Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,097)

Search Parameters:
Keywords = Enterococcus resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 921 KiB  
Article
Occurrence and Transfer by Conjugation of Linezolid- Resistance Among Non-Enterococcus faecalis and Enterococcus faecium in Intensive Pig Farms
by Giorgia Piccioni, Andrea Di Cesare, Raffaella Sabatino, Gianluca Corno, Gianmarco Mangiaterra, Daniela Marchis and Barbara Citterio
Microbiol. Res. 2025, 16(8), 180; https://doi.org/10.3390/microbiolres16080180 (registering DOI) - 2 Aug 2025
Abstract
Enterococcus spp. are opportunistic and nosocomial pathogens. Intensive pig farms have been recently described as important hotspots for antibiotic resistance and reservoirs of potentially pathogenic enterococci, including other species than the most known E. faecalis and E. faecium. Here, we identified Linezolid-resistant [...] Read more.
Enterococcus spp. are opportunistic and nosocomial pathogens. Intensive pig farms have been recently described as important hotspots for antibiotic resistance and reservoirs of potentially pathogenic enterococci, including other species than the most known E. faecalis and E. faecium. Here, we identified Linezolid-resistant non-E. faecalis and E. faecium (NFF) Enterococcus strains isolated from different production stages (suckling piglets, weaning pigs, and fatteners) across six intensive pig farms. The transferability of the linezolid-resistance determinants was assessed by bacterial conjugation and strains were also characterized for biofilm production, hemolytic and gelatinase activity. Among 64 identified NFF Enterococcus strains, 27 were resistant to at least three different antibiotic classes and 8/27 specifically to Linezolid. E. gallinarum and E. casseliflavus both transferred their Linezolid resistance determinants to the main pathogenic species E. faecium. Remarkably, this is the first report of the optrA gene transfer from E. casseliflavus to E. faecium by conjugation, which can greatly contribute to the spread of antibiotic resistance genes among pathogenic enterococcal species. The “weaning pigs” stage exhibited a significantly higher number of antibiotic-resistant enterococci than the “fatteners”. These findings highlight the importance of monitoring pig farms as hotspots for the spread of antibiotic-resistant enterococci, especially in the early stages of production. Furthermore, they underscore the significant role of NFF Enterococcus species as carriers of antibiotic resistance genes, even to last-resort antibiotics, which may be transferable to the major enterococcal species. Full article
(This article belongs to the Special Issue Zoonotic Bacteria: Infection, Pathogenesis and Drugs—Second Edition)
20 pages, 1836 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 (registering DOI) - 1 Aug 2025
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
23 pages, 3211 KiB  
Article
Investigation of Bacterial Species and Their Antimicrobial Drug Resistance Profile in Feline Urinary Tract Infection in Thailand
by Kankanit Lapcharoen, Chunyaput Bumrungpun, Wiyada Chumpol, Kamonwan Lunha, Suganya Yongkiettrakul, Porntippa Lekcharoensuk and Chantima Pruksakorn
Animals 2025, 15(15), 2235; https://doi.org/10.3390/ani15152235 - 30 Jul 2025
Viewed by 203
Abstract
Feline urinary tract infections (UTIs) present a common challenge in veterinary practice, underscoring the importance of understanding local bacterial pathogens and antimicrobial resistance (AMR). This study determined bacterial prevalence and antimicrobial susceptibility in cats at Kasetsart University’s Veterinary Teaching Hospital in Bangkok, Thailand. [...] Read more.
Feline urinary tract infections (UTIs) present a common challenge in veterinary practice, underscoring the importance of understanding local bacterial pathogens and antimicrobial resistance (AMR). This study determined bacterial prevalence and antimicrobial susceptibility in cats at Kasetsart University’s Veterinary Teaching Hospital in Bangkok, Thailand. Of the 543 cystocentesis urine samples collected from 428 cats, 115 (21.2%) tested positive for bacterial cultures, leading to a diagnosis of UTIs in 95 cats (22.2%). The most prevalent isolates included Escherichia coli (24.8%), Staphylococcus species (19.2%), Proteus mirabilis (13.6%), Pseudomonas aeruginosa (12.0%), and Enterococcus species (12.0%). Staphylococcus felis (8.8%) and Staphylococcus pseudintermedius (5.6%) were the predominant Staphylococcus species. Rare pathogens such as Corynebacterium urealyticum and Lactococcus garvieae were also identified. Antimicrobial testing revealed alarming resistance, with 69.2% of isolates exhibiting multidrug resistance (MDR). Escherichia coli and Proteus mirabilis showed high resistance to amoxicillin/clavulanic acid (AMC) (45.2–70.6%) and sulfamethoxazole/trimethoprim (SXT) (51.6–52.9%). Enterococcus faecium exhibited 85.7% resistance to AMC. Methicillin resistance was identified in 41.7% of Staphylococcus isolates, particularly high in Staphylococcus epidermidis (75.0%) and Staphylococcus pseudintermedius (71.4%). High fluoroquinolone resistance among MDR isolates further exacerbates AMR concerns. These results indicate that MDR Gram-negative, Staphylococcus, and Enterococcus species complicate the empirical treatment of feline UTIs, highlighting significant implications for AMR in veterinary practice. Full article
Show Figures

