Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico
Abstract
1. Introduction
1.1. Evaluating Satellite Imagery to Map Fire Severity by Strata (Soil and Vegetation)
1.2. Comparing the Performance of Sentinel-2 Spectral Indices for Fire Severity Mapping
1.3. Evaluating the Role of Compositing Period and Phenological Correction in Mapping Fire Severity
1.4. Analyzing Remotely Sensed Fire Severity in Relatively Unexplored Ecoregions
- To evaluate the performance of relative and absolute Sentinel-2 spectral indices, with and without phenological corrections, using different compositing techniques (average, minimum and percentiles) and composite periods (30, 60 and 90 days), to predict field-observed fire severity in the vegetation, soil burn severity and composite field fire severity indices, in seasonally dry deciduous oak–pine forests in Western Mexico.
- To create fire severity maps for the vegetation and soil strata, and for the best performing field severity index and to evaluate their correspondence against field data and between them.
2. Materials and Methods
2.1. Study Area
2.2. Field Methods
2.3. Satellite Composite Images
2.3.1. Sentinel-2 Composite Download
2.3.2. Determination of Spectral Fire Severity Indices (SFSI)
2.4. Comparison of Spectral Indices and Field Indices
3. Results
3.1. Relationship Between Spectral and Field Severity Indices
3.2. Mapping Field Fire Severity, Overstory Crown Scorch and Soil Burn Severity
3.3. Agreement Between Spectral Indices and Field Fire Severity
3.4. Agreement Between Predicted Fire Severity Maps
4. Discussion
4.1. Accuracies in Mapping Field Fire Severity by Strata
4.2. Sentinel-2 Spectral Indices to Map Fire Severity by Strata
4.2.1. Sentinel-2 Spectral Indices to Map Soil Burn Severity
4.2.2. Sentinel-2 Spectral Indices to Map Canopy Scorch and Aggregated Fire Severity
Relativized vs. Absolute Indices, Phenological Correction and Composite Period
Performance of RBR Indices
Performance of NDVI and SAVI
Performance of dBAIS2
4.3. Mapping Canopy Scorch and Soil Burn Severity from Sentinel-2: Management Implications
4.4. Study Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Tigabu, M.; Yang, X.; Hu, H. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Sci. Total Environ. 2017, 605–606, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.S.; Ryu, S.-R.; Lim, J.; Lee, C.H.; Shin, J.H.; Choi, W.; Lee, B.; Jeong, J.-H.; An, K.W.; Seo, J. Effects of forest fires on forest ecosystems in eastern coastal areas of Korea and an overview of restoration projects. Landsc. Ecol. Eng. 2014, 10, 229–237. [Google Scholar] [CrossRef]
- Jardel-Peláez, E.J. Programa de Manejo del Fuego del Bosque La Primavera; Organismo Público Descentralizado Bosque La Primavera—Universidad de Guadalajara: Zapopan, Jalisco, México, 2020; p. 244. Available online: https://bosquelaprimavera.com/manejo-fuego/ (accessed on 10 March 2023).
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennette, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Sarkar, K.; Chakraborti, S.; Joshi, P.K.; Zhang, Q.; Wang, Y.; Bhatt, S.; et al. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci. Total Environ. 2020, 725, 138331. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Chuvieco, E.; Chen, Y.; Yang, H. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest fire susceptibility and risk mapping using social/infrastructural vulnerability and environmental variables. Fire 2019, 2, 50. [Google Scholar] [CrossRef]
- Chen, Y.; Hall, J.; van Wees, D.; Andela, N.; Hantson, S.; Giglio, L.; van deer Werf, G.R.; Morton, D.C.; Randerson, J.T. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data. 2023, 15, 5227–5259. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; Defries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Zubkova, M.; Humber, M.L.; Giglio, L. Is global burned area declining due to cropland expansion? How much do we know based on remotely sensed data? Int. J. Remote Sens. 2023, 44, 1132–1150. [Google Scholar] [CrossRef]
- Fernández-García, V.; Alonso-González, E. Global patterns and dynamics of burned area and burn severity. Remote Sens. 2023, 15, 3401. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Agee, J.K. Fire ecology of Pacific Northwest forests; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Key, C.H. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol. 2006, 2, 34–59. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Hoy, E.E.; French, N.H.F.; Turetky, M.R. Towards an Operational Use of Remote Sensing in Forest Fire Management. In Proceedings of the 6th International Workshop of the EARSeL Special Interest Group on Forest Fires: Advances in Remote Sensing and GIS Applications in Forest Fire Management; Gitas, I.Z., Carmona-Moreno, C., Eds.; Europan Comision: Thessaloniki, Greece, 2007; pp. 38–56. Available online: https://www.researchgate.net/publication/262004437_Towards_an_Operational_Use_of_Remote_Sensing_in_Forest_Fire_Management (accessed on 12 February 2024).
