Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Genotyping—Whole-Genome Sequencing
2.3. Genotyping—Bioinformatic Analysis
2.4. Phenotyping—Antimicrobial Susceptibility Testing
3. Results and Discussion
3.1. Genome Assembly and Quality
3.2. Phylogenetic Relationships and Phenotypic Analysis
3.3. Pangenome Analysis
3.4. Antimicrobial Resistance
- All E. faecalis strains were resistant to Quinupristin/Dalfopristin—SYN (MLS—Macrolides–Lincosamides–Streptogramins) and Chloramphenicol. E. faecalis strains are intrinsically resistant to SYN. The S14 and S26 were not tested because a different AST plate was used which does not contain the SYN and CHL. Chloramphenicol is not considered in the breakpoints table of enterococci.
- E italicus and E. hirae possessed genes conferring resistance to one antibiotic such as tet genes (E. italicus) and aac(6′)-lid (E. hirae). Indeed, both examined E. italicus strains (S2 and S39) showed resistance to tetracyclines.
- Among the tested strains, there were enterococci with resistance to three or more different classes of antibiotics such S1, S14, S26, S32, and S38. The last strain displayed resistance to four classes of antibiotics (MLS, Tetracyclines, Glycopeptides, and Chloramphenicol) whereas the other strains showed resistance to three classes (MLS, Tetracyclines, and Chloramphenicol or Cephalosporins, Penicillins, and Sulfonamides).
- All MDR strains belonged to the same group (E. faecalis). A high incidence of MDR E. faecalis strains has been observed in other studies as well [57]. The most prevalent MDR profile was the TET-ERY-CHL, i.e., antibiotics of the Tetracyclines, MLS, and Chloramphenicol classes, respectively, similar to the results obtained in the current work. Gião et al. (2022) [57] also found that E. faecalis strains were resistant to Chloramphenicol without detecting the cfr determinant in their genome, explaining that other phenicol resistance mechanisms are probably present.
- Enterococci showed some differences in their AMR profile, confirming the genetic diversity that exists among the isolated strains.
- The S38 (ST326) was a teicoplanin-resistant strain. The antibiotic belongs to the class of glycopeptides as vancomycin. The vanA gene is the most common cause of teicoplanin resistance in E. faecalis. The vanA genotype leads to resistance to both vancomycin and teicoplanin. The vanZ gene is also involved in teicoplanin resistance but not in vancomycin although its function is still unknown [60]. Interestingly, the S38 was the only strain among the tested strains that displayed a minimum inhibitory concentration (MIC) to vancomycin equal to 4 µg/mL which is the limit between a sensitive or resistant strain (S ≤ 4, R > 4). Nevertheless, no gene from the van operon was detected. The reason could be the inability of the software to detect the respective genes (i.e., fragmented genes). Vancomycin-resistant enterococci is a serious public health concern because the treatment of infections caused by these bacteria is challenging [61].
- All E. faecalis possessed multi-drug efflux pump genes. These systems have emerged as elements relevant to the intrinsic and acquired AMR of bacterial pathogens [60].
- Some strains (S14, S26, S38) showed resistance to antibiotics (XNL, CEP, and OXA+ for S14 and S26, and TEI and TET for S38) although no related genes were detected in their genomes. This, however, could be ascribed to other resistance and non-resistance factors like non-enzymatic mechanisms (e.g., the presence of efflux pump systems) or the presence of fragmented genes inside the draft genome of enterococci leading to low detection scores by the AMR databases, and thus, these genes remained unreported. Therefore, in silico screening for ARGs should always be accompanied by AST for reliable AMR determination, especially when ARG detection is based on draft genomes.
