Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (989)

Search Parameters:
Keywords = Earth Day

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 978 KiB  
Article
Bioprocess Integration of Candida ethanolica and Chlorella vulgaris for Sustainable Treatment of Organic Effluents in the Honey Industry
by Juan Gabriel Sánchez Novoa, Natalia Rodriguez, Tomás Debandi, Juana María Navarro Llorens, Laura Isabel de Cabo and Patricia Laura Marconi
Sustainability 2025, 17(15), 6809; https://doi.org/10.3390/su17156809 - 27 Jul 2025
Viewed by 338
Abstract
Honey processing is closely linked to water pollution due to the lack of a specific wastewater treatment. This study proposes a sustainable and innovative solution based on two sequential bioprocesses using a real effluent from an Argentine honey-exporting facility. In the initial stage, [...] Read more.
Honey processing is closely linked to water pollution due to the lack of a specific wastewater treatment. This study proposes a sustainable and innovative solution based on two sequential bioprocesses using a real effluent from an Argentine honey-exporting facility. In the initial stage, the honey wastewater was enriched with a non-Saccharomyces yeast (Candida ethanolica), isolated from the same effluent. Treatment with this yeast in a bioreactor nearly doubled the total sugar removal efficiency compared to the control (native flora). Subsequent clarification with diatomaceous earth reduced the optical density (91.6%) and COD (30.9%). In the second stage, secondary sewage effluent was added to the clarified effluent and inoculated with Chlorella vulgaris under different culture conditions. The best microalgae performance was observed under high light intensity and high inoculum concentration, achieving a fivefold increase in cell density, a specific growth rate of 0.752 d−1, and a doubling time of 0.921 d. Although total sugar removal in this stage remained below 28%, cumulative COD removal reached 90% after nine days under both lighting conditions. This study presents the first integrated treatment approach for honey industry effluents using a native yeast–microalgae system, incorporating in situ effluent recycling and the potential for dual waste valorization. Full article
(This article belongs to the Special Issue Research on Sustainable Wastewater Treatment)
Show Figures

Graphical abstract

20 pages, 2263 KiB  
Article
Optimizing the Sampling Strategy for Future Libera Radiance to Irradiance Conversions
by Mathew van den Heever, Jake J. Gristey and Peter Pilewskie
Remote Sens. 2025, 17(15), 2540; https://doi.org/10.3390/rs17152540 - 22 Jul 2025
Viewed by 252
Abstract
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term [...] Read more.
The Earth Radiation Budget (ERB), a measure of the difference between incoming solar irradiance and outgoing reflected and emitted radiant energy, is a fundamental property of Earth’s climate system. The Libera satellite mission will measure the ERB’s outgoing components to continue the long-term climate data record established by NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission. In addition to ensuring data continuity, Libera will introduce a novel split-shortwave spectral channel to quantify the partitioning of the outgoing reflected solar component into visible and near-infrared sub-components. However, converting these split-shortwave radiances into the ERB-relevant irradiances requires the development of split-shortwave Angular Distribution Models (ADMs), which demand extensive angular sampling. Here, we show how Rotating Azimuthal Plane Scan (RAPS) parameters—specifically operational cadence and azimuthal scan rate—affect the observational coverage of a defined scene and angular space. Our results show that for a fixed number of azimuthal rotations, a relatively slow azimuthal scan rate of 0.5° per second, combined with more time spent in the RAPS observational mode, provides a more comprehensive sampling of the desired scene and angular space. We also show that operating the Libera instrument in RAPS mode at a cadence between every fifth day and every other day for the first year of space-based operations will provide sufficient scene and angular sampling for the observations to achieve radiance convergence for the scenes that comprise more than half of the expected Libera observations. Obtaining radiance convergence is necessary for accurate ADMs. Full article
Show Figures