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Miller, J.D.; Preisler, H.K. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 2017, 8, e01794. [Google Scholar] [CrossRef]
- Taylor, A.H.; Harris, L.B.; Drury, S.A. Drivers of fire severity shift as landscapes transition to an active fire regime, Klamath Mountains, USA. Ecosphere 2021, 12, e03734. [Google Scholar] [CrossRef]
- Hood, S.M.; Varner, J.M. Post-fire tree mortality. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Cansler, C.A.; Hood, S.M.; Varner, J.M.; van Mantgem, P.J.; Agne, M.C.; Andrus, R.A.; Ayres, M.P.; Ayres, B.D.; Bakker, J.D.; Battaglia, M.A.; et al. The fire and tree mortality database, for empirical modeling of individual tree mortality after fire. Sci. Data 2020, 7, 194. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kim, S.; Kim, J.; Kang, W.; Park, K.-H.; Kim, C.-B.; Girona, M.M. Predicting post-fire tree mortality in a temperate pine forest, Korea. Sustainability 2021, 13, 569. [Google Scholar] [CrossRef]
- Vega, J.A.; Fontúrbel, T.; Merino, A.; Fernández, C.; Ferreiro, A.; Jiménez, E. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant Soil. 2013, 369, 73–91. [Google Scholar] [CrossRef]
- Zavala, L.; de Celis, R.; Jordán, A. How wildfires affect soil properties. A brief review. Geogr. Res. Lett. 2014, 40, 311–332. [Google Scholar] [CrossRef]
- Cadena, D.A.; Flores-Garnica, J.G.; Flores-Rodríguez, A.G.; Lomelí-Zavala, M.E. Efecto de incendios en la vegetación de sotobosque y propiedades químicas de suelo de bosques templados. Agro Product. 2020, 13, 65–72. [Google Scholar] [CrossRef]
- Prichard, S.; Larkin, N.; Ottmar, R.; French, N.; Baker, K.; Brown, T.; Clements, C.; Dickinson, M.; Hudak, A.; Kochanski, A.; et al. The fire and smoke model evaluation experiment—A plan for integrated, large fire– atmosphere field campaigns. Atmosphere 2019, 10, 66. [Google Scholar] [CrossRef]
- Balde, B.; Vega-Garcia, C.; Gelabert, P.J.; Ameztegui, A.; Rodrigues, M. The relationship between fire severity and burning efficiency for estimating wildfire emissions in Mediterranean forests. J. For. Res. 2023, 34, 1195–1206. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Marcos, E.; de Miera, L.E.S.; Ansola, G.; Pinto, R.; Calvo, L. Short-term responses of ecosystem multifunctionality to fire severity are modulated by fire-induced impacts on plant and soil microbial communities. Sci. Total Environ. 2023, 898, 165477. [Google Scholar] [CrossRef]
- Santiesteban-Serrano, A.; Rincón, A.; Aponte, C. Does wildfire severity reduce soil multifunctionality in the short-term? A matter of depth. Ecol. Indic. 2025, 175, 113500. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildland Fire 2014, 23, 1045–1060. [Google Scholar] [CrossRef]
- Picotte, J.J.; Bhattarai, K.; Howard, D.; Lecker, J.; Epting, J.; Quayle, B.; Benson, N.; Nelson, K. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecol. 2020, 16, 16. [Google Scholar] [CrossRef]
- Han, D.; Di, X.; Yang, G.; Sun, L.; Weng, Y. Quantifying fire severity: A brief review and recommendations for improvement. Ecosyst. Health Sustain. 2021, 7, 1973346. [Google Scholar] [CrossRef]
- Fernández-García, V.; Santamarta, M.; Fernández-Manso, A.; Quintano, C.; Marcos, E.; Calvo, L. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens. Environ. 2018, 206, 205–217. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Fernandes, P.M.; Marcos, E.; Beltrán-Marcos, D.; Sarricolea, P.; Farris, M.; Calvo, L. Caution is needed across Mediterranean ecosystems when interpreting wall-to-wall fire severity estimates based on spectral indices. For. Ecol. Manag. 2023, 546, 121383. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio, FIREMON landscape assessment documents. In FIREMON Fire Effects Monitoring and Inventory SystemI; RMRS-GTR-164; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; General Technical Report; pp. LA-1, LA-55. Available online: https://www.researchgate.net/publication/241687027_Landscape_Assessment_Ground_measure_of_severity_the_Composite_Burn_Index_and_Remote_sensing_of_severity_the_Normalized_Burn_Ratio (accessed on 14 November 2024).
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- French, N.H.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Lentile, L.B.; Smith, A.M.; Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Lewis, S.A.; Robichaud, P.R. Remote sensing for prediction of 1-year post-fire ecosystem condition. Int. J. Wildland Fire 2009, 18, 594–608. [Google Scholar] [CrossRef]
- McCarley, T.R.; Smith, A.M.; Kolden, C.A.; Kreitler, J. Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest. Int. J. Wildland Fire 2018, 27, 407–412. [Google Scholar] [CrossRef]
- Llorens, R.; Sobrino, J.A.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Soil Burn Severity Assessment Using Sentinel-2 and Radiometric Measurements. Fire 2024, 7, 487. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.W.; Goossens, R. The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in Greece. Remote Sens. Environ. 2010, 114, 2548–2563. [Google Scholar] [CrossRef]
- Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A.; Fontúrbel, T.; Llorens, R.; Sobrino, J.A. Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain. Fire Ecol. 2021, 17, 2. [Google Scholar] [CrossRef]
- Silva-Cardoza, A.I.; Vega-Nieva, D.J.; Briseño-Reyes, J.; Briones-Herrera, C.I.; López-Serrano, P.M.; Corral-Rivas, J.J.; Parks, S.A.; Holsinger, L.M. Evaluating a new relative phenological correction and the effect of Sentinel-based earth engine compositing approaches to map fire severity and burned area. Remote Sens. 2022, 14, 3122. [Google Scholar] [CrossRef]