3.5. Virulence and Mobilome
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VFs | Virulence Factors |
AMR | Antimicrobial Resistance |
MGEs | Mobile Genetic Elements |
MRS | De Man–Rogosa–Sharpe |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
CLSI | Clinical and Laboratory Standards Institute |
AST | Antimicrobial Susceptibility Testing |
MDR | Multidrug Resistant |
ANI | Average Nucleotide Identity |
MLST | Multi-Locus Sequence Typing |
CGE | Center for Genomic Epidemiology |
iTOL | Interactive Tree of Life |
ARGANNOT | Antibiotic Resistance Gene Annotation |
CARD | Comprehensive Antibiotic Resistance Database |
NCBI | National Center for Biotechnology Information |
TYGS | Type (Strain) Genome Server |
GTDB-Tk | Genome Taxonomy Database Toolkit |
MEGARes | Microbial Ecology Group Antimicrobial Resistances |
ARGs | Antimicrobial Resistance Genes |
WGS | Whole-Genome Sequencing |
CDS | Coding DNA Sequence |
rRNA | Ribosomal RNA |
tRNA | Transfer RNA |
tmRNA | Transfer-Messenger RNA |
dDDH | Digital DNA–DNA Hybridization |
COGs | Clusters of Orthologous Groups/Genes |
SNPs | Single Nucleotide Polymorphisms |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
ONPG | Ortho-Nitrophenyl-beta-D-galactopyranoside |
PEP | Phosphoenolpyruvate |
PTS | Phosphotransferase system |
MLS | Macrolides–Lincosamides–Streptogramins |
MIC | Minimum Inhibitory Concentration |
HGT | Horizontal Gene Transfer |
CRISPR | Clustered, Regularly Interspaced Short Palindromic Repeats |
Cas | CRISPR-associated gene |
References
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Ben Braïek, B.; Smaoui, S. Enterococci: Between Emerging Pathogens and Potential Probiotics. BioMed Res. Int. 2019, 2019, 5938210. [Google Scholar] [CrossRef] [PubMed]
- Psomas, E.; Sakaridis, I.; Boukouvala, E.; Papatsaroucha, E.; Apostolidi, E.; Skarlatoudi, T.; Ekateriniadou, L.; Samouris, G. Studying enterococci isolated from artisanal feta produced with mountain and low land milk. J. Hell. Vet. Med. Soc. 2024, 75, 7967–7976. [Google Scholar] [CrossRef]
- Dapkevicius, M.d.L.E.; Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Malcata, F.X. Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 2003, 88, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Said, M.S.; Tirthani, E.; Lesho, E. Enterococcus Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567759/ (accessed on 12 February 2024).
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190420/ (accessed on 6 February 2014).
- Palmer, K.L.; Godfrey, P.; Griggs, A.; Kos, V.N.; Zucker, J.; Desjardins, C.; Cerqueira, G.; Gevers, D.; Walker, S.; Wortman, J.; et al. Comparative genomics of enterococci: Variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 2012, 3, e00318-11. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Contreras, G.A.; Murray, B.E. Management of multidrug-resistant enterococcal infections. Clin. Microbiol. Infect. 2010, 16, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Coll, F.; Gouliouris, T.; Blane, B.; Yeats, C.A.; Raven, K.E.; Ludden, C.; Khokhar, F.A.; Wilson, H.J.; Roberts, L.W.; Harrison, E.M.; et al. Antibiotic resistance determination using Enterococcus faecium whole-genome sequences: A diagnostic accuracy study using genotypic and phenotypic data. Lancet Microbe 2024, 5, e151–e163. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Moon, D.C.; Kim, S.-J.; Mechesso, A.F.; Song, H.-J.; Kang, H.Y.; Choi, J.-H.; Yoon, S.-S.; Lim, S.-K. Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms 2021, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Syrokou, M.K.; Paramithiotis, S.; Skandamis, P.N.; Drosinos, E.H.; Bosnea, L.; Mataragas, M. High-quality draft genome sequence data of six Lactiplantibacillus plantarum subsp. argentoratensis strains isolated from various Greek wheat sourdoughs. Data Br. 2021, 37, 107172. [Google Scholar] [CrossRef] [PubMed]
- Apostolakos, I.; Skarlatoudi, T.; Vatavali, K.; Giannouli, A.; Bosnea, L.; Mataragas, M. Genomic and phenotypic characterization of mastitis-causing staphylococci and probiotic lactic acid bacteria isolated from raw sheep’s milk. Int. J. Mol. Sci. 2023, 24, 13883. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-Mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder—Distinguishing friend from foe using bacterial Whole Genome Sequence data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Seemann, T. Abricate, Github. 2020. Available online: https://github.com/tseemann/abricate (accessed on 7 June 2024).