Figure 1

36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 133
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

20 pages, 2840 KiB  
Article
Functional Analysis of BmHemolin in the Immune Defense of Silkworms
by Long He, Lijing Liu, Huawei Liu, Xin Tang, Yide Meng, Hui Xie, Lin Zhu, Qingyou Xia and Ping Zhao
Insects 2025, 16(8), 778; https://doi.org/10.3390/insects16080778 - 29 Jul 2025
Viewed by 323
Abstract
Hemolin has been identified as a crucial immune gene in insect immune defense. The silkworm is susceptible to infections by pathogenic microorganisms when reared on artificial diets. In this study, through comparative analysis of the expression patterns of BmHemolin in silkworms fed on [...] Read more.
Hemolin has been identified as a crucial immune gene in insect immune defense. The silkworm is susceptible to infections by pathogenic microorganisms when reared on artificial diets. In this study, through comparative analysis of the expression patterns of BmHemolin in silkworms fed on mulberry leaves and artificial diets, we found that the expression of BmHemolin was significantly upregulated in silkworms reared on artificial diets, and this upregulation was highly likely induced by pathogenic microorganisms. Further interaction analysis revealed that BmHemolin could bind to pathogenic microorganisms and form aggregates. Meanwhile, BmHemolin enhanced the melanization and aggregation of hemocytes. Subsequent in vitro antibacterial experiments showed that BmHemolin had the ability to inhibit the growth of Escherichia coli. In vivo clearance experiments demonstrated that BmHemolin facilitated the clearance of pathogens in the body. Moreover, CRISPR/Cas9-mediated knockout of the BmHemolin gene led to the downregulation of antimicrobial peptides and phagocytosis-related factors, while an excess of BmHemolin could enhance the expression of these genes, thereby improving the silkworm’s immune resistance to Enterococcus mundtii and increasing survival rates. In summary, our research demonstrates that BmHemolin played a pivotal role in both humoral and cellular immunity in the silkworm, thereby defending against pathogen invasion. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 385
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

16 pages, 2045 KiB  
Article
The Antimicrobial Activity of Silver Nanoparticles Biosynthesized Using Cymbopogon citratus Against Multidrug-Resistant Bacteria Isolated from an Intensive Care Unit
by Bianca Picinin Gusso, Aline Rosa Almeida, Michael Ramos Nunes, Daniela Becker, Dachamir Hotza, Cleonice Gonçalves da Rosa, Vanessa Valgas dos Santos and Bruna Fernanda da Silva
Pharmaceuticals 2025, 18(8), 1120; https://doi.org/10.3390/ph18081120 - 27 Jul 2025
Viewed by 307
Abstract
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and [...] Read more.
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and characterized by gas chromatography–mass spectrometry (GC-MS). Antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and total phenolic content. AgNPs (3 mM and 6 mM silver nitrate) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Bacterial isolates were obtained from ICU surfaces and personal protective equipment (PPE). Results: The essential oil presented citral A, citral B, and β-myrcene as major components (97.5% of identified compounds). AgNPs at 3 mM showed smaller size (87 nm), lower Polydispersity Index (0.14), and higher colloidal stability (−23 mV). The 6 mM formulation (147 nm; PDI 0.91; −10 mV) was more effective against a strain of Enterococcus spp. resistant to all antibiotics tested. FTIR analysis indicated the presence of O–H, C=O, and C–O groups involved in nanoparticle stabilization. Discussion: The higher antimicrobial efficacy of the 6 mM formulation was attributed to the greater availability of active AgNPs. Conclusions: The green synthesis of AgNPs using C. citratus essential oil proved effective against MDR bacteria and represents a sustainable and promising alternative for microbiological control in healthcare environments. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Graphical abstract

