dairy cow neutrophils induced by S. aureus via the endogenous PGE2-EP2/4 receptor pathway were investigated, and its effects on P38, extracellular signal-regulated kinase (ERK), P65 activation, and phagocytic function in Staphylococcus aureus Rosenbach-induced dairy cow neutrophils, were examined. Blocking cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes substantially decreased PGE2 production and release in S. aureus-exposed bovine neutrophils. Cytokine output showed significant reduction compared to that in SA113-infected controls. Phosphorylation of P38, ERK, and P65 signaling molecules was depressed in the infected group. Pharmacological interference with EP2/EP4 receptors similarly diminished cytokine secretion and phosphorylation patterns of P38, ERK, and P65, with preserved cellular phagocytic function. During S. aureus infection of bovine neutrophils, COX-2 and mPGES-1 participated in controlling PGE2 biosynthesis, and internally produced PGE2 molecules triggered NF-κB and MAPK inflammatory pathways via EP2/EP4 receptor activation, later adjusting the equilibrium between cytokine types that promote or suppress inflammation. This signaling mechanism coordinated inflammatory phases through receptor-mediated processes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 231 KiB  
Article
Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(7), 574; https://doi.org/10.3390/cimb47070574 - 21 Jul 2025
Viewed by 263
Abstract
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers [...] Read more.
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers and contribute to their progression, we investigated Tempol’s anti-cancer potential in HT29 (colon) and CRL-1739 (gastric) cancer cells. Cells were treated with 2 mM Tempol for 48 h, with untreated cells as controls. We evaluated apoptosis (Bax, cleaved caspase-3, and Bcl-2), key signaling pathway activity (p-ERK, p-JNK, p-AKT, and p-mTOR), and levels of stress- and apoptosis-related proteins (WEE1, GADD153, GRP78, and AIF). Tempol significantly increased pro-apoptotic Bax and cleaved caspase-3 (p < 0.0001) and decreased anti-apoptotic Bcl-2 (p < 0.0001) in both cell lines. Furthermore, Tempol markedly reduced the activity of p-ERK, p-JNK, p-AKT, and p-mTOR (p < 0.0001) and significantly increased the protein levels of WEE1, GADD153, GRP78, and AIF (p < 0.0001). Tempol treatment also led to a significant increase in total oxidant status and a decrease in total antioxidant status. In conclusion, our findings suggest that Tempol exhibits its anti-cancer activity through multiple interconnected mechanisms, primarily inducing apoptosis and oxidative stress, while concurrently suppressing pro-survival signaling pathways. These results highlight Tempol’s potential as a therapeutic agent for gastric and colon cancers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
11 pages, 1606 KiB  
Article
Exploring the Therapeutic Potential of Estrogen-Related Receptor γ Inverse Agonists in Atopic Dermatitis-like Lesions
by Ju Hyeon Bae, Sijoon Lee, Jae-Eon Lee, Sang Kyoon Kim, Jae-Han Jeon and Yong Hyun Jeon
Int. J. Mol. Sci. 2025, 26(14), 6959; https://doi.org/10.3390/ijms26146959 - 20 Jul 2025
Viewed by 254
Abstract
Estrogen-related receptor γ (ERRγ) has been reported to regulate various inflammation-related diseases. Herein, we attempted to evaluate the effects of DN200434 as a modulator for ERRγ in mice with atopic dermatitis (AD). Levels of mRNA and protein expression for ERRγ were evaluated in [...] Read more.
Estrogen-related receptor γ (ERRγ) has been reported to regulate various inflammation-related diseases. Herein, we attempted to evaluate the effects of DN200434 as a modulator for ERRγ in mice with atopic dermatitis (AD). Levels of mRNA and protein expression for ERRγ were evaluated in normal and DNCB-induced AD-diagnosed skin. The effects of DN200434 on the chemokines, inflammatory cytokines, and AKT/MAPK/NFκB pathway signaling were investigated in TNF-α/IFN-γ-treated HaCaT cells. DNCB-induced AD mice received DN200434 intraperitoneally for 10 days. Epidermal thickness at the dorsal aspect of the inflamed skin, spleen index, serum IgE levels, and proinflammatory cytokine levels in the skin lesions were measured. Histopathological evaluations, including assessments of epidermal hyperplasia, dermal inflammation, hyperkeratosis, folliculitis, and mast cell counts, were performed to confirm diagnostic features. Significant elevations in ERRγ expression at the RNA and protein levels were observed in DNCB-induced AD lesions. DN200434 suppressed chemokine and inflammatory cytokine expression and inhibited the elevated phosphorylation levels of AKT, ERK, p38, and NFκB in TNF-α/IFN-γ-treated HaCaT cells. Treatment with DN200434 alleviated DNCB-induced AD symptoms. The histopathological score and levels of infiltrated mast cells were also markedly lower in DN200434-treated AD mice than in vehicle-treated AD mice. Consistently, DN200434 reduced the serum IgE level and mRNA expression of TNFα and IL-6 in AD-diagnosed lesions. Collectively, our findings indicated the feasibility of ERRγ as a therapeutic target for the regulation of AD and that DN200434 can be a useful therapeutic agent in treating AD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 4202 KiB  
Article
The Dichloromethane Fraction of Sanguisorba tenuifolia Inhibits Inflammation in Cells Through Modulation of the p38/ERK/MAPK and NF-κB Signaling Pathway
by Yue Wang, Yiming Lu, Fuao Niu, Siqi Fa, Li Nan and Hyeon Hwa Nam
Int. J. Mol. Sci. 2025, 26(14), 6732; https://doi.org/10.3390/ijms26146732 - 14 Jul 2025
Viewed by 213
Abstract
Sanguisorba tenuifolia is a wild plant of the genus Sanguisorba officinalis. This study aimed to investigate the regulatory effect of the dichloromethane fraction of Sanguisorba tenuifolia on LPS-induced inflammatory responses in RAW264.7 cells, thereby providing a new scientific basis for the medicinal [...] Read more.
Sanguisorba tenuifolia is a wild plant of the genus Sanguisorba officinalis. This study aimed to investigate the regulatory effect of the dichloromethane fraction of Sanguisorba tenuifolia on LPS-induced inflammatory responses in RAW264.7 cells, thereby providing a new scientific basis for the medicinal development of Sanguisorba tenuifolia. Initially, we used 75% ethanol to crudely extract the roots of Sanguisorba tenuifolia, followed by fractional extraction using dichloromethane (CH2Cl2), ethyl acetate (EtOAc), butanol (BuOH), and distilled water (DW) as solvents. By measuring the inhibitory effects of each fractionated extract on NO production, we determined that the SCE (Dichloromethane fraction of Sanguisorba tenuifolia) exhibited the most potent anti-inflammatory activity, leading to its progression to the next experimental stage. Subsequently, we evaluated the effects of SCE on cell viability and LPS-induced inflammatory cytokine secretion in RAW264.7 cells. A rat model of reflux esophagitis was also used to validate the in vivo anti-inflammatory effects of SCE. Additionally, we utilized UPLC/MS-MS to identify and analyze the active components of SCE. The results indicated that SCE could effectively inhibit LPS-induced cellular inflammation by modulating the p38/ERK/MAPK and NF-κB signaling pathways, and also reduced the damage of the esophageal mucosa in rats with reflux esophagitis. UPLC/MS-MS analysis of SCE identified 423 compounds, including 12 active ingredients such as triterpenoids, phenols, and steroids. This discovery not only provides scientific support for the potential of Sanguisorba tenuifolia as an anti-inflammatory agent but also lays the groundwork for the development of new therapeutics for the treatment of inflammatory diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