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; Petkau, A.; Avery, B.P.; Chen, J.C.; Folster, J.P.; Carson, C.A.; Kearney, A.; Nadon, C.; Mabon, P.; Thiessen, J.; et al. Correlation between phenotypic and in silico detection of antimicrobial resistance in Salmonella enterica in Canada using staramr. Microorganisms 2022, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; da Silva, A.G.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P.; et al. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2021, 76, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.-M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Bonin, N.; Doster, E.; Worley, H.; Pinnell, L.J.; Bravo, J.E.; Ferm, P.; Marini, S.; Prosperi, M.; Noyes, N.; Morley, P.S.; et al. MEGARes and AMR++, v3.0: An updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing. Nucleic Acids Res. 2023, 51, D744–D752. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In silico detection and typing of plasmids using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pangenome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.N.; Slezak, T.; Hall, B.G. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics 2015, 31, 2877–2878. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, Y.; Fan, G.; Sun, D.; Zhang, X.; Yu, Z.; Wang, J.; Wu, L.; Shi, W.; Ma, J. IPGA: A handy integrated prokaryotes genome and pan-genome analysis web service. iMeta 2022, 1, e55. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef] [PubMed]
- Mendes, I.; Griffiths, E.; Manuele, A.; Fornika, D.; Tausch, S.H.; Le-Viet, T.; Phelan, J.; Meehan, C.J.; Raphenya, A.R.; Alcock, B.; et al. hAMRonization: Enhancing antimicrobial resistance prediction using the PHA4GE AMR detection specification and tooling. bioRxiv 2024. [Google Scholar] [CrossRef]
- Weimann, A.; Mooren, K.; Frank, J.; Pope, P.B.; Bremges, A.; McHardy, A.C. From genomes to phenotypes: Traitar, the microbial trait analyzer. mSystems 2016, 1, e00101-16. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 16 May 2025).
- Sitter, T.L.; Vaughan, A.L.; Schoof, M.; Jackson, S.A.; Glare, T.R.; Cox, M.P.; Fineran, P.C.; Gardner, P.P.; Hurst, M.R.H. Evolution of virulence in a novel family of transmissible mega-plasmids. Environ. Microbiol. 2021, 23, 5289–5304. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, N.M.; Gupta, V.K.; Dutta, C. BPGA—An ultra-fast pan-genome analysis pipeline. Sci. Rep. 2016, 6, 24373. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, Y.-X.; Chen, T.; Yang, M.; Fan, S.; Shi, M.; Wei, B.; Lv, H.; Cao, W.; Wang, C.; et al. ImageGP 2 for enhanced data visualization and reproducible analysis in biomedical research. iMeta 2024, 3, e239. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrzak-Piekarczyk, T.; Kok, J.; Renault, P.; Bardowski, J. Alternative lactose catabolic pathway in Lactococcus lactis IL1403. Appl. Environ. Microbiol. 2005, 71, 6060–6069. [Google Scholar] [CrossRef] [PubMed]
- Acero-Pimentel, D.; Romero-Sánchez, D.I.; Fuentes-Curiel, S.N.; Quirasco, M. Study of an Enterococcus faecium strain isolated from an artisanal Mexican cheese, whole-genome sequencing, comparative genomics, and bacteriocin expression. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2024, 117, 40. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, B.; Fernandez, M.; Redruello, B.; Ladero, V.; Alvarez, M.A. New insights into the toxicological effects of dietary biogenic amines. Food Chem. 2024, 435, 137558. [Google Scholar] [CrossRef] [PubMed]
- Moura de Sousa, J.; Lourenço, M.; Gordo, I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023, 31, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Dewar, A.E.; Thomas, J.L.; Scott, T.W.; Wild, G.; Griffin, A.S.; West, S.A.; Ghoul, M. Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat. Ecol. Evol. 2021, 5, 1624–1636. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.; Brockhurst, M.A. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012, 20, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Rani, P.S.; Bandsode, V.; Nyambero, M.; Qumar, S.; Ahmed, N. Drivers of virulence and antimicrobial resistance in Gram-negative bacteria in different settings: A genomic perspective. Infect. Genet. Evol. 2024, 124, 105666. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Zhang, W.; Song, Y.; Liu, W.; Xu, H.; Xi, X.; Menghe, B.; Zhang, H.; Sun, Z. Comparative genomic analysis of the genus Enterococcus. Microbiol. Res. 2017, 196, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Kwok, L.Y.; Hou, Q.; Sun, Y.; Li, W.; Zhang, H.; Sun, Z. Comparative genomic analysis revealed great plasticity and environmental adaptation of the genomes of Enterococcus faecium. BMC Genom. 2019, 20, 602. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, M.; Hartke, A.; Huycke, M. The Physiology and Metabolism of Enterococci. In Enterococci: From Commensals to Leading Causes of Drug-Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ (accessed on 16 May 2025).