27 pages, 4093 KiB  
Article
Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Vet. Sci. 2025, 12(8), 691; https://doi.org/10.3390/vetsci12080691 - 24 Jul 2025
Viewed by 447
Abstract
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs [...] Read more.
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the “One Health” framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. Full article
Show Figures

Graphical abstract

32 pages, 722 KiB  
Article
Nutritional and Bioactive Characterization of Unconventional Food Plants for Sustainable Functional Applications
by Izamara de Oliveira, José Miguel R. T. Salgado, João Krauspenhar Lopes, Marcio Carocho, Tayse F. F. da Silveira, Vitor Augusto dos Santos Garcia, Ricardo C. Calhelha, Celestino Santos-Buelga, Lillian Barros and Sandrina A. Heleno
Sustainability 2025, 17(15), 6718; https://doi.org/10.3390/su17156718 - 23 Jul 2025
Viewed by 275
Abstract
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) [...] Read more.
Unconventional food plants (UFPs) are increasingly valued for their nutritional composition and bioactive potential. This study proposes a comprehensive characterization of the chemical and bioactive properties of Pereskia aculeata Miller (Cactaceae) (PA); Xanthosoma sagittifolium (L.) Schott (Araceae) (XS); Stachys byzantina K. Koch (Lamiaceae) (SB); and inflorescences from three cultivars of Musa acuminata (Musaceae) var. Dwarf Cavendish, var. BRS Platina, and var. BRS Conquista (MAD, MAP, and MAC), including the assessment of physical, nutritional, phytochemical, and biological parameters. Notably, detailed phenolic profiles were established for these species, many of which are poorly documented in the literature. XS was characterized by a unique abundance of C-glycosylated flavones, especially apigenin and luteolin derivatives, rarely described for this species. SB exhibited high levels of phenylethanoid glycosides, particularly verbascoside and its isomers (up to 21.32 mg/g extract), while PA was rich in O-glycosylated flavonols such as quercetin, kaempferol, and isorhamnetin derivatives. Nutritionally, XS had the highest protein content (16.3 g/100 g dw), while SB showed remarkable dietary fiber content (59.8 g/100 g). Banana inflorescences presented high fiber (up to 66.5 g/100 g) and lipid levels (up to 7.35 g/100 g). Regarding bioactivity, PA showed the highest DPPH radical scavenging activity (95.21%) and SB the highest reducing power in the FRAP assay (4085.90 µM TE/g). Cellular antioxidant activity exceeded 2000% in most samples, except for SB. Cytotoxic and anti-inflammatory activities were generally low, with only SB showing moderate effects against Caco-2 and AGS cell lines. SB and PA demonstrated the strongest antimicrobial activity, particularly against Yersinia enterocolitica, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis, with minimum inhibitory concentrations ranging from 0.156 to 0.625 mg/mL. Linear discriminant analysis revealed distinctive chemical patterns among the species, with organic acids (e.g., oxalic up to 7.53 g/100 g) and fatty acids (e.g., linolenic acid up to 52.38%) as key discriminant variables. Overall, the study underscores the nutritional and functional relevance of these underutilized plants and contributes rare quantitative data to the scientific literature regarding their phenolic signatures. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