Graphical abstract

20 pages, 2422 KiB  
Article
Design and Performance of a Large-Diameter Earth–Air Heat Exchanger Used for Standalone Office-Room Cooling
by Rogério Duarte, António Moret Rodrigues, Fernando Pimentel and Maria da Glória Gomes
Appl. Sci. 2025, 15(14), 7938; https://doi.org/10.3390/app15147938 - 16 Jul 2025
Viewed by 233
Abstract
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used [...] Read more.
Earth–air heat exchangers (EAHXs) use the soil’s thermal capacity to dampen the amplitude of outdoor air temperature oscillations. This effect can be used in hot and dry climates for room cooling with no or very little need for resources other than those used during the EAHX construction, an obvious advantage compared to the significant operational costs of refrigeration machines. Contrary to the streamlined process applied in conventional HVAC design (using refrigeration machines), EAHX design lacks straightforward and well-established rules; moreover, EAHXs struggle to achieve office room design cooling demands determined with conventional indoor thermal environment standards, hindering designers’ confidence and the wider adoption of EAHXs for standalone room cooling. This paper presents a graph-based method to assist in the design of a large-diameter EAHX. One year of post-occupancy monitoring data are used to evaluate this method and to investigate the performance of a large-diameter EAHX with up to 16,000 m3/h design airflow rate. Considering an adaptive standard for thermal comfort, peak EAHX cooling capacity of 28 kW (330 kWh/day, with just 50 kWh/day of fan electricity consumption) and office room load extraction of up to 22 kW (49 W/m2) provided evidence in support of standalone use of EAHX for room cooling. A fair fit between actual EAHX thermal performance and results obtained with the graph-based design method support the use of this method for large-diameter EAHX design. Full article
(This article belongs to the Special Issue Thermal Comfort and Energy Consumption in Buildings)
Show Figures

Figure 1

18 pages, 7358 KiB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 240
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

15 pages, 547 KiB  
Article
Improvements in PPP by Integrating GNSS with LEO Satellites: A Geometric Simulation
by Marianna Alghisi, Nikolina Zallemi and Ludovico Biagi
Sensors 2025, 25(14), 4427; https://doi.org/10.3390/s25144427 - 16 Jul 2025
Viewed by 479
Abstract
The precise point positioning (PPP) method in GNSS is based on the processing of undifferenced phase observations. For long static sessions, this method provides results characterized by accuracies better than one centimeter, and has become a standard practice in the processing of geodetic [...] Read more.
The precise point positioning (PPP) method in GNSS is based on the processing of undifferenced phase observations. For long static sessions, this method provides results characterized by accuracies better than one centimeter, and has become a standard practice in the processing of geodetic permanent stations data. However, a drawback of the PPP method is its slow convergence, which results from the necessity of jointly estimating the coordinates and the initial phase ambiguities. This poses a challenge for very short sessions or kinematic applications. The introduction of new satellites in Low Earth Orbits (LEO) that provide phase observations for positioning, such as those currently provided by GNSS constellations, has the potential to radically improve this scenario. In this work, a preliminary case study is discussed. For a given day, two configurations are analyzed: the first considers only the GNSS satellites currently in operation, while the second includes a simulated constellation of LEO satellites. For both configurations, the geometric quality of a PPP solution is evaluated over different session lengths throughout the day. The adopted quality index is the trace of the cofactor matrix of the estimated coordinates, commonly referred to as the position dilution of precision (PDOP). The simulated LEO constellation demonstrates the capability to enhance positioning performance, particularly under conditions of good sky visibility, where the time needed to obtain a reliable solution decreases significantly. Furthermore, even in scenarios with limited satellite visibility, the inclusion of LEO satellites helps to reduce PDOP values and overall convergence time. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