- Gião, J.; Leão, C.; Albuquerque, T.; Clemente, L.; Amaro, A. Antimicrobial Susceptibility of Enterococcus Isolates from Cattle and Pigs in Portugal: Linezolid Resistance Genes optrA and poxtA. Antibiotics 2022, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.; de Lencastre, H.; Conceição, T. Genomic analysis of Enterococcus faecium from non-clinical settings: Antimicrobial resistance, virulence, and clonal population in livestock and the urban environment. Front. Microbiol. 2024, 15, 1466990. [Google Scholar] [CrossRef] [PubMed]
- De Jong, A.; Simjee, S.; Garch, F.E.; Moyaert, H.; Rose, M.; Youala, M.; Dry, M. Antimicrobial Susceptibility of Enterococci Recovered from Healthy Cattle, Pigs and Chickens in Nine EU Countries (EASSA Study) to Critically Important Antibiotics. Vet. Microbiol. 2018, 216, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, VMBF-0016-2015. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Resistance in Vancomycin-Resistant Enterococci. Infect. Dis. Clin. N. Am. 2020, 34, 751–771. [Google Scholar] [CrossRef] [PubMed]
- Hashem, Y.A.; Amin, H.M.; Essam, T.M.; Yassin, A.S.; Aziz, R.K. Biofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycin. Sci. Rep. 2017, 7, 5733. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y. Biofilm Formation and Antimicrobial Resistance in Enterococcus. Infect. Chemother. 2017, 49, 236–237. [Google Scholar] [CrossRef] [PubMed]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; Łaniewska-Trokenheim, Ł. Virulence factors, antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from retail shrimps. LWT Food Sci. Technol. 2016, 69, 117–122. [Google Scholar] [CrossRef]
- Pai, L.; Patil, S.; Liu, S.; Wen, F. A growing battlefield in the war against biofilm-induced antimicrobial resistance: Insights from reviews on antibiotic resistance. Front Cell. Infect. Microbiol. 2023, 13, 1327069. [Google Scholar] [CrossRef] [PubMed]
- Chotinantakul, K.; Chansiw, N.; Okada, S. Biofilm formation and transfer of a streptomycin resistance gene in enterococci from fermented pork. J. Glob. Antimicrob. Resist. 2020, 22, 434–440. Erratum in J. Glob. Antimicrob. Resist. 2020, 23, 473. https://doi.org/10.1016/j.jgar.2020.10.001. [CrossRef] [PubMed]
- Cook, L.; Chatterjee, A.; Barnes, A.; Yarwood, J.; Hu, W.S.; Dunny, G. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol. Microbiol. 2011, 81, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Badr, L.; Yasir, M.; Alkhaldy, A.A.; Soliman, S.A.; Ganash, M.; Turkistani, S.A.; Jiman-Fatani, A.A.; Al-Zahrani, I.A.; Azhar, E.I. Genomic evaluation of the probiotic and pathogenic features of Enterococcus faecalis from human breast milk and comparison with the isolates from animal milk and clinical specimens. PeerJ 2024, 12, e18392. [Google Scholar] [CrossRef] [PubMed]
- Monteiro Marques, J.; Coelho, M.; Santana, A.R.; Pinto, D.; Semedo-Lemsaddek, T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics 2023, 12, 1140. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.N.; Sheriff, E.K.; Duerkop, B.A.; Chatterjee, A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J. Bacteriol. 2021, 203, e0017721. [Google Scholar] [CrossRef] [PubMed]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, H.; Gray, K.L.; Manuele, A.; Maguire, F.; Khan, A.; Liu, C.; Navanekere Rudrappa, C.; Nash, J.H.E.; Robertson, J.; Bessonov, K.; et al. Exploring the mobilome and resistome of Enterococcus faecium in a One Health context across two continents. Microb. Genom. 2022, 8, mgen000880. [Google Scholar] [CrossRef] [PubMed]