25 pages, 8725 KiB  
Article
Novel 3D-Printed Replica Plate Device Ensures High-Throughput Antibacterial Screening of Halophilic Bacteria
by Kaloyan Berberov, Nikolina Atanasova, Nikolay Krumov, Boryana Yakimova, Irina Lazarkevich, Stephan Engibarov, Tsvetozara Damyanova, Ivanka Boyadzhieva and Lyudmila Kabaivanova
Mar. Drugs 2025, 23(8), 295; https://doi.org/10.3390/md23080295 - 23 Jul 2025
Viewed by 239
Abstract
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we [...] Read more.
Antibiotic resistance is one of the most significant public health issues today. As a consequence, there is an urgent need for novel classes of antibiotics. This necessitates the development of highly efficient screening methods for the rapid identification of antibiotic-producing bacteria. Here, we describe a new method for high-throughput screening of antimicrobial compounds (AMC) producing halophilic bacteria. Our methodology used a newly designed 3D-printed Petri plate replicator used for drop deposition and colony replication. We employed this device in combination with a modified agar overlay assay to screen more than 7400 bacterial colonies. A total of 54 potential AMC producers were discovered at a success rate of 0.7%. Although 40% of them lost their antibacterial activity during the secondary screening, 22 strains retained inhibitory activity and were able to suppress the growth of one or more safe relatives of the ESKAPE group pathogens. The ethyl acetate extract from the most potent strain, Virgibacillus salarius POTR191, demonstrated moderate antibacterial activity against Enterococcus faecalis, Acinetobacter baumanii, and Staphylococcus epidermidis with minimal inhibitory concentrations of 128 μg/mL, 128 μg/mL, and 512 μg/mL, respectively. We propose that our replica plate assay could be used for target-based antimicrobial screening of various extremophilic bacteria. Full article
Show Figures

Graphical abstract

21 pages, 2325 KiB  
Article
Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk
by Anagnostou Glykeria-Myrto, Skarlatoudi Theodora, Theodorakis Vasileios, Bosnea Loulouda and Mataragas Marios
Vet. Sci. 2025, 12(8), 685; https://doi.org/10.3390/vetsci12080685 - 23 Jul 2025
Viewed by 275
Abstract
The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing [...] Read more.
The role of Enterococcus spp. in food is debated since this group of lactic acid bacteria contains opportunistic pathogenic strains, some of which exhibit a multidrug-resistant profile. In livestock farms, the use of antibiotics is the most common practice to deal with mastitis-causing bacteria. However, the heavy usage and/or misuse of antibiotics has led to the emergence of antibiotic resistance. This study aimed to genetically and phenotypically characterize Enterococcus strains isolated from raw sheep milk. Samples were collected over one year from the bulk tank of a dairy sheep farm and cultured on selective media. Isolates were purified and analyzed by whole-genome sequencing and antimicrobial susceptibility testing. The isolates were divided into clusters and the corresponding species were identified along with their genes related to virulence and antibiotic resistance. The pan-, core- and accessory-genomes of the strains were determined. Finally, the antibiotic-resistant profile of selected strains was examined and associated with their genomic characterization. These findings contribute to a better understanding of Enterococci epidemiology, providing comprehensive profiles of their virulence and resistance genes. The presence of antibiotic-resistant bacteria in raw sheep milk destined for the production of cheese should raise awareness. Full article
Show Figures

Figure 1

11 pages, 2056 KiB  
Article
Effect of Copper Salts on Escherichia coli and Enterococcus faecalis Biofilms in Pipeline Systems: Implications for Microbial Control and Hydraulic Performance
by Neira Crnčević, Ahmed El Sayed, Mahmoud Hsino, Andrzej Piątkowski, Murisa Latić, Sara Deumić and Monia Avdić
Appl. Sci. 2025, 15(14), 8042; https://doi.org/10.3390/app15148042 - 19 Jul 2025
Viewed by 303
Abstract
Copper-based substances have historically been shown to exhibit antimicrobial properties, but the mechanisms by which they interact with bacterial biofilms in pipeline systems remain unclear. This study investigates the effects of copper sulfate and copper nitrate on the growth, biofilm formation, and antibiotic [...] Read more.
Copper-based substances have historically been shown to exhibit antimicrobial properties, but the mechanisms by which they interact with bacterial biofilms in pipeline systems remain unclear. This study investigates the effects of copper sulfate and copper nitrate on the growth, biofilm formation, and antibiotic resistance profiles of Escherichia coli and Enterococcus faecalis. Across a wide concentration range (0.00005–100 mg/mL), both salts demonstrated strong antimicrobial activity at higher concentrations, while sublethal levels produced more nuanced effects. Higher concentrations exhibited potent antimicrobial activity, while sublethal concentrations paradoxically enhanced biofilm resistance, particularly in E. faecalis. Growth kinetic assays and spectroscopic analysis were used to better understand how copper interacts with microbes on a biochemical and physical level. Surprisingly, prolonged exposure to sublethal copper concentrations altered the antibiogram profiles of E. faecalis, developing resistance to ceftazidime. The findings confirm the bimodal activity of copper salts as antimicrobial and biofilm-controlling agents, highlighting the critical need for precise concentration optimization in wastewater treatment. This current study contributes to the collective knowledge pool of metal–microbe interactions, shedding light on selecting materials for industrial and environmental applications. Full article
Show Figures