16 pages, 19476 KiB  
Article
Photochemical Ozone Production Along Flight Trajectories in the Upper Troposphere and Lower Stratosphere and Route Optimisation
by Allan W. Foster, Richard G. Derwent, M. Anwar H. Khan, Dudley E. Shallcross, Mark H. Lowenberg and Rukshan Navaratne
Atmosphere 2025, 16(7), 858; https://doi.org/10.3390/atmos16070858 - 14 Jul 2025
Viewed by 243
Abstract
Aviation is widely recognised to have global-scale climate impacts through the formation of ozone (O3) in the upper troposphere and lower stratosphere (UTLS), driven by emissions of nitrogen oxides (NOX). Ozone is known to be one of the most [...] Read more.
Aviation is widely recognised to have global-scale climate impacts through the formation of ozone (O3) in the upper troposphere and lower stratosphere (UTLS), driven by emissions of nitrogen oxides (NOX). Ozone is known to be one of the most potent greenhouse gases formed from the interaction of aircraft emission plumes with atmospheric species. This paper follows up on previous research, where a Photochemical Trajectory Model was shown to be a robust measure of ozone formation along flight trajectories post-flight. We use a combination of a global Lagrangian chemistry-transport model and a box model to quantify the impacts of aircraft NOX on UTLS ozone over a five-day timescale. This work expands on the spatial and temporal range, as well as the chemical accuracy reported previously, with a greater range of NOX chemistry relevant chemical species. Based on these models, route optimisation has been investigated, through the use of network theory and algorithms. This is to show the potential inclusion of an understanding of climate-sensitive regions of the atmosphere on route planning can have on aviation’s impact on Earth’s Thermal Radiation balance with existing resources and technology. Optimised flight trajectories indicated reductions in O3 formation per unit NOX are in the range 1–40% depending on the spatial aspect of the flight. Temporally, local winter times and equatorial regions are generally found to have the most significant O3 formation per unit NOX; moreover, hotspots were found over the Pacific and Indian Ocean. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

34 pages, 50713 KiB  
Article
Air Temperature Extremes in the Mediterranean Region (1940–2024): Synoptic Patterns and Trends
by Georgios Kotsias and Christos J. Lolis
Atmosphere 2025, 16(7), 852; https://doi.org/10.3390/atmos16070852 - 13 Jul 2025
Viewed by 483
Abstract
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, [...] Read more.
Extreme air temperatures along with the synoptic conditions leading to their appearance are examined for the Mediterranean region for the 85-year period of 1940–2024. The data used are daily (04UTC and 12UTC) grid point (1° × 1°) values of 2 m air temperature, 850 hPa air temperature, and 1000 hPa and 500 hPa geopotential heights, obtained from the ERA5 database. For 12UTC and 04UTC, the 2 m air temperature anomalies are calculated and are used for the definition of Extremely High Temperature Days (EHTDs) and Extremely Low Temperature Days (ELTDs), respectively. Overall, 3787 EHTDs and 4872 ELTDs are defined. It is found that EHTDs are evidently more frequent in recent years (increased by 305% since the 1980s) whereas ELTDs are less frequent (decreased by 41% since the 1980s), providing a clear sign of warming of the Mediterranean climate. A multivariate statistical analysis combining factor analysis and k-means clustering, known as spectral clustering, is applied to the data resulting in the definition of nine EHTD and seven ELTD clusters. EHTDs are mainly associated with intense solar heating, blocking anticyclones and warm air advection. ELTDs are connected to intense radiative cooling of the Earth’s surface, cold air advection and Arctic outbreaks. This is a unique study for the Mediterranean region utilizing the high-resolution ERA5 data collected since the 1940s to define and investigate the variability of both high and low temperature extremes using a validated methodology. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 16917 KiB  
Article
Unraveling the Spatiotemporal Dynamics of Rubber Phenology in Hainan Island, China: A Multi-Sensor Remote Sensing and Climate Drivers Analysis
by Hongyan Lai, Bangqian Chen, Guizhen Wang, Xiong Yin, Xincheng Wang, Ting Yun, Guoyu Lan, Zhixiang Wu, Kai Jia and Weili Kou
Remote Sens. 2025, 17(14), 2403; https://doi.org/10.3390/rs17142403 - 11 Jul 2025
Cited by 1 | Viewed by 279
Abstract
Rubber Tree (Hevea brasiliensis) phenology critically influences tropical plantation productivity and carbon cycling, yet topography and climate impacts remain unclear. By integrating multi-sensor remote sensing (2001–2020) and Google Earth Engine, this study analyzed spatiotemporal dynamics in Hainan Island, China. Results reveal [...] Read more.
Rubber Tree (Hevea brasiliensis) phenology critically influences tropical plantation productivity and carbon cycling, yet topography and climate impacts remain unclear. By integrating multi-sensor remote sensing (2001–2020) and Google Earth Engine, this study analyzed spatiotemporal dynamics in Hainan Island, China. Results reveal that both the start (SOS occurred between early and late March: day of year, DOY 60–81) and end (EOS occurred late January to early February: DOY 392–406, counted from the previous year) of the growing season exhibit progressive delays from the southeast to northwest, yielding a 10–11 month growing season length (LOS). Significantly, LOS extended by 4.9 days per decade (p < 0.01), despite no significant trends in SOS advancement (−1.1 days per decade) or EOS delay (+3.7 days per decade). Topographic modulation was evident: the SOS was delayed by 0.27 days per 100 m elevation rise (p < 0.01), while the EOS was delayed by 0.07 days per 1° slope increase (p < 0.01). Climatically, a 100 mm precipitation increase advanced SOS/EOS by approximately 1.0 day (p < 0.05), preseasonally, a 1 °C February temperature rise advanced the SOS and EOS by 0.49 and 0.53 days, respectively, and a 100 mm January precipitation increase accelerated EOS by 2.7 days (p < 0.01). These findings advance our mechanistic understanding of rubber phenological responses to climate and topographic gradients, providing actionable insights for sustainable plantation management and tropical forest ecosystem adaptation under changing climatic conditions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

