Effect of Copper Salts on Escherichia coli and Enterococcus faecalis Biofilms in Pipeline Systems: Implications for Microbial Control and Hydraulic Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Copper Salts
2.3. Agar-Well Diffusion Method
2.4. Biofilm Formation
2.5. Antibiogram Assay
2.6. Growth Curves
2.7. Resazurin Assay
3. Results
3.1. Agar-Well Diffusion Method
3.2. Minimum Inhibitory Concentration
3.3. Effect on Biofilm Formation
3.4. Antibiogram Susceptibility Profiles
3.5. Growth Dynamics Under Sublethal Stress
3.6. Resazurin Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlingame, G.A.; Anselme, C. Advances in Taste-and-Odor Treatment and Control; AR Foundation: Denver, CO, USA, 1995. [Google Scholar]
- Trevors, J.T.; Cotter, C.M. Antibiotic resistance and metal tolerance of bacteria isolated from soil. J. Ind. Microbiol. Biotechnol. 1990, 6, 77. [Google Scholar] [CrossRef]
- Liu, Z.; Stout, J.E.; Tedesco, L.; Boldin, M.; Hwang, C.; Diven, W.F.; Yu, V.L. Controlled evaluation of copper–silver ionization in eradicating Legionella pneumophila from a hospital water distribution system. J. Infect. Dis. 1994, 169, 919–922. [Google Scholar] [CrossRef]
- Videla, H.A.; Characklis, W.G. Biofouling and microbially influenced corrosion. Int. Biodeterior. Biodegrad. 1992, 29, 195–212. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Szewzyk, U.; Szewzyk, R.; Manz, W.; Schleifer, K.H. Microbiological safety of drinking water. Annu. Rev. Microbiol. 2000, 54, 81–127. [Google Scholar] [CrossRef]
- Iversen, A.; Kühn, I.; Rahman, M.; Franklin, A.; Burman, L.G.; Olsson-Liljequist, B.; Möllby, R. Evidence for transmission between humans and the environment. Environ. Microbiol. 2004, 6, 55–63. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Miettinen, I.T.; Keinänen, M.M.; Kekki, T.K.; Laine, O.; Hirvonen, A.; Martikainen, P.J. Microbiology and chemical quality of water. Water Res. 2004, 38, 3769–3779. [Google Scholar] [CrossRef]
- Silhan, J.; Corfitzen, C.B.; Albrechtsen, H.J. Monitoring microbiological water quality. Water Sci. Technol. 2006, 54, 49–56. [Google Scholar] [CrossRef]
- Aguirre, J.S.; Pin, C.; Rodriguez, M.R.; Garcia de Fernando, G.D. Behavior of Listeria monocytogenes in biofilms. Appl. Environ. Microbiol. 2009, 75, 6992–6998. [Google Scholar] [CrossRef]
- Cabral, J.P. Water microbiology. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef]
- Hans, M.; Erbe, A.; Mathews, S.; Chen, Y.; Solioz, M.; Mücklich, F. Role of copper in biofilm formation. Langmuir 2013, 29, 16160–16166. [Google Scholar] [CrossRef] [PubMed]
- Cowle, M.W.; Babatunde, A.O.; Bockelmann-Evans, B.N. The frictional resistance induced by bacterial based biofouling in drainage pipelines. Environ. Technol. Rev. 2017, 55, 269–283. [Google Scholar] [CrossRef]
- Gomes, I.; Simões, L.; Simões, M. Biofilms in drinking water systems. RSC Adv. 2019, 9, 32184–32199. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, C.; Shao, B.; Fu, L.; Yu, J.; Qiang, Z.; Chen, J. Residual antibiotics in water. Sci. Total Environ. 2020, 723, 138160. [Google Scholar] [CrossRef]