- Tran, B.; Tanase, M.; Bennett, L.; Aponte, C. Evaluation of spectral indices for assessing fire severity in australian temperate forests. Remote Sens. 2018, 10, 1680. [Google Scholar] [CrossRef]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Moya, D.; Madrigal, J.; Fontúrbel, T.; Marino, E.; Hernando, C.; Guijarro, M.; de las Heras, J. Fire severity assessments in both the laboratory and the field. Fire Eff. Soil. Prop. 2019, 241, 241–266. [Google Scholar]
- Soulard, C.E.; Albano, C.M.; Villarreal, M.L.; Walker, J.J. Continuous 1985–2012 Landsat Monitoring to Assess Fire Effects on Meadows in Yosemite National Park, California. Remote Sens. 2016, 8, 371. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Koontz, M.J.; Collins, L.; Whitman, E.; Parisien, M.A.; Loehman, R.A.; Barnes, J.L.; Bourdon, J.F.; Boucher, J.; et al. Giving ecological meaning to satellite-derived fire severity metrics across North American forests. Remote Sens. 2019, 11, 1735. [Google Scholar] [CrossRef]
- Picotte, J.J.; Cansler, C.A.; Kolden, C.A.; Lutz, J.A.; Key, C.; Benson, N.C.; Robertson, K.M. Determination of burn severity models ranging from regional to national scales for the conterminous United States. Remote Sens. Environ. 2021, 263, 112569. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.A.; Holsinger, L.M.; Park, J.; Parks, S.A. A method for creating a burn severity atlas: An example from Alberta, Canada. Int. J. Wildland Fire 2020, 29, 995–1008. [Google Scholar] [CrossRef]
- Holsinger, L.M.; Parks, S.A.; Saperstein, L.B.; Loehman, R.A.; Whitman, E.; Barnes, J.; Parisien, M.A. Improved fire severity mapping in the North American boreal forest using a hybrid composite method. Remote Sens. Ecol. Conserv. 2021, 8, 222–235. [Google Scholar] [CrossRef]
- Arellano, S.; Vega, J.A.; Rodríguez y Silva, F.; Fernández, C.; Vega-Nieva, D.; Álvarez-González, J.G.; Ruiz-González, A.D. Validación de los índices de teledetección dNBR y RdNBR para determinar la severidad del fuego en el incendio forestal de Oia-O Rosal (Pontevedra) en 2013. Rev. De. Teledetección 2017, 49, 49–61. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GISci. Remote Sens. 2017, 55, 1–18. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 137–144. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Howe, A.A.; Parks, S.A.; Harvey, B.J.; Saberi, S.J.; Lutz, J.A.; Yocom, L.L. Comparing Sentinel-2 and Landsat 8 for burn severity mapping in Western North America. Remote Sens. 2022, 14, 5249. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Llorens, R.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Methodology for burned areas delimitation and fire severity assessment using Sentinel-2 data. A case study of forest fires occurred in Spain between 2018 and 2023. Recent. Adv. Remote Sens. 2024, 1–15. Available online: https://www.recentadvancesin.com/remote-sensing/3020-6448-rars240002/ (accessed on 14 May 2025). [CrossRef]
- Llorens, R.; Sobrino, J.A.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 2004, 13, 227–240. [Google Scholar] [CrossRef]
- Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the Blue Mountains: Influence of vegetation type and inferring fire intensity. Int. J. Wildland Fire 2006, 15, 213–226. [Google Scholar] [CrossRef]
- Arnett, J.T.T.R.; Coops, N.C.; Daniels, L.D.; Falls, R.W. Detecting forest damage after a low-severity fire using remote sensing at multiple scales. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 239–246. [Google Scholar] [CrossRef]
- Mahdi, S.A.; Jasim, S.N. Detection of Vegetation Cover Changes from 1988–2022 in the University of Baghdad Campus by Remote Sensing and GIS Techniques (Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI). IOP Conf. Ser.: Earth Environ. Sci. 2023, 1262, 042054. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Franquesa, M.; Chuvieco, E. Landsat and Sentinel-2 based burned area mapping tools in Google Earth Engine. Remote Sens. 2021, 13, 816. [Google Scholar] [CrossRef]
- Bastarrika, A.; Rodriguez-Montellano, A.; Roteta, E.; Hantson, S.; Franquesa, M.; Torre, L.; Gonzalez-Ibarzabal, J.; Artano, K.; Martinez-Blanco, P.; Mesanza, A.; et al. An Automatic Procedure for Mapping Burned areas Globally Using Sentinel-2 and VIIRS/MODIS Active Fires in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2024, 218, 232–245. [Google Scholar] [CrossRef]
- Filipponi, F. BAIS2: Burned Area Index for Sentinel-2. Proceedings 2018, 2, 364. [Google Scholar] [CrossRef]
- Merhej, O. Evaluation of several spectral indices to produce post fire maps (Case study: Cedar-Fir Protected Area, Syria). Syr. J. Agric. Res.–SJAR 2023, 10, 284–294. [Google Scholar]
- Farhadi, H.; Mokhtarzade, M.; Ebadi, H.; Beirami, B.A. Rapid and automatic burned area detection using Sentinel-2 time-series images in google earth engine cloud platform: A case study over the Andika and Behbahan Regions, Iran. Environ. Monit. Assess. 2022, 194, 369. [Google Scholar] [CrossRef]
- Amroussia, M.; Viedma, O.; Achour, H.; Abbes, C. Predicting spatially explicit Composite Burn Index (CBI) from different spectral indices derived from Sentinel 2A: A case of study in Tunisia. Remote Sens. 2023, 15, 335. [Google Scholar] [CrossRef]
- Parks, S.A.; Dillon, G.K.; Miller, C. A new metric for quantifying burn severity: The relativized burn ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Voss, M.A.; Loehman, R.A.; Robinson, N.P. Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potential. Remote Sens. 2018, 10, 879. [Google Scholar] [CrossRef]
- Zhu, Z.; Key, C.; Ohlen, D.; Benson, N. Evaluate Sensitivities of Burn-Severity Mapping Algorithms for Different Ecosystems and Fire Histories in the United States. In Final Report to the Joint Fire Science Program; JFSP 01-1-4-12; Joint Fire Science Program: Boise, ID, USA, 2006; 36p, Available online: https://www.researchgate.net/publication/228988753_Evaluate_Sensitivities_of_Burn-Severity_Mapping_Algorithms_for_Different_Ecosystems_and_Fire_Histories_in_the_United_States (accessed on 18 November 2024).