Figure 1

15 pages, 636 KiB  
Article
High Prevalence of Multidrug-Resistant Bacterial Colonization Among Patients and Healthcare Workers in a Rural Ethiopian Hospital
by Elena Hidalgo, Teresa Alvaredo-Carrillo, Josefina-Marina Gil-Belda, Clara Portela-Pino, Clara Bares-Moreno, Sara Jareño-Moreno, Paula de la Fuente, Lucía Platero and Ramón Pérez-Tanoira
Antibiotics 2025, 14(7), 717; https://doi.org/10.3390/antibiotics14070717 - 17 Jul 2025
Viewed by 317
Abstract
Background/Objectives: Multidrug-resistant (MDR) bacterial colonization poses a significant risk for subsequent infections, especially within hospital environments. Healthcare workers can inadvertently transmit these MDR bacteria to vulnerable patients, exacerbating the problem. This study aimed to determine the colonization rates of MDR bacteria among patients [...] Read more.
Background/Objectives: Multidrug-resistant (MDR) bacterial colonization poses a significant risk for subsequent infections, especially within hospital environments. Healthcare workers can inadvertently transmit these MDR bacteria to vulnerable patients, exacerbating the problem. This study aimed to determine the colonization rates of MDR bacteria among patients and healthcare workers in a rural Ethiopian hospital with limited resources. Methods: Between 26 May and 6 June 2024, nasal, rectal, vagino-rectal exudate, and stool samples were collected from patients (n = 78) and healthcare workers (n = 11) at Gambo General Hospital (Oromia Region, Ethiopia). Samples were cultured on chromogenic media selective for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus spp. (VRE), and carbapenemase-producing Enterobacteriaceae (CPE). Bacterial identification was performed using MALDI-TOF mass spectrometry (Bruker), antimicrobial susceptibility testing using the MicroScan WalkAway system (Beckman Coulter), and genotypic characterization with the MDR Direct Flow Chip kit (Vitro). Results: MRSA nasal colonization was detected in 43.3% of patients (13/30; 95% CI: 27.4–60.8%) and 27.3% of healthcare workers (3/11; 95% CI: 6.0–61.0%) (p = 0.73). Rectal (or stool) colonization by MDR bacteria was significantly higher in pediatric patients (85.0%, 17/20; 95% CI: 62.1–96.8%) than in adults (14.3%, 4/28; 95% CI: 5.7–31.5%) (p < 0.001). Notably, a high proportion of pediatric patients harbored Escherichia coli strains co-producing NDM carbapenemase and CTX-M ESBL, and VRE strains were also predominantly isolated in this group. Conclusions: This study reveals a concerningly high prevalence of MRSA and MDR Enterobacteriaceae, especially among children at Gambo Hospital. The VRE prevalence was also substantially elevated compared to other studies. These findings underscore the urgent need for strengthened infection control measures and antimicrobial stewardship programs within the hospital setting. Full article
Show Figures