- Arthur, E.K.; Gikunoo, E.; Agyemang, F.O.; Azeko, S.T.; Andrews, A.; Twenewaa, A. Evaluation of microbial quality. J. Sci. Technol. 2020, 5, 29–37. [Google Scholar]
- Hemdan, B.A.; Azab El-Liethy, M.; El-Taweel, G.E. Biofilm resistance and water disinfection. Water Environ. Res. 2020, 92, 2155–2164. [Google Scholar] [CrossRef]
- Danilova, T.; Danilina, G.; Adzhieva, A.A.; Vostrova, E.I.; Zhukhovitskii, V.G.; Cheknev, S.B. Immune modulation by biofilms. Bull. Exp. Biol. Med. 2020, 169, 648–651. [Google Scholar] [CrossRef]
- Al-Abdan, M.A.; Bin-Jumah, M.N.; Alarifi, S. Exploration of cadmium silica nanoparticles on bioaccumulation, oxidative stress, and carcinogenic potentiates in Oreochromis mossambicus L. Oxid. Med. Cell. Longev. 2020, 2020, 5407159. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper homeostasis in microbial pathogens. PLoS Pathog. 2012, 8, e1002887. [Google Scholar] [CrossRef]
- Aguilera, A.; Souza-Egipsy, V.; San Martín-Úriz, P.; Amils, R. Microbial communities in extreme environments. Aquat. Toxicol. 2008, 88, 257–263. [Google Scholar] [CrossRef]
- Panda, P.S.; Chaudhary, U.; Dube, S.K. Study on Pseudomonas in water systems. Indian J. Pathol. Microbiol. 2016, 59, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Deumić, S.; El Sayed, A.; Hsino, M.; Glamočak, A.; Crnčević, N.; Avdić, M. Investigating the Effect of Iron Salts on E. coli and E. faecalis Biofilm Formation in Water Distribution Pipelines. Water 2025, 17, 886. [Google Scholar] [CrossRef]
- Branda, S.S.; Vik, Å.; Friedman, L.; Kolter, R. Biofilms: A microbial lifestyle. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef] [PubMed]
Wavelength | Reduced Resazurin (εRED) | Oxidized Resazurin (εOX) |
---|---|---|
562 nm | 155.677 | 80.586 |
595 nm | 14.652 | 117.216 |
Antibiotic | EC1 | EC2 | CuSO4·5H2O with EC1 | CuSO4·5H2O with EC2 | Cu(NO3)2·3H2O with EC1 | Cu(NO3)2·3H2O with EC2 |
---|---|---|---|---|---|---|
DXT (30) | 15.00 ± 0.00 | 21.00 ± 0.00 | 16.00 ± 0.00 | 19.00 ± 0.00 | 15.50 ± 0.71 | 20.00 ± 0.00 |
AML (30) | 20.00 ± 0.00 | 21.00 ± 0.00 | 20.00 ± 0.00 | 19.00 ± 0.00 | 20.00 ± 0.00 | 20.00 ± 0.00 |
MEZ (75) | 21.00 ± 0.00 | 26.00 ± 1.41 | 22.00 ± 0.00 | 23.50 ± 0.71 | 21.00 ± 0.00 | 25.00 ± 0.00 |
CXM (30) | 19.00 ± 0.00 | 24.00 ± 0.00 | 19.00 ± 0.00 | 22.00 ± 0.00 | 19.00 ± 0.00 | 23.00 ± 0.00 |
CAZ (30) | 22.50 ± 0.71 | 28.00 ± 0.00 | 23.00 ± 0.00 | 25.00 ± 0.00 | 23.00 ± 0.00 | 27.00 ± 0.00 |
CRO (30) | 28.00 ± 0.00 | 32.00 ± 0.00 | 29.50 ± 0.71 | 30.00 ± 0.00 | 29.50 ± 0.00 | 30.00 ± 0.00 |
AMP (2) | R | R | R | R | R | R |
AUG (30) | 20.00 ± 0.00 | 19.00 ± 1.41 | 20.00 ± 0.00 | 19.00 ± 0.00 | 20.00 ± 0.00 | 19.50 ± 0.71 |
CAL (40) | 25.00 ± 0.00 | 28.50 ± 0.71 | 26.00 ± 1.41 | 27.50 ± 0.71 | 26.50 ± 0.71 | 28.50 ± 0.71 |
CIP (5) | 31.00 ± 1.41 | 35.50 ± 0.71 | 34.00 ± 0.00 | 34.00 ± 0.00 | 34.50 ± 0.71 | 34.50 ± 0.71 |
CN (30) | 21.50 ± 0.71 | 25.50 ± 0.71 | 23.50 ± 0.71 | 25.00 ± 0.00 | 24.00 ± 0.00 | 25.00 ± 0.00 |
CN (10) | 19.50 ± 0.71 | 22.00 ± 0.00 | 20.50 ± 0.71 | 21.50 ± 0.71 | 20.50 ± 0.71 | 21.50 ± 0.71 |
K (30) | 18.00 ± 0.00 | 21.00 ± 0.00 | 20.00 ± 0.00 | 21.00 ± 0.00 | 20.50 ± 0.71 | 21.50 ± 0.71 |