- Allen, J.L.; Sorbel, B. Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 2008, 17, 463–475. [Google Scholar] [CrossRef]
- Picotte, J.J.; Robertson, K. Timing constraints on remote sensing of wildland fire burned area in the southeastern US. Remote Sens. 2011, 3, 1680–1690. [Google Scholar] [CrossRef]
- Morresi, D.; Marzano, R.; Lingua, E.; Motta, R.; Garbarino, M. Mapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery. Remote Sens. Environ. 2022, 269, 112800. [Google Scholar] [CrossRef]
- Chen, D.; Loboda, T.V.; Hall, J.V. A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS J. Photogramm. Remote Sens. 2020, 159, 63–77. [Google Scholar] [CrossRef]
- van Bellen, S.; Garneau, M.; Bergeron, Y. Impact of climate change on forest fire severity and consequences for carbon stocks in boreal forest stands of Quebec, Canada: A synthesis. Fire Ecol. 2010, 6, 16–44. [Google Scholar] [CrossRef]
- Scott, A.C.; Bowman, D.M.J.S.; Bond, W.J.; Pyne, S.J.; Alexander, M.E. Fire on Earth. An introduction; Wiley Blackwell: Chichester, UK, 2014. [Google Scholar]
- Hansen, W.D.; Winslow Krawchuk, M.A.; Trugman, A.T.; Williams, A.P. The dynamic temperate and boreal fire and forest-ecosystem simulator (DYNAFFOREST): Development and evaluation. Environ. Model. Softw. 2022, 156, 105473. [Google Scholar] [CrossRef]
- Remy, C.C.; Magne, G.; Stivrins, N.; Aakala, T.; Asselin, H.; Seppä, H.; Luoto, T.; Jasiunas, N.; Ali, A.A. Climatic and vegetational controls of Holocene wildfire regimes in the boreal forest of northern Fennoscandia. J. Ecol. 2023, 111, 845–860. [Google Scholar] [CrossRef]
- Trang, P.T. Forest Fire in the Tropical Montane Forests of Northern Vietnam. Ph.D. Thesis, College of Science, Health, Engineering and Education, Murdoch University, Melville, Australia, January 2023. Available online: https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/Forest-fire-in-the-tropical-montane/991005548666607891?institution=61MUN_INST&skipUsageReporting=true&skipUsageReporting=true&recordUsage=false&recordUsage=false#file-0 (accessed on 12 December 2024).
- Guo, L.; Li, S.; Wu, Z.; Parsons, R.A.; Lin, S.; Wu, B.; Sun, L. Assessing spatial patterns and drivers of burn severity in subtropical forests in Southern China based on Landsat 8. For. Ecol. Manag. 2022, 524, 120515. [Google Scholar] [CrossRef]
- Furlaud, J.; Prior, L.D.; Williamson, G.J.; Bowman, D.M.J.S. Bioclimatic drivers of fire severity across the Australian geographical range of giant Eucalyptus forests. J. Ecol. 2021, 109, 2514–2536. [Google Scholar] [CrossRef]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Change Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Zúñiga-Vásquez, J.M.; Cisneros-González, D.; Pompa-García, M.; Rodríguez-Trejo, D.A.; Pérez-Verdín, G. Modelación espacial de incendios forestales en México: Una integración de dos bases de datos. Bosque 2017, 38, 563–574. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Briseño-Reyes, J.; López-Sánchez, C.; Corral-Rivas, J.J.; Montiel-Antuna, E.; Cruz-Lopez, M.I.; Ressl, R.; et al. Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014. Fire Ecol. 2019, 15, 28. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Briseño-Reyes, J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Corral-Rivas, J.J.; Montiel-Antuna, E.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; et al. Developing models to predict the number of fire hotspots from an accumulated fuel dryness index by vegetation type and region in Mexico. Forests 2018, 9, 190. [Google Scholar] [CrossRef]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Flores-Medina, F.; Lopez-Serrano, P.M.; Corral-Rivas, J.J.; Carrillo-Parra, A.; Pulgarin-Gámiz, M.Á.; Alvarado-Celestino, E.; González-Cabán, A.; et al. Modeling and Mapping Forest Fire Occurrence from Aboveground Carbon Density in Mexico. Forests 2019, 10, 402. [Google Scholar] [CrossRef]
- Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-García, M.; Rodríguez-Trejo, D.A.; Carrillo-Parra, A.; González-Cabán, A.; et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total. Environ. 2020, 718, 137313. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Briseño-Reyes, J.; López-Serrano, P.-M.; Corral-Rivas, J.J.; Pompa-García, M.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; Alvarado-Celestino, E.; Burgan, R.E. Autoregressive Forecasting of the Number of Forest Fires Using an Accumulated MODIS-Based Fuel Dryness Index. Forests 2024, 15, 42. [Google Scholar] [CrossRef]
- Challenger, A.; Soberón, J. Los ecosistemas terrestres. In Capital Natural de México. Vol. I. Estado de Conservación y Tendencias de Cambio; Soberón, J., Halffter, G., Llorente-Bousquets, J., Eds.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México D.F: Mexico City, Mexico, 2009; pp. 87–108. Available online: https://www.academia.edu/5173175/Los_Ecosistemas_terrestres_de_M%C3%A9xico (accessed on 25 October 2024).