16 pages, 2681 KiB  
Technical Note
Validation of Two Operative Google Earth Engine Applications to Generate 10 m Land Surface Temperature Maps at Daily to Weekly Temporal Resolutions
by Vicente Garcia-Santos, Alejandro Buil, Juan Manuel Sánchez, César Coll, Raquel Niclòs, Jesús Puchades, Martí Perelló, Lluís Pérez-Planells, Joan Miquel Galve and Enric Valor
Remote Sens. 2025, 17(14), 2387; https://doi.org/10.3390/rs17142387 - 10 Jul 2025
Viewed by 425
Abstract
Current land surface temperature (LST) products, estimated by sensors on board satellites, show a trade-off between their spatial and temporal resolution. If the spatial resolution is high (i.e., around 100 m), the LST product is delivered every 2 weeks, and for those LST [...] Read more.
Current land surface temperature (LST) products, estimated by sensors on board satellites, show a trade-off between their spatial and temporal resolution. If the spatial resolution is high (i.e., around 100 m), the LST product is delivered every 2 weeks, and for those LST products estimated daily, its spatial resolution is 1 km. Current spatial and temporal resolutions are not adequate for disciplines such as high-precision agriculture, urban decision making, and planning how to mitigate the overheating of cities, for which LST maps at 50–100 m resolution every few days are desirable. This situation has led to the development of disaggregation techniques in order to enhance the spatial resolution of daily LST products. Unfortunately, disaggregation techniques are usually complex since they rely on a number of external inputs and computer resources and are difficult to apply in practice. To our knowledge, there are only two operative downscaled 10 m LST products available to the end user, which are implemented in the Google Earth Engine (GEE) tool. They are the Daily Ten-ST-GEE and LST-downscaling-GEE systems. This study provides a critical benchmark by performing the first direct intercomparison and rigorous in situ validation of these two operative GEE systems. The validation, conducted with reference temperature data from dedicated field campaigns over contrasting agricultural sites in Spain, showed a good correlation of both methods with a R2 of 0.74 for Daily Ten-ST-GEE and 0.94 for LST-downscaling-GEE, but the poor results of the first method in a highly heterogeneous site (RMSE of 5.8 K) make the second method the most suitable (RMSE of 3.6 K) for obtaining high-spatiotemporal-resolution LST maps. Full article
Show Figures