- Mikalsen, T.; Pedersen, T.; Willems, R.; Coque, T.M.; Werner, G.; Sadowy, E.; van Schaik, W.; Jensen, L.B.; Sundsfjord, A.; Hegstad, K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genom. 2015, 16, 282. Erratum in BMC Genom. 2015, 16, 689. https://doi.org/10.1186/s12864-015-1722-y. [CrossRef] [PubMed]
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Nungaray, J.A.; Figueroa-Yáñez, L.J.; Reynaga-Delgado, E.; Corona-España, A.M.; Gonzalez-Reynoso, O. Unveiling the endogenous CRISPR-Cas system in Pseudomonas aeruginosa PAO1. PLoS ONE 2024, 19, e0312783. [Google Scholar] [CrossRef] [PubMed]
- Pinilla-Redondo, R.; Russel, J.; Mayo-Muñoz, D.; Shah, S.A.; Garrett, R.A.; Nesme, J.; Madsen, J.S.; Fineran, P.C.; Sørensen, S.J. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res. 2022, 50, 4315–4328. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Zhou, D.; Chen, H.; Li, N.; Zheng, L.; Fang, Y.; Xu, Y.; Jiang, Q.; Liang, W. Analysis of genetic structure and function of clustered regularly interspaced short palindromic repeats loci in 110 Enterococcus strains. Front. Microbiol. 2023, 14, 1177841. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Haft, D.H.; et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Ye, Y. Not all predicted CRISPR-Cas systems are equal: Isolated cas genes and classes of CRISPR like elements. BMC Bioinform. 2017, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Hullahalli, K.; Rodrigues, M.; Nguyen, U.T.; Palmer, K. An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition. mBio 2018, 9, e00414-18. Erratum in mBio 2019, 10, e01775-19. https://doi.org/10.1128/mBio.01775-19. [CrossRef] [PubMed]
- Kadkhoda, H.; Gholizadeh, P.; Samadi Kafil, H.; Ghotaslou, R.; Pirzadeh, T.; Ahangarzadeh Rezaee, M.; Nabizadeh, E.; Feizi, H.; Aghazadeh, M. Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance. Heliyon 2024, 10, e34692. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhang, S.; Hu, D.; Li, X.; Guo, Y.; Guo, H.; Zhang, L.; Ding, X. Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System. Int. J. Mol. Sci. 2024, 25, 12544. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.Y.; Doudna, J.A. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J. Biol. Chem. 2020, 295, 14473–14487. [Google Scholar] [CrossRef] [PubMed]
- Hanzelová, Z.; Dudriková, E.; Lovayová, V.; Výrostková, J.; Regecová, I.; Zigo, F.; Bartáková, K. Occurrence of Enterococci in the Process of Artisanal Cheesemaking and Their Antimicrobial Resistance. Life 2024, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Terzić-Vidojević, A.; Veljović, K.; Popović, N.; Tolinački, M.; Golić, N. Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 2021, 10, 2753. [Google Scholar] [CrossRef] [PubMed]
- Gołaś-Prądzyńska, M.; Łuszczyńska, M.; Rola, J.G. Dairy Products: A Potential Source of Multidrug-Resistant Enterococcus faecalis and Enterococcus faecium Strains. Foods 2022, 11, 4116. [Google Scholar] [CrossRef] [PubMed]