- Jardel-Peláez, E.J.; Pérez-Salicrup, D.; Alvarado, E.; Morfín-Ríos, J.E. Principios y criterios para el manejo del fuego en ecosistemas forestales: Guía de Campo; Comisión Nacional Forestal: Zapopan, Jalisco, México, 2014; pp. 1–96. Available online: http://www.conafor.gob.mx:8080/biblioteca/ver.aspx?articulo=727 (accessed on 12 July 2024).
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Briseño-Reyes, J.; López-Serrano, P.M.; Corral-Rivas, J.J.; Alvarado-Celestino, E.; Arellano-Pérez, S.; Álvarez-González, J.G.; Ruiz-González, A.D.; et al. Near real-time automated early mapping of the perimeter of large forest fires from the aggregation of VIIRS and MODIS active fires in Mexico. Remote Sens. 2020, 12, 2061. [Google Scholar] [CrossRef]
- Cruz-López, M.I.; Manzo-Delgado, L.d.L.; Aguirre-Gómez, R.; Chuvieco, E.; Equihua-Benítez, J.A. Spatial Distribution of Forest Fire Emissions: A Case Study in Three Mexican Ecoregions. Remote Sens. 2019, 11, 1185. [Google Scholar] [CrossRef]
- Manzo-Delgado, L.L.; López-García, J. Spatial and temporal analyses of burned areas 1998, 2003 and 2015 in Montes Azules Biosphere Reserve, Chiapas, Mexico. Bosque 2020, 41, 11–24. [Google Scholar] [CrossRef]
- Flores-Rodríguez, A.G.; Flores-Garnica, J.G.; González-Eguiarte, D.R.; Gallegos-Rodríguez, A.; Zarazúa-Villaseñor, P.; Mena-Munguía, S. Comparative analysis of spectral indices to locate and size levels of severity of forest fires. Investig. Geográficas 2021, 106, e60396. [Google Scholar] [CrossRef]
- Flores-Garnica, J.G.; Flores-Rodríguez, A.G. Detección de niveles de severidad de incendios forestales a través de imágenes de satélite. In Ciência e Tecnologia para o Desenvolvimento Ambiental, Cultural e Socioeconômico, III ed.; Artemis: Curitiba, Brasil, 2023; pp. 105–114. [Google Scholar] [CrossRef]
- Rzedowski, J.; McVaugh, R. La Vegetación de la Nueva Galicia; Contributions from the University of Michigan Herbarium: Ann Arbor, MI, USA, 1966; Volume 9, pp. 1–123. [Google Scholar]
- Valdivia, O.L. Caracterización de los procesos geológico-geomorfológicos y clasificación del relieve de la Sierra La Primavera. In Diversidad volcánica y geopatrimonio en la Sierra La Primavera; González, L., Valdivia, L., Gómez, J.H., Eds.; Universidad de Guadalajara: Guadalajara, Jalisco, México, 2018; pp. 43–136. [Google Scholar]
- Schug, F.; Bar-Massada, A.; Carlson, A.R.; Cox, H.; Hawbaker, T.J.; Helmers, D.; Hostert, P.; Kaim, D.; Kasraee, N.K.; Martinuzzi, S.; et al. The global wildland–urban interface. Nature 2023, 621, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Silva-Cardoza, A.I.; Vega-Nieva, D.J.; López-Serrano, P.M.; Corral-Rivas, J.J.; Briseño-Reyes, J.; Briones-Herrera, C.I.; Loera-Medina, J.C.; Parra-Aguirre, E.; Rodríguez-Trejo, D.A.; Jardel-Peláez, E. Metodología para la evaluación de la severidad de incendios forestales en campo, en ecosistemas de bosque templado de México. Universidad Juárez del Estado de Durango, Universidad Autónoma Chapingo, Universidad de Guadalajara. Tech. Rep. “Reforzamiento al sistema nacional de predicción de peligro de incendios forestales de México para el pronóstico de conglomerados y área quemada” CONAFOR-CONACYT-2018-C02-B-S-131553, México. 2021. Available online: http://forestales.ujed.mx/incendios2/php/publicaciones_documentos/7_3_Silva%20et%20al%2020211201_Metodologia_severidad_v1.pdf (accessed on 14 May 2025).
- Varner, J.M.; Hood, S.M.; Aubrey, D.P.; Yedinak, K.; Hiers, J.K.; Jolly, W.M.; Shearman, T.M.; McDaniel, J.K.; O’Brien, J.J.; Rowell, E.M. Tree crown injury from wildland fires: Causes, measurement, and ecological and physiological consequences. New Phytol. 2021, 231, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Vega, J.A.; Fontúrbel, T.; Fernández, C.; Díaz-Raviña, M.; Carballas, T.; Martín, A.; González-Prieto, S.; Merino, A.; Benito, E. Acciones urgentes contra la erosión en áreas forestales quemadas: Guía para su planificación en Galicia. Galicia, España. Andavira 2013, 1–140. Available online: https://www.researchgate.net/publication/281268369_Acciones_urgentes_contra_la_erosion_en_areas_forestales_quemadas_Guia_para_su_planificacion_en_Galicia (accessed on 14 May 2025).