Figure 1

19 pages, 3553 KiB  
Article
Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology
by Wei Xiao, Zhengcheng Wu, Zongnan Li, Lei Fan, Shiwei Guo and Yilun Chen
Remote Sens. 2025, 17(14), 2342; https://doi.org/10.3390/rs17142342 - 8 Jul 2025
Viewed by 351
Abstract
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser [...] Read more.
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser ranging (SLR) data, with advantages of high precision and no ambiguous parameters, can provide new ideas for solving the current problem. This work firstly deduces the mathematical model for orbit determination by combining inter-satellite links and the introduced satellite laser ranging observations, then designs orbit determination experiments with different prior orbit constraints and different observation data, and finally evaluates the impacts of the prior orbits and the introduction of SLR observations from two dimensions: orbit accuracy and constellation rotation. The experimental results using one month of measured data show the following: (1) There is good consistency among different days, and the accuracy of the prior orbits affects the performance of the orbit determination and the consistency. Compared with broadcast ephemerides, using precise ephemerides as prior constraints significantly improves the consistency, and the orbit accuracy can be increased by about 75%. (2) The type of observation data affects the performance of the orbit determination. Introducing SLR observations can improve the orbit accuracy by approximately 13% to 26%. (3) Regardless of whether broadcast ephemerides or precise ephemerides are used as prior constraints, the constellation translation and rotation still exist after introducing SLR observations. Among the translation parameters, TX is the largest, followed by TY, and TZ is the smallest; all three rotation parameters (RX, RY, and RZ) show relatively large values, which may be related to the limited number of available satellite laser ranging stations during this period. (4) After considering the constellation translation and rotation, the orbit accuracy under different prior constraints remains at the same level. The statistical root mean square error (RMSE) indicates that the orbit accuracy of inclined geosynchronous orbit (IGSO) satellites in three directions is better than 20 cm, while the accuracy of medium earth orbit (MEO) satellites in along-track, cross-track, and radial directions is better than 10 cm, 8 cm, and 5 cm, respectively. Full article
Show Figures

Figure 1

27 pages, 4364 KiB  
Article
Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico
by Oscar Enrique Balcázar Medina, Enrique J. Jardel Peláez, Daniel José Vega-Nieva, Adrián Israel Silva-Cardoza and Ramón Cuevas Guzmán
Remote Sens. 2025, 17(13), 2307; https://doi.org/10.3390/rs17132307 - 5 Jul 2025
Viewed by 1444
Abstract
There is a need to evaluate Sentinel-2 (S2) fire severity spectral indices (SFSIs) for predicting vegetation and soil burn severity for a variety of ecosystems. We evaluated the performance of 26 SFSIs across three fires in seasonally dry oak–pine forests in central-western Mexico. [...] Read more.
There is a need to evaluate Sentinel-2 (S2) fire severity spectral indices (SFSIs) for predicting vegetation and soil burn severity for a variety of ecosystems. We evaluated the performance of 26 SFSIs across three fires in seasonally dry oak–pine forests in central-western Mexico. The SFSIs were derived from composites of S2 multispectral images obtained with Google Earth Engine (GEE), processed using different techniques, for periods of 30, 60 and 90 days. Field verification was conducted through stratified random sampling by severity class on 100 circular plots of 707 m2, where immediate post-fire effects were evaluated for five strata, including the canopy scorch in overstory (OCS)—divided in canopy (CCS) and subcanopy (SCS)—understory (UCS) and soil burn severity (SBS). Best fits were obtained with relative, phenologically corrected indices of 60–90 days. For canopy scorch percentage prediction, the indices RBR3c and RBR5n, using NIR (bands 8 and 8a) and SWIR (band 12), provided the best accuracy (R2 = 0.82). SBS could be best mapped from RBR1c (using 11 and 12 bands) with relatively acceptable precision (R2 = 0.62). Our results support the feasibility to separately map OCS and SBS from S2, in relatively open oak–pine seasonally dry forests, potentially supporting post-fire management planning. Full article
Show Figures