- Salamandane, A.; Cahango, G.; Muetanene, B.A.; Malfeito-Ferreira, M.; Brito, L. Multidrug Resistance in Enterococci Isolated from Cheese and Capable of Producing Benzalkonium Chloride-Resistant Biofilms. Biology 2023, 12, 1353. [Google Scholar] [CrossRef] [PubMed]
- Gundog, D.A.; Onmaz, N.E.; Gungor, C.; Koskeroglu, K.; Ozkaya, Y.; Karadal, F. Enterococcus faecalis and E. faecium in dairy production line: Antibiotic resistance profile and virulence characteristics. Int. Dairy J. 2025, 165, 106209. [Google Scholar] [CrossRef]
- de Souza, D.B.; Pereira, R.I.; Endres, C.M.; Frazzon, J.; Prichula, J.; Frazzon, A.P.G. Resistant enterococci isolated from raw sheep’s milk and cheeses from South region of Brazil. Cienc. Rural 2023, 53, e20220288. [Google Scholar] [CrossRef]
Isolate ID | Completeness (%) | Contamination (%) | Heterogeneity (%) | No. of Scaffolds (≥300 bp) | N50 (bp) 1 | Genome Size (bp) |
---|---|---|---|---|---|---|
S1 | 99.63 | 0.00 | 0 | 66 | 161,746 | 2,922,653 |
S2 | 99.01 | 0.00 | 0 | 140 | 33,562 | 2,220,060 |
S14 | 99.63 | 0.19 | 0 | 70 | 194,382 | 2,968,082 |
S17 | 99.25 | 0.19 | 0 | 67 | 194,381 | 2,926,349 |
S26 | 99.63 | 0.19 | 0 | 68 | 151,115 | 2,949,559 |
S32 | 99.63 | 0.19 | 0 | 56 | 160,970 | 2,930,115 |
S38 | 99.63 | 0.00 | 0 | 1 | 2,738,388 | 2,738,388 |
S39 | 99.01 | 0.00 | 0 | 180 | 48,375 | 2,480,341 |
S41 | 99.63 | 0.19 | 0 | 69 | 140,911 | 2,887,362 |
S52 | 99.63 | 0.19 | 0 | 60 | 194,228 | 2,942,042 |
S59 | 99.63 | 0.00 | 0 | 59 | 194,228 | 2,924,412 |
S60 | 99.63 | 0.00 | 0 | 61 | 194,228 | 2,924,361 |
S62 | 99.63 | 0.19 | 0 | 63 | 194,228 | 2,959,622 |
S68 | 99.25 | 0.19 | 0 | 60 | 194,227 | 2,919,192 |
S72 | 99.63 | 0.00 | 0 | 37 | 217,569 | 2,972,779 |
S86 | 99.63 | 0.00 | 0 | 62 | 194,228 | 2,934,362 |
S90 | 99.01 | 0.00 | 0 | 142 | 37,001 | 2,333,246 |
S91 | 99.63 | 0.00 | 0 | 60 | 194,228 | 2,906,786 |
S100 | 99.63 | 0.00 | 0 | 58 | 194,228 | 2,869,983 |
Ref. Ef 2 | 99.27 | 2.21 | 0 | 5 | 3,005,854 | 3,245,651 |
Ref. Eh 2 | 98.84 | 0.17 | 0 | 1 | 2,845,651 | 2,845,651 |
Ref. Ei 2 | 97.45 | 2.01 | 0 | 28 | 86,107 | 2,334,547 |
Isolate ID 1 | No. of CDSs 2 | No. of Genes | GC Content (%) | Repeat Region | rRNA 2 | tRNA 2 | tmRNA 2 |
---|---|---|---|---|---|---|---|
S1 | 2806 | 2864 | 37.3 | 1 | 3 | 54 | 1 |
S2 | 2173 | 2203 | 39.6 | 1 | 3 | 26 | 1 |
S14 | 2868 | 2930 | 37.4 | 1 | 3 | 58 | 1 |
S17 | 2835 | 2896 | 37.4 | 1 | 3 | 57 | 1 |
S26 | 2856 | 2918 | 37.4 | 1 | 3 | 58 | 1 |
S32 | 2819 | 2878 | 37.3 | 1 | 3 | 55 | 1 |
S38 | 2624 | 2685 | 37.6 | 1 | 6 | 54 | 1 |
S39 | 2450 | 2516 | 39.2 | 1 | 7 | 58 | 1 |
S41 | 2800 | 2857 | 37.5 | 1 | 4 | 52 | 1 |
S52 | 2847 | 2904 | 37.4 | 1 | 3 | 53 | 1 |
S59 | 2817 | 2874 | 37.5 | 1 | 3 | 53 | 1 |
S60 | 2815 | 2872 | 37.5 | 1 | 3 | 53 | 1 |
S62 | 2858 | 2915 | 37.4 | 1 | 3 | 53 | 1 |
S68 | 2829 | 2886 | 37.4 | 1 | 3 | 53 | 1 |
S72 | 2649 | 2710 | 36.6 | 1 | 3 | 57 | 1 |
S86 | 2819 | 2876 | 37.5 | 1 | 3 | 53 | 1 |
S90 | 2280 | 2322 | 39.4 | 1 | 2 | 39 | 1 |
S91 | 2805 | 2862 | 37.5 | 1 | 3 | 53 | 1 |
S100 | 2740 | 2797 | 37.5 | 1 | 3 | 53 | 1 |
Ref. Ef 2 | 2754 | 2830 | 37.5 | 1 | 12 | 63 | 1 |