- CONABIO. Comisión Nacional para el Conocimiento de la Biodiversidad. Sistema de Alerta Temprana de Incendios Forestales (SATIF) para México y Centroamérica. 2021. Available online: http://incendios-beta.conabio.gob.mx/ (accessed on 15 July 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Perilla, G.A.; Mas, J.-F. Google Earth Engine (GEE): Una poderosa herramienta que vincula el potencial de los datos masivos y la eficacia del procesamiento en la nube. Investig. Geográficas 2020, 101, e59929. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. Available online: http://qgis.osgeo.org (accessed on 23 November 2023).
- Briones-Herrera, C.I.; Silva-Cardoza, A.I.; Vega-Nieva, D.J.; Briseño-Reyes, J. Manual de usuario de las herramientas de mapeo de área quemada y severidad de incendios forestales a partir de imágenes Sentinel. Tech. Rep. “Reforzamiento al sistema nacional de predicción de peligro de incendios forestales de México para el pronóstico de conglomerados y área quemada” CONAFOR-CONACYT-2018-C02-B-S-131553, México. 2023. Available online: https://forestales.ujed.mx/incendios2/descargas/Manual_AQ_v1_3_20230401_RV4_CB.pdf (accessed on 14 May 2025).
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, J.; Zhang, D.D. Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef]
- Huang, H.; Roy, D.; Boschetti, L.; Zhang, H.; Yan, L.; Kumar, S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A multi-spectral instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; p. 1619. Available online: https://www.researchgate.net/publication/43256762_Coincident_detection_of_crop_water_stress_nitrogen_status_and_canopy_density_using_ground_based_multispectral_data (accessed on 22 June 2024).
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Hamada, M.A.; Kanat, Y.; Abiche, A.E. Multi-spectral image segmentation based on the K-means clustering. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 1016–1019. [Google Scholar] [CrossRef]
- Huete, A.R. Asoil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- ESA (European Space Agency). Sentinel-2: Satelilite description: Resolution and Swath. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath (accessed on 10 January 2021).
- Grömping, U. Using R and RStudio for Data Management, Statistical Analysis and Graphics (2nd Edition). J. Stat.Soft., Book. Rev. 2015, 68, 1–7. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2019; Available online: http://www.rstudio.com (accessed on 11 October 2024).
- Ryan, T.P. Modern Regression Methods, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2008; pp. 1–672. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometría 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Pontius, R.G.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2008, 15, 111–142. [Google Scholar] [CrossRef]
- Delcourt, C.J.F.; Combee, A.; Izbicki, B.; Mack, M.C.; Maximov, T.; Petrov, R.; Rogers, B.M.; Scholten, R.C.; Shestakova, T.A.; van Wees, D.; et al. Evaluating the differenced normalized burn ratio for assessing fire severity using Sentinel-2 imagery in Northeast Siberian Larch Forests. Remote Sens. 2021, 13, 2311. [Google Scholar] [CrossRef]
- Konkathi, P.; Shetty, A. Assessment of burn severity using different fire indices: A case study of Bandipur National Park. In IEEE Recent Advances in Geoscience and Remote Sensing: Technologies, Standards and Applications (TENGARSS); IEEE: Los Alamitos, CA, USA, 2019; pp. 151–154. [Google Scholar] [CrossRef]
- Hoy, E.E.; French, N.H.; Turetsky, M.R.; Trigg, S.N.; Kasischke, E.S. Evaluating the potential of Landsat TM/ETM+ imagery for assess.ing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 500–514. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef]
- Hu, X.; Ban, Y.; Nascetti, A. Sentinel-2 MSI data for active fire detection in major fire-prone biomes: A multi-criteria approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102347. [Google Scholar] [CrossRef]
- Oliva, P.; Martin, P.; Chuvieco, E. Burned area mapping with MERIS post-fire image. Int. J. Remote Sens. 2011, 32, 4175–4201. [Google Scholar] [CrossRef]