TOB (10) | 18.50 ± 0.71 | 21.00 ± 0.00 | 20.00 ± 0.00 | 20.50 ± 0.71 | 20.00 ± 0.00 | 22.00 ± 0.00 |
TE (30) | 15.00 ± 0.00 | 19.50 ± 0.71 | 17.50 ± 2.12 | 18.50 ± 0.71 | 17.50 ± 0.71 | 21.00 ± 1.41 |
Antibiotic | EF1 | EF2 | CuSO4·5H2O with EF1 | CuSO4·5H2O with EF2 | Cu (NO3)2·3H2O with EF1 | Cu (NO3)2·3H2O with EF2 |
---|---|---|---|---|---|---|
DXT (30) | 15.50 ± 0.71 | 11.00 ± 0.00 | 13.50 ± 0.71 | 22.50 ± 0.71 | 12.00 ± 0.00 | 23.50 ± 0.71 |
AML (30) | 20.00 ± 0.00 | 20.00 ± 0.00 | 19.00 ± 0.00 | 18.00 ± 0.00 | 20.00 ± 0.00 | 19.00 ± 0.00 |
MEZ (75) | 20.50 ± 0.71 | 26.00 ± 1.41 | 20.50 ± 0.71 | 15.00 ± 0.00 | 19.50 ± 0.71 | 15.00 ± 0.00 |
CXM (30) | 17.50 ± 0.71 | 16.00 ± 1.41 | 20.00 ± 0.00 | 15.00 ± 0.00 | 17.50 ± 0.71 | 13.50 ± 0.71 |
CAZ (30) | 22.00 ± 0.00 | 10.50 ± 0.71 | 23.50 ± 0.71 | R | R | R |
CRO (30) | 27.50 ± 0.071 | 20.00 ± 0.00 | 15.50 ± 0.71 | 12.50 ± 0.071 | 25.0 ± 0.71 | 15.00 ± 0.00 |
AMP (2) | R | R | R | R | R | R |
AUG (30) | 19.00 ± 0.00 | 24.00 ± 0.00 | 16.50 ± 0.71 | 22.00 ± 0.00 | 18.50 ± 0.71 | 20.00 ± 0.00 |
CAL (40) | 23.50 ± 0.71 | 12.00 ± 0.00 | 22.00 ± 0.00 | 12.00 ± 0.00 | 20.50 ± 0.71 | 10.00 ± 0.00 |
CIP (5) | 31.50 ± 0.71 | 20.00 ± 0.00 | 27.00 ± 0.00 | 17.50 ± 0.71 | 23.50 ± 0.71 | 19.50 ± 0.71 |
CN (30) | 21.50 ± 0.71 | 17.50 ± 0.71 | 20.00 ± 0.00 | 15.50 ± 0.71 | 19.50 ± 0.71 | 15.00 ± 0.00 |
CN(10) | 19.50 ± 0.71 | 11.50 ± 0.71 | 18.00 ± 0.00 | 11.50 ± 0.71 | 17.50 ± 0.71 | 10.50 ± 0.71 |
K (30) | 18.50 ± 0.71 | 25.00 ± 0.71 | 16.50 ± 0.71 | 25.00 ± 0.00 | 18.50 ± 0.71 | 10.00 ± 0.00 |
TOB (10) | 18.00 ± 0.00 | 26.00 ± 1.41 | 19.00 ± 1.41 | 13.00 ± 0.00 | 17.50 ± 0.71 | 10.50 ± 0.71 |
TE (30) | 12.00 ± 0.00 | 11.50 ± 0.71 | 12.50 ± 0.71 | 12.50 ± 0.71 | 12.50 ± 0.71 | 11.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crnčević, N.; El Sayed, A.; Hsino, M.; Piątkowski, A.; Latić, M.; Deumić, S.; Avdić, M. Effect of Copper Salts on Escherichia coli and Enterococcus faecalis Biofilms in Pipeline Systems: Implications for Microbial Control and Hydraulic Performance. Appl. Sci. 2025, 15, 8042. https://doi.org/10.3390/app15148042
Crnčević N, El Sayed A, Hsino M, Piątkowski A, Latić M, Deumić S, Avdić M. Effect of Copper Salts on Escherichia coli and Enterococcus faecalis Biofilms in Pipeline Systems: Implications for Microbial Control and Hydraulic Performance. Applied Sciences. 2025; 15(14):8042. https://doi.org/10.3390/app15148042
Chicago/Turabian StyleCrnčević, Neira, Ahmed El Sayed, Mahmoud Hsino, Andrzej Piątkowski, Murisa Latić, Sara Deumić, and Monia Avdić. 2025. "Effect of Copper Salts on Escherichia coli and Enterococcus faecalis Biofilms in Pipeline Systems: Implications for Microbial Control and Hydraulic Performance" Applied Sciences 15, no. 14: 8042. https://doi.org/10.3390/app15148042
APA StyleCrnčević, N., El Sayed, A., Hsino, M., Piątkowski, A., Latić, M., Deumić, S., & Avdić, M. (2025). Effect of Copper Salts on Escherichia coli and Enterococcus faecalis Biofilms in Pipeline Systems: Implications for Microbial Control and Hydraulic Performance. Applied Sciences, 15(14), 8042. https://doi.org/10.3390/app15148042