26 pages, 4733 KiB  
Article
Structural Characterization and Anti-Ultraviolet Radiation Damage Activity of Polysaccharides from Helianthus annuus (Sunflower) Receptacles
by Xiaochun Chen, Zhiying Wei, Xiaoying Mo, Yantong Lu, Guangjuan Pan, Zhenzhen Pan, Yaohua Li, Hui Tian and Xiaojiao Pan
Molecules 2025, 30(14), 2943; https://doi.org/10.3390/molecules30142943 - 11 Jul 2025
Viewed by 338
Abstract
Helianthus annuus L. (H. annuus) receptacles, a major agricultural by-product generated during seed processing, are currently underutilized. This study aimed to explore the valorization potential of this by-product by extracting H. annuus receptacles total polysaccharides (HRTP) and characterizing their potential [...] Read more.
Helianthus annuus L. (H. annuus) receptacles, a major agricultural by-product generated during seed processing, are currently underutilized. This study aimed to explore the valorization potential of this by-product by extracting H. annuus receptacles total polysaccharides (HRTP) and characterizing their potential as natural ingredients in ultraviolet (UV)-protective cosmetics. A new purified polysaccharide named H. annuus receptacles polysaccharide-1 (HRP-1) was isolated, likely exhibiting a backbone of alternating →4)-α-D-GalA-(1→ and →4)-α-D-GalA(6-OCH3)-(1→ units, with a weight-average molecular weight (Mw) of 163 kDa. HRTP demonstrated significant protective effects against UV-induced damage in human immortalized keratinocyte (HaCaT) cells by suppressing intracellular reactive oxygen species (ROS) levels and downregulating MAPK-p38/ERK/JNK pathways, thereby inhibiting inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Additionally, HRTP exhibited moisturizing properties. These findings highlight H. annuus receptacle polysaccharides as sustainable, bioactive ingredients for eco-friendly sunscreen formulations, providing a practical approach to converting agricultural by-products into high-value industrial biomaterials. Full article
Show Figures