Figure 1

14 pages, 1185 KiB  
Article
Role of Oral Bacteria in Mediating Gemcitabine Resistance in Pancreatic Cancer
by Geng Xu, Yaling Jiang, Chen Sun, Bernd W. Brandt, Kamran Nazmi, Luca Morelli, Giulia Lencioni, Elisa Giovannetti and Dongmei Deng
Biomolecules 2025, 15(7), 1018; https://doi.org/10.3390/biom15071018 - 15 Jul 2025
Viewed by 352
Abstract
Oral microbiota have been implicated in pancreatic ductal adenocarcinoma (PDAC) and may contribute to chemotherapy resistance. While previous studies attributed bacteria-induced resistance to indirect host modulation, recent findings suggest a direct mechanism. Escherichia coli expressing long-form cytidine deaminase (CDDL) can degrade [...] Read more.
Oral microbiota have been implicated in pancreatic ductal adenocarcinoma (PDAC) and may contribute to chemotherapy resistance. While previous studies attributed bacteria-induced resistance to indirect host modulation, recent findings suggest a direct mechanism. Escherichia coli expressing long-form cytidine deaminase (CDDL) can degrade gemcitabine, a chemotherapeutic agent, into a non-toxic form, leading to resistance. In contrast, bacteria carrying short form (CDDS) or lacking CDD did not induce resistance. This study investigates whether oral bacteria can cause gemcitabine resistance in PDAC cells through CDD-mediated degradation. Oral microbes associated with PDAC were selected based on CDD isoforms: Aggregatibacter actinomycetemcomitans carrying CDDL, Enterococcus faecalis, Streptococcus mutans, Porphyromonas gingivalis, all carrying CDDS, and Fusobacterium nucleatum lacking CDD. The selected microbes, along with wild-type and CDD-deficient E. coli, were co-incubated with gemcitabine to assess its degradation and PDAC cell proliferation. A. actinomycetemcomitans fully degraded gemcitabine and induced resistance. Surprisingly, CDDS-expressing oral bacteria partially degraded gemcitabine in a strain-dependent manner. Expressing either CDDL or CDDS in CDD-deficient E. coli resulted in equivalent gemcitabine degradation and resistance, indicating that CDD function is independent of isoform length. These findings highlight the role of oral bacteria in gemcitabine resistance and the need for strategies to mitigate microbial-driven resistance in PDAC treatment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 3962 KiB  
Article
From Antiretroviral to Antibacterial: Deep-Learning-Accelerated Repurposing and In Vitro Validation of Efavirenz Against Gram-Positive Bacteria
by Ezzeldin Saleh, Omar A. Soliman, Nancy Attia, Nouran Rafaat, Daniel Baecker, Mohamed Teleb, Abeer Ghazal and Ahmed Noby Amer
Molecules 2025, 30(14), 2925; https://doi.org/10.3390/molecules30142925 - 10 Jul 2025
Viewed by 323
Abstract
The repurposing potential of Efavirenz (EFV), a clinically established non-nucleoside reverse transcriptase inhibitor, was comprehensively evaluated for its in vitro antibacterial effect either alone or in combination with other antibacterial agents on several Gram-positive clinical strains showing different antibiotic resistance profiles. The binding [...] Read more.
The repurposing potential of Efavirenz (EFV), a clinically established non-nucleoside reverse transcriptase inhibitor, was comprehensively evaluated for its in vitro antibacterial effect either alone or in combination with other antibacterial agents on several Gram-positive clinical strains showing different antibiotic resistance profiles. The binding potential assessed by an in silico study included Penicillin-binding proteins (PBPs) and WalK membrane kinase. Despite the relatively high minimum inhibitory concentration (MIC) limiting the use of EFV as a single antibacterial agent, it exhibits significant synergistic activity at sub-MIC levels when paired with various antibiotics against Enterococcus species and Staphylococcus aureus. EFV showed restored sensitivity of β-lactams against Methicillin-resistant S. aureus (MRSA). It increased the effectiveness of antibiotics tested against Methicillin-sensitive S. aureus (MSSA). It also helped to overcome the intrinsic resistance barrier for several antibiotics in Enterococcus spp. In silico binding studies aligned remarkably with experimental antimicrobial testing results and highlighted the potential of EFV to direct the engagement of PBPs with moderate to strong binding affinities (pKa 5.2–6.1). The dual-site PBP2 binding mechanism emerged as a novel inhibition strategy, potentially circumventing resistance mutations. Special attention should be paid to WalK binding predictions (pKa = 4.94), referring to the potential of EFV to interfere with essential regulatory pathways controlling cell wall metabolism and virulence factor expression. These findings, in general, suggest the possibility of EFV as a promising lead for the development of new antibacterial agents. Full article
Show Figures

Figure 1

Back to TopTop