Figure 1

12 pages, 243 KiB  
Article
Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank)
by Maria C. Boukouvala, Constantin S. Filintas and Nickolas G. Kavallieratos
Insects 2025, 16(7), 693; https://doi.org/10.3390/insects16070693 - 4 Jul 2025
Viewed by 498
Abstract
Acarus siro L. and Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) are cosmopolitan mite species in food storage and processing environments, infesting a wide variety of commodities. In the current study, the diatomaceous earths (DEs) InsectoSec and Fossil Shield were evaluated for wheat protection against [...] Read more.
Acarus siro L. and Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) are cosmopolitan mite species in food storage and processing environments, infesting a wide variety of commodities. In the current study, the diatomaceous earths (DEs) InsectoSec and Fossil Shield were evaluated for wheat protection against adults, larvae, and nymphs of A. siro and T. putrescentiae. Both DEs were examined at 200 and 500 ppm at 1, 2, and 5 days post-exposure. The efficacy of both formulations against A. siro and T. putrescentiae life stages depended on dose and exposure. Mortality of A. siro reached 100% in larvae, 99.3% in nymphs, and 95.6% in adults by day 5 at 500 ppm of InsectoSec. Similarly, Fossil Shield achieved almost complete larval mortality (99.3%) of A. siro at 500 ppm. For T. putrescentiae, 100% mortality was observed for larvae at both doses of InsectoSec and for adults or nymphs at 500 ppm by the fifth day. Fossil Shield caused a similar mortality to larvae, reaching 97.0% and 100%, at 200 and 500 ppm, respectively, after 5 days. Our findings indicate that InsectoSec and Fossil Shield can be used as sustainable management tools against A. siro and T. putrescentiae. Full article
(This article belongs to the Special Issue Advances in the Effects of Insecticides on Pests)
14 pages, 214 KiB  
Article
The Scopes Trial and Its Long Shadow
by David H. Nikkel
Religions 2025, 16(7), 871; https://doi.org/10.3390/rel16070871 - 4 Jul 2025
Viewed by 356
Abstract
With the centennial this year of the Scopes “Monkey” Trial, this article examines the antagonistic relationship between American Christian fundamentalism and science, particularly evolution and other scientific knowledge challenging literal biblical interpretation. While the trial itself spanned only eleven days, its shadow has [...] Read more.
With the centennial this year of the Scopes “Monkey” Trial, this article examines the antagonistic relationship between American Christian fundamentalism and science, particularly evolution and other scientific knowledge challenging literal biblical interpretation. While the trial itself spanned only eleven days, its shadow has been quite long indeed. The article analyzes the background of the trial, fundamentalism then and now—including a later doubling down, contesting interpretations of the trial’s outcome, misremembrances and revisionism in the historical appropriations of the trial, and developments in evolutionary theory relevant to religion. In the process of these analyses, the article evidences the relationships of the Scopes trial on evolution and religion to law, politics, secondary and higher education, and communications and media. Finally, the article highlights past opportunities missed and lessons to be learned that might lessen conflict between religion and science in the future. Full article
19 pages, 16060 KiB  
Article
Synergic Lidar Observations of Ozone Episodes and Transport During 2023 Summer AGES+ Campaign in NYC Region
by Dingdong Li, Yonghua Wu, Thomas Ely, Thomas Legbandt and Fred Moshary
Remote Sens. 2025, 17(13), 2303; https://doi.org/10.3390/rs17132303 - 4 Jul 2025
Viewed by 387
Abstract
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island [...] Read more.
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island Sound (LIS) areas. The results highlight significant ozone formation within the planetary boundary layer (PBL) and the concurrent transport of ozone/aerosol plumes aloft and mixing into the PBL during 26–28 July 2023. Especially, 26 July experienced the highest ozone concentration within the PBL during the three-day ozone episode despite having a lower temperature than the following two days. In addition, the onset of the afternoon sea breeze contributed to increased ozone levels in the PBL. A mobile ozone DIAL was also deployed at Columbia University’s Lamont–Doherty Earth Observatory (LDEO) in Palisades, NY, 29 km north of NYC, from 11 August to 8 September 2023. A notable high-ozone episode was observed by both ozone DIALs at the CCNY and the LDEO site during an unusual heatwave event in early September. On 7 September, the peak ozone concentration at the LDEO reached 120 ppb, exceeding the ozone levels observed in NYC. This enhancement was associated with urban plume transport, as indicated by wind lidar measurements, the HRRR (High-Resolution Rapid Refresh) model, and the Copernicus Sentinel-5 TROPOMI (TROPOspheric Monitoring Instrument) tropospheric column NO2 product. The results also show that, during both heatwave events, those days with slow southeast to southwest winds experienced significantly higher ozone pollution. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