Graphical abstract

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 646
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

24 pages, 3627 KiB  
Article
Andrographolide Mitigates Inflammation and Reverses UVB-Induced Metabolic Reprogramming in HaCaT Cells
by Carolina Manosalva, Pablo Alarcón, Lucas Grassau, Carmen Cortés, Juan L. Hancke and Rafael A. Burgos
Int. J. Mol. Sci. 2025, 26(13), 6508; https://doi.org/10.3390/ijms26136508 - 6 Jul 2025
Viewed by 503
Abstract
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored [...] Read more.
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored AP’s multitarget therapeutic effects on wound healing under photoaging conditions (PhA/WH) using network pharmacology and experimental validation. Scratch wound assays showed that AP promoted keratinocyte migration in UVB-exposed HaCaT cells. Bioinformatic analysis identified 10 key targets in PhA/WH, including TNF-α, IL-1β, JUN, PPARγ, MAPK3, TP53, TGFB1, HIF-1α, PTGS2, and CTNNB1. AP suppressed UVB-induced pro-inflammatory gene expression (IL-1β, IL-6, IL-8, and COX-2) and inhibited the phosphorylation of ERK1/2 and P38, while enhancing Hypoxia-Inducible Factor-1alpha (HIF-1α) and peroxisome proliferator-activated receptors (PPARγ) expression. GC/MS-based metabolomics revealed that AP reversed UVB-induced disruptions in fatty acid metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid (TCA) cycle, indicating its role in restoring the metabolic balance necessary for tissue regeneration. In conclusion, andrographolide modulates key inflammatory and metabolic pathways involved in wound repair and photoaging. These mechanistic insights contribute to a better understanding of the molecular processes underlying skin regeneration under photodamage and may inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

22 pages, 5021 KiB  
Article
Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways
by Warathit Semmarath, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng and Pornngarm Dejkriengkraikul
Life 2025, 15(7), 1077; https://doi.org/10.3390/life15071077 - 5 Jul 2025
Viewed by 415
Abstract
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need [...] Read more.
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25–100 μg/mL) and luteolin (4.5–36 μM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation. Full article
Show Figures