- Pereira, J.M.C. Remote sensing of burned areas in tropical savannas. Int. J. Wildland Fire 2003, 12, 259–270. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; Van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- van Gerrevink, M.J.; Veraverbeke, S. Evaluating the Near and Mid Infrared Bi-Spectral Space for Assessing Fire Severity and Comparison with the Differenced Normalized Burn Ratio. Remote Sens. 2021, 13, 695. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Eitel, J.U.H.; Hudak, A.T. Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods. Int. J. Wildland Fire 2010, 19, 976–983. [Google Scholar] [CrossRef]
- López, M.J.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Llorens, R.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. Relationship between Soil Burn Severity in Forest Fires Measured In Situ and through Spectral Indices of Remote Detection. Forests 2019, 10, 457. [Google Scholar] [CrossRef]
- Peña, M.A.; Martínez, G. Mapeo del daño en bosques incendiados de Chile central, mediante el modelado de índices espectrales ex-ante y ex-pst. Bosque 2021, 42, 205–215. [Google Scholar] [CrossRef]
- Rogan, J.; Yool, S.R. Mapping fire-induced vegetation depletion in the Peloncillo Mountains: Arizona and New Mexico. Int. J. Remote Sens. 2001, 22, 3101–3121. [Google Scholar] [CrossRef]
- Nasery, S.; Kalkan, K. Burn area detection and burn severity assessment using Sentinel 2 MSI data: The case of Karabağlar district, İzmir/Turkey. Turk. J. Geosci. 2020, 1, 72–77. [Google Scholar]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef]
- Mancilla-Ruiz, D.; Barrera, F.d.l.; González, S.; Huaico, A. The Effects of a Megafire on Ecosystem Services and the Pace of Landscape Recovery. Land 2021, 10, 1388. [Google Scholar] [CrossRef]
- Han, A.; Qing, S.; Bao, Y.; Na, L.; Bao, Y.; Liu, X.; Zhang, J.; Wang, C. Short-term effects of fire severity on vegetation based on Sentinel-2 satellite data. Sustainability 2021, 13, 432. [Google Scholar] [CrossRef]
- Vega, J.; Jimenez, E.; Vega, D.; Ortiz, L.; Pérez, J.R. Pinus pinaster Ait. tree mortality following wildfire in Spain. For. Ecol. Manag. 2011, 261, 2232–2242. [Google Scholar] [CrossRef]
- Rodríguez Trejo, D.A. Incendios de Vegetación: Su Ecología, Manejo e Historia, 1st ed.; UACH, Semarnat, PPCIF, Conafor, Conanp, PNIP, ANCF, AMPF: Texcoco, Mexico, 2015; Volume 1, pp. 893–1705. [Google Scholar]
- Furniss, T.J.; Kane, V.R.; Larson, A.J.; Lutz, J.A. Detecting tree mortality with Landsat-derived spectral indices: Improving ecological accuracy by examining uncertainty. Remote Sens. Environ. 2020, 237, 111497. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Suárez-Seoane, S.; Calvo, L. Transferability of vegetation recovery models based on remote sensing across different fire regimes. Appl. Veg. Sci. 2020, 23, 441–451. [Google Scholar] [CrossRef]
- González-De Vega, S.; De las Heras, J.; Moya, D. Post-Fire Regeneration and Diversity Response to Burn Severity in Pinus halepensis Mill. Forests. Forests 2018, 9, 299. [Google Scholar] [CrossRef]
- Fernández-García, V.; Fulé, P.Z.; Marcos, E.; Calvo, L. The role of fire frequency and severity on the regeneration of Mediterranean serotinous pines under different environmental conditions. For. Ecol. Manag. 2019, 444, 59–68. [Google Scholar] [CrossRef]
- Sagra, J.; Ferrandis, P.; Plaza-Alvarez, P.A.; Lucas-Borja, M.E.; González-Romero, J.; Alfaro-Sánchez, R.; De las Heras, J.; Moya, D. Regeneration of Pinus pinaster Aiton after prescribed fires: Response to burn timing and biogeographical seed provenance across a climatic gradient. Sci. Total Environ. 2018, 637–638, 1550–1558. [Google Scholar] [CrossRef]
- Parsons, A.; Robichaud, P.R.; Lewis, S.A.; Napper, C.; Clark, J.T. Field guide for mapping post-fire soil burn severity. In General Technical Report, RMRS-GTR-243; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; 49p. [Google Scholar] [CrossRef]
- Beltrán-Marcos, D.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Pinto, R.; García-Llamas, P.; Calvo, L. Mapping Soil Burn Severity at Very High Spatial Resolution from Unmanned Aerial Vehicles. Forests 2021, 12, 179. [Google Scholar] [CrossRef]
- Girona-García, A.; Cretella, C.; Fernández, C.; Robichaud, P.R.; Vieira, D.C.S.; Keizer, J.J. How Much Does It Cost to Mitigate Soil Erosion after Wildfires? J. Environ. Manag. 2023, 334, 117478. [Google Scholar] [CrossRef]