Ref. Eh 2 | 2483 | 2570 | 37.0 | 2 | 18 | 68 | 1 |
Ref. Ei 2 | 2240 | 2281 | 39.0 | 2 | 2 | 38 | 1 |
Isolate ID | Taxonomy | MLST | Human Pathogen |
---|---|---|---|
S1 | E. faecalis | ST25 | Yes (0.887) 1 |
S14 | E. faecalis | ST326 | Yes (0.875) |
S17 | E. faecalis | ST326 | Yes (0.874) |
S26 | E. faecalis | ST326 | Yes (0.874) |
S32 | E. faecalis | ST25 | Yes (0.873) |
S38 | E. faecalis | ST326 | Yes (0.888) |
S41 | E. faecalis | ST25 | Yes (0.881) |
S52 | E. faecalis | ST326 | Yes (0.875) |
S59 | E. faecalis | ST326 | Yes (0.888) |
S60 | E. faecalis | ST326 | Yes (0.888) |
S62 | E. faecalis | ST326 | Yes (0.875) |
S68 | E. faecalis | ST326 | Yes (0.874) |
S86 | E. faecalis | ST326 | Yes (0.884) |
S91 | E. faecalis | ST326 | Yes (0.888) |
S100 | E. faecalis | ST326 | Yes (0.888) |
S2 | E. italicus | - 2 | Yes (0.713) |
S39 | E. italicus | - 2 | No (0.394) |
S90 | E. italicus | - 2 | Yes (0.857) |
S72 | E. hirae | - 2 | Yes (0.696) |
Isolate ID 1 | Biofilm | Adherence | Exoenzyme | Capsule | Sex Pheromones | Antiphagocytic Activity | Oxidative and Thermal Resistance |
---|---|---|---|---|---|---|---|
S1 | ebpABC, srtA, srtC (bps), bopD, fsrC | efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S32 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S41 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S14 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S17 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S26 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S38 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S52 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cpsA, cpsB | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
S59 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC | |
S60 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC | |
S62 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC | |
S68 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC | |
S86 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC | |
S91 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC | |
S100 | ebpABC, srtA, srtC (bps), bopD, fsrC | ace, efaAfs, fss1, fss3 | gelE, hylA, sprE | cCF10, cOB1, cad, camE | elrA | tpx, clpC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glykeria-Myrto, A.; Theodora, S.; Vasileios, T.; Loulouda, B.; Marios, M. Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. Vet. Sci. 2025, 12, 685. https://doi.org/10.3390/vetsci12080685
Glykeria-Myrto A, Theodora S, Vasileios T, Loulouda B, Marios M. Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. Veterinary Sciences. 2025; 12(8):685. https://doi.org/10.3390/vetsci12080685
Chicago/Turabian StyleGlykeria-Myrto, Anagnostou, Skarlatoudi Theodora, Theodorakis Vasileios, Bosnea Loulouda, and Mataragas Marios. 2025. "Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk" Veterinary Sciences 12, no. 8: 685. https://doi.org/10.3390/vetsci12080685
APA StyleGlykeria-Myrto, A., Theodora, S., Vasileios, T., Loulouda, B., & Marios, M. (2025). Comparative Genomic Analysis and Antimicrobial Resistance Profile of Enterococcus Strains Isolated from Raw Sheep Milk. Veterinary Sciences, 12(8), 685. https://doi.org/10.3390/vetsci12080685