Figure 1

13 pages, 4302 KiB  
Article
Analysis of Processing Impact on Raspberries Based on Broad-Spectrum Metabolomics
by Xiaoge Wang, Qiyuan Liao, Fan Wang, Xuelin Rui, Yushan Liu and Rui Wang
Metabolites 2025, 15(7), 435; https://doi.org/10.3390/metabo15070435 - 26 Jun 2025
Viewed by 372
Abstract
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance [...] Read more.
Objective: Our objective was to explore the regulatory mechanism of salt processing on the metabolome of the raspberry and its potential efficacy against diabetic nephropathy (DN), providing metabolomic and network pharmacological evidence for the scientific connotation of traditional Chinese medicine processing. Methods: Ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS)-based metabolomics was used to compare the metabolic profiles between raw and salt-processed raspberries. Network pharmacology was applied to screen the common targets of the active components in the salt-processed raspberry and DN-related pathways, followed by in vitro cell experiments to validate the regulation of the MAPK signaling pathway. Results: The metabolomic analysis identified 80 differentially expressed metabolites, among which 13 key components (VIP ≥ 1, FC ≥ 2) were significantly altered, including enriched flavonoids (e.g., luteolin-7-O-glucoside), triterpenoid saponins (Raspberryides H/F), and phenolic acids (ellagic acid). The network pharmacology revealed that the salt-processed raspberries regulated the DN-related pathways through 122 common targets, with the core nodes focusing on the signaling molecules (e.g., AKT1, EGFR) involved in the MAPK signaling pathway and apoptosis regulation. The in vitro experiments confirmed that the salt-processed raspberry extract (160–640 μg/mL) significantly inhibited the phosphorylation levels of p38/ERK/JNK in high-glucose-induced renal cells. Conclusions: This study firstly combines metabolomics and network pharmacology to reveal the regulatory mechanism of salt processing on the active components of raspberries. The salt-processing technology enhanced the inhibitory effect of raspberries on the MAPK signaling pathway, thereby ameliorating the progression of DN. These findings provide scientific support for establishing a metabolomics-based quality control system for traditional Chinese medicine processing. The current findings are primarily based on in vitro models, and in vivo validation using DN animal models is essential to confirm the therapeutic efficacy and safety of salt-processed raspberries. Full article
Show Figures