22 pages, 2878 KiB  
Article
Evolution of the Seismic Forecast System Implemented for the Vrancea Area (Romania)
by Victorin-Emilian Toader, Constantin Ionescu, Iren-Adelina Moldovan, Alexandru Marmureanu, Iosif Lıngvay and Andrei Mihai
Appl. Sci. 2025, 15(13), 7396; https://doi.org/10.3390/app15137396 - 1 Jul 2025
Viewed by 595
Abstract
The National Institute of Earth Physics (NIEP) in Romania has upgraded its seismic monitoring stations into multifunctional platforms equipped with advanced devices for measuring gas emissions, magnetic fields, telluric fields, solar radiation, and more. This enhancement enabled the integration of a seismic forecasting [...] Read more.
The National Institute of Earth Physics (NIEP) in Romania has upgraded its seismic monitoring stations into multifunctional platforms equipped with advanced devices for measuring gas emissions, magnetic fields, telluric fields, solar radiation, and more. This enhancement enabled the integration of a seismic forecasting system designed to extend the alert time of the existing warning system, which previously relied solely on seismic data. The implementation of an Operational Earthquake Forecast (OEF) aims to expand NIEP’s existing Rapid Earthquake Early Warning System (REWS) which currently provides a warning time of 25–30 s before an earthquake originating in the Vrancea region reaches Bucharest. The AFROS project (PCE119/4.01.2021) introduced fundamental research essential to the development of the OEF system. As a result, real-time analyses of radon and CO2 emissions are now publicly available at afros.infp.ro, dategeofizice. The primary monitored area is Vrancea, known for producing the most destructive earthquakes in Romania, with impacts extending to neighboring countries such as Bulgaria, Ukraine, and Moldova. The structure and methodology of the monitoring network are adaptable to other seismic regions, depending on their specific characteristics. All collected data are stored in an open-access database available in real time, geobs.infp.ro. The monitoring methods include threshold-based event detection and seismic data analysis. Each method involves specific technical nuances that distinguish this monitoring network as a novel approach in the field. In conclusion, experimental results indicate that the Gutenberg-Richter law, combined with gas emission measurements (radon and CO2), can be used for real-time earthquake forecasting. This approach provides warning times ranging from several hours to a few days, with results made publicly accessible. Another key finding from several years of real-time monitoring is that the value of fundamental research lies in its practical application through cost-effective and easily implementable solutions—including equipment, maintenance, monitoring, and data analysis software. Full article
(This article belongs to the Special Issue Earthquake Detection, Forecasting and Data Analysis)
Show Figures

Figure 1

Back to TopTop