Figure 1

15 pages, 2609 KiB  
Review
Evaluation of the Circadian Rhythm Component Cipc (Clock-Interacting Pacemaker) in Leukemogenesis: A Literature Review and Bioinformatics Approach
by Leidivan Sousa da Cunha, Beatriz Maria Dias Nogueira, Flávia Melo Cunha de Pinho Pessoa, Caio Bezerra Machado, Deivide de Sousa Oliveira, Manoel Odorico de Moraes Filho, Maria Elisabete Amaral de Moraes, André Salim Khayat and Caroline Aquino Moreira-Nunes
Clocks & Sleep 2025, 7(3), 33; https://doi.org/10.3390/clockssleep7030033 - 25 Jun 2025
Viewed by 723
Abstract
Circadian rhythms (CRs) are a key biological system regulating physiological processes such as metabolism, cell growth, DNA repair, and immunity, adapting to environmental changes like the light/dark cycle. Governed by internal clocks, it modulates gene expression through feedback loops involving Clock Genes (CGs), [...] Read more.
Circadian rhythms (CRs) are a key biological system regulating physiological processes such as metabolism, cell growth, DNA repair, and immunity, adapting to environmental changes like the light/dark cycle. Governed by internal clocks, it modulates gene expression through feedback loops involving Clock Genes (CGs), with the cycle initiated by CLOCK–BMAL1 and NPAS2–BMAL1 heterodimers. Disruptions in circadian rhythms have been linked to diseases including metabolic disorders, neurodegeneration, and cancer. CIPC (CLOCK-interacting pacemaker) has been studied as a negative regulator of the CLOCK–BMAL1 complex, focusing on its role in cancer, particularly leukemias. Public datasets and bioinformatics tools were used to examine CIPC gene expression in healthy patients and acute myeloid leukemia (AML) samples. Our analysis revealed significant overexpression of CIPC in AML compared to healthy tissues (p < 0.0001 ****). Additionally, survival analysis indicated significant differences in overall survival based on CIPC expression, with a log-rank test p-value = 0.014, suggesting that CIPC expression may affect overall patient survival. Altered CIPC expression may contribute to leukemogenesis by inhibiting circadian genes, which are often disrupted in leukemia. Furthermore, CIPC interacts with oncogenic pathways, including the MAPK/ERK pathway, which is essential for cell proliferation. Additional studies are needed to validate these findings and explore the detailed role of CIPC in cancer development. Full article
(This article belongs to the Section Human Basic Research & Neuroimaging)
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Exploring MAPK and mTOR Pathways in Feline Thyroid Tumors
by Alexandra Monteiro, Tiago Bordeira Gaspar, Inês Borges, Sule Canberk, Mafalda Pinto, Isabel Pires, Paula Soares and Catarina Tavares
Vet. Sci. 2025, 12(7), 617; https://doi.org/10.3390/vetsci12070617 - 24 Jun 2025
Viewed by 661
Abstract
Thyroid tumors are common in humans and cats, occurring most commonly as benign lesions, whereas thyroid carcinoma is barely detected in both species. Determining the mutational status of MAPK-related genes (BRAF, NRAS, HRAS, and KRAS) and the activation [...] Read more.
Thyroid tumors are common in humans and cats, occurring most commonly as benign lesions, whereas thyroid carcinoma is barely detected in both species. Determining the mutational status of MAPK-related genes (BRAF, NRAS, HRAS, and KRAS) and the activation status of MAPK and mTOR pathways is crucial for establishing the diagnosis, treatment, and prognosis of human patients. So far, the role of such players in feline thyroid tumorigenesis remains underexplored. This study aims to elucidate the presence and implications of potential shared molecular mechanisms between human and feline thyroid tumors. Fifteen formalin-fixed paraffin-embedded feline thyroid epithelial tumors (four tumors with atypia and 11 with no atypia) were collected to perform mutational and immunohistochemical analyses. Sanger sequencing targeting human homologous hotspots revealed no mutations in BRAF (human codon 600) or RAS (human codon 61) regions. A KRAS missense mutation (p.Gln232His) was identified in two tumors with no atypia of follicular pattern (2/15, 13%). Regardless of the mutational status, pERK (Thr202/Ty204) was immuno-expressed in 10/11 (91%), pS6 (Ser235/236) in 100%, and pAKT (Ser473) in 8/11 (73%) of the tumors with no atypia. The expression patterns of pERK, pS6, and pAKT and their associations with clinical-pathological features seem to mirror the progression dynamics observed in human thyroid tumorigenesis. pAKT expression was associated with the presence of multiple tumor foci within the same thyroid lobe, suggesting its potential as a marker of aggressiveness in feline thyroid tumors. This study introduces cats as potential animal models for human thyroid tumorigenesis, with further research required to confirm such potential. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Graphical abstract

22 pages, 3867 KiB  
Article
Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity
by Sun Myung Yoon, Ye-Won Lee, Min Ju Kim, Jae-Joon Shin, Gun Won Bae and Sunmin Park
Int. J. Mol. Sci. 2025, 26(13), 6030; https://doi.org/10.3390/ijms26136030 - 24 Jun 2025
Viewed by 486
Abstract
This study investigated the potential neuroprotective mechanisms of porcine brain enzyme hydrolysate (PBEH) against Alzheimer’s disease pathology using differentiated SH-SY5Y cells. Differentiated neuronal cells were treated with 40 μM amyloid-β(1-42; Aβ) to induce neurotoxicity, followed by PBEH treatment (12.5–400 μg/mL), Com-A (peptide-based neuroprotective [...] Read more.
This study investigated the potential neuroprotective mechanisms of porcine brain enzyme hydrolysate (PBEH) against Alzheimer’s disease pathology using differentiated SH-SY5Y cells. Differentiated neuronal cells were treated with 40 μM amyloid-β(1-42; Aβ) to induce neurotoxicity, followed by PBEH treatment (12.5–400 μg/mL), Com-A (peptide-based neuroprotective supplement; 200 μg/mL) treatment, and Com-B (herbal extract known for improving memory function; 100 μg/mL) treatment. Key assessments included cell viability, Aβ aggregation in adding 10 μM Aβ, amyloidogenic proteins (APP, BACE), synaptic markers (BDNF, ERK), apoptotic markers (BAX/BCL-2, caspase-3), oxidative stress (reactive oxygen species (ROS)), cholinergic function (ChAT, AChE), MAPK signaling (JNK, p38), and neuroinflammation (IL-1β). PBEH contained high concentrations of amino acids, including L-lysine (32.3 mg/g), L-leucine (42.4 mg/g), L-phenylalanine (30.0 mg/g) and the PSIS peptide (86.9 μg/g). Treatment up to 400 μg/mL showed no cytotoxicity and had cognitive protection effects up to 152% under Aβ stress (p < 0.05). PBEH significantly attenuated Aβ aggregation, decreased APP (28%) and BACE (51%) expression, enhanced synaptic function through increased BDNF, and restored ERK phosphorylation (p < 0.05). Anti-apoptotic effects included a 76% reduction in the BAX/BCL-2 ratio, a 47% decrease in caspase-3, and a 56% reduction in ROS levels. Cholinergic function showed restoration via increased ChAT activity (p < 0.01) and decreased AChE activity (p < 0.05). PBEH reduced IL-1β levels by 70% and suppressed JNK/p38 phosphorylation (p < 0.05). While Com-A enhanced BDNF and Com-B showed anti-inflammatory effects, PBEH demonstrated activity across multiple pathway markers. In conclusion, these findings suggest that PBEH may enable neuronal preservation through multi-pathway modulation, establishing foundational evidence for further mechanistic investigation in cognitive enhancement applications. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

18 pages, 2195 KiB  
Article
Pilot Transcriptomic Profiling of Canine Oral Melanoma Reveals Conserved Oncogenic Pathways and Uncharacterized Molecular Signatures
by Carmen G. Pérez-Santana, Francisco Rodríguez-Esparragón, Sara E. Cazorla-Rivero, Ana A. Jiménez-Alonso, Bernardino Clavo, Jesús M. González-Martín, Ángeles Cánovas-Molina, Carmen Bartolomé, Lidia Estupiñán and Enrique Rodríguez Grau-Bassas
Cancers 2025, 17(13), 2106; https://doi.org/10.3390/cancers17132106 - 23 Jun 2025
Viewed by 887
Abstract
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize [...] Read more.
Background: Canine oral melanoma (COM) is an aggressive and often fatal neoplasm in dogs, with clinical and molecular similarities to human melanoma. Despite its relevance as a comparative oncology model, the molecular mechanisms underlying COM remain poorly understood. This study aimed to characterize gene expression profiles in COM to identify differentially expressed genes (DEGs), potential biomarkers, and therapeutic targets. Methods: In this pilot study, we performed RNA sequencing (RNA-seq) on tumor and healthy oral tissue samples from dogs. Two independent analytical pipelines—Bowtie2-DESeq2 and HISAT-StringTie-Ballgown—were used to ensure robustness in DEG detection. We also conducted pathway enrichment and isoform-level analyses to investigate biological processes and alternative splicing events. Results: Both approaches identified a core set of 929 common DEGs. Key oncogenic pathways, including MAPK/ERK and cell cycle regulation, were significantly affected, with notable upregulation of BRAF, NRAS, CDK4, and MITF (log2FC = 2.86, p < 0.001). The transcription factor SOX10 and the cytokine IL-33, both previously implicated in melanoma progression, were consistently overexpressed. Additionally, NF1, a known RAS pathway inhibitor, was also upregulated. Isoform analysis revealed novel transcript variants, suggesting a complex layer of post-transcriptional regulation in COM. Many DEGs remained uncharacterized, and chromosomal distribution analysis highlighted potential genomic influences. Conclusions: Our findings provide new insights into the molecular landscape of COM, reinforcing its utility as a model for human melanoma. The identification of conserved oncogenic pathways and novel transcript variants opens avenues for further functional studies and the development of targeted therapies in both veterinary and human oncology. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

Back to TopTop