- Jones, G.M.; Tingley, M.W. Pyrodiversity and biodiversity: A history, synthesis, and outlook. Divers. Distrib. 2022, 28, 386–403. [Google Scholar] [CrossRef]
- Beltrán-Marcos, D.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Marcos, E.; Calvo, L. Relevance of UAV and sentinel-2 data fusion for estimating topsoil organic carbon after forest fire. Geoderma 2023, 430, 116290. [Google Scholar] [CrossRef]
Indexes and Techniques 1 | Eq | Ref |
---|---|---|
Burn Area Index for Sentinel-2 (BAIS2) | ||
(7) | [41] | |
(8) | [41] | |
(9) | [41] | |
(10) | [63] | |
Chlorophyll Index red-edge (CIre) | ||
CIre = (B7 / B5) − 1 | (11) | [106] |
Normalized Burn Ratio (NBR) | ||
NBR 1 = (B11 − B12)/(B11 + B12) | (12) | [61] |
NBR 2 = (B8 − B11)/(B8 + B11) | (13) | [107] |
NBR 3 = (B8 − B12)/(B8 + B12) | (14) | [108] |
NBR 4n = (B8A − B11)/(B8A + B11) | (15) | [109] |
NBR 5n = (B8A − B12)/(B8A + B12) | (16) | [108] |
Normalized Difference Index (NDI) | ||
NDI 1re = (B6 − B5)/(B6 + B5 − 2 ∗ B1) | (17) | [110] |
NDI 2re = (B7 − B5)/(B7 + B5 − 2 ∗ B1) | (18) | [110] |
Normalized Difference Vegetation Index (NDVI) | ||
NDVI 1re = (B6 − B5)/(B6 + B5) | (19) | [111] |
NDVI 2re = (B7 − B5)/(B7 + B5) | (20) | [112] |
NDVI 3 = (B8 − B4)/(B8 + B4) | (21) | [113] |
NDVI 4re = (B8 − B5)/(B8 + B5) | (22) | [110] |
NDVI 5re = (B8 − B7)/(B8 + B7) | (23) | [43] |
NDVI 6n = (B8A − B4)/(B8A + B4) | (24) | [114] |
NDVI 7ren = (B8A − B5)/(B8A + B5) | (25) | [43] |
NDVI 8ren = (B8A − B7)/(B8A + B7) | (26) | [43] |
Soil Adjusted Vegetation Index (SAVI) | ||
SAVI = (B8 − B4)/(B8 + B4 + 0.428) ∗ (1.0 + 0.428) | (27) | [115] |
SAVI n = (B8A − B4)/(B8A + B4 + 0.428) ∗ (1.0 + 0.428) | (28) | |
Enhanced Vegetation Index (EVI) | ||
EVI = 2.5 ∗ (B8 − B4)/((B8 + 6.0 ∗ B4 − 7.5 ∗ B2) + 1.0) | (29) | [116] |
EVI n = 2.5 ∗ (B8A − B4)/((B8A + 6.0 ∗ B4 − 7.5 ∗ B2) + 1.0) | (26) | |
Green Normalized Difference Vegetation Index (GNDVI) | ||
GNDVI = (B8 − B03)/(B8 + B3) | (30) | [117] |
GNDVI n = (B8A − B3)/(B8A + B3) | (31) |
Percentage of Scorch of the Tree Stratum (OCS) | |||||||
Index | T | CI | R | β0 | β1 | R2 | RMSE |
RBR3c | 90 | AA | 0.906 | 36.183 | 4.293 | 0.820 | 84.292 |
RBR5nc | 90 | AA | 0.902 | 37.798 | 4.192 | 0.814 | 83.867 |
dBAIS22c | 90 | p33 | −0.901 | 21.950 | −2.472 | 0.812 | 49.964 |
RBR3c | 60 | AA | 0.901 | 39.505 | 4.072 | 0.812 | 86.653 |
dBAIS22c | 90 | p25 | −0.897 | 20.291 | −2.455 | 0.805 | 50.79 |
RBR5nc | 60 | AA | 0.897 | 39.783 | 4.01 | 0.805 | 86.621 |
RBAIS22c | 90 | p33 | −0.897 | 25.006 | −2.833 | 0.804 | 58.695 |
dBAIS24nc | 90 | p33 | −0.896 | 21.173 | −2.430 | 0.804 | 50.442 |
dBAIS22c | 60 | p33 | −0.896 | 15.550 | −2.475 | 0.803 | 51.44 |
dBAIS22c | 90 | p20 | −0.894 | 12.146 | −2.409 | 0.799 | 50.68 |
Burned Soil Severity Index (SBS) | |||||||
RBR1c | 60 | p33 | 0.787 | 5.111 | 2.710 | 0.619 | 59.945 |
RBR1c | 60 | p20 | 0.786 | 8.070 | 2.781 | 0.618 | 61.645 |
RBR1c | 90 | AA | 0.785 | 35.515 | 2.538 | 0.617 | 56.457 |
dNBR1c | 30 | p33 | 0.783 | 14.393 | 3.654 | 0.614 | 81.783 |
RBR1c | 30 | p33 | 0.784 | 11.767 | 2.855 | 0.614 | 63.834 |
dNBR1c | 60 | p20 | 0.783 | 10.095 | 3.632 | 0.614 | 81.339 |
RBR1c | 90 | p25 | 0.784 | −3.621 | 2.718 | 0.614 | 60.752 |
RBR1c | 60 | AA | 0.784 | 35.125 | 2.617 | 0.614 | 58.493 |
dNBR1c | 60 | p33 | 0.783 | 6.399 | 3.523 | 0.613 | 78.978 |
RBR1c | 60 | p25 | 0.783 | 6.605 | 2.740 | 0.613 | 61.453 |
Field Severity Index (FSI2) | |||||||
RBR3c | 90 | AA | 0.91 | 6.305 | 5.08 | 0.827 | 82.573 |
RBR3c | 60 | AA | 0.908 | 8.932 | 5.101 | 0.824 | 83.907 |
RBR5nc | 90 | AA | 0.908 | 8.3 | 4.96 | 0.824 | 81.607 |
RBR5nc | 60 | AA | 0.905 | 9.53 | 4.991 | 0.819 | 83.366 |
RBR5nc | 30 | p25 | 0.904 | −30.337 | 5.488 | 0.817 | 92.513 |
RBR5nc | 30 | p33 | 0.904 | −28.455 | 5.465 | 0.816 | 92.248 |
RBR5nc | 30 | p20 | 0.903 | −28.952 | 5.47 | 0.815 | 92.672 |
RBR3c | 30 | AA | 0.903 | 14.778 | 4.871 | 0.815 | 82.658 |
RBR3c | 30 | p25 | 0.902 | −29.037 | 5.526 | 0.814 | 94.087 |
RBR3c | 60 | p33 | 0.902 | −50.256 | 5.535 | 0.813 | 94.498 |
FFSI | RBR3c | RBR5nc | RBR1c | ||||||
---|---|---|---|---|---|---|---|---|---|
%A | KIA | KIAw | %A | KIA | KIAw | %A | KIA | KIAw | |
CCA | 60.00 | 0.49 | 0.77 | 59.00 | 0.47 | 0.76 | 60.00 | 0.49 | 0.72 |
SBS | 48.00 | 0.32 | 0.53 | 51.00 | 0.36 | 0.55 | 49.00 | 0.33 | 0.57 |
FSI2 | 58.00 | 0.48 | 0.73 | 58.00 | 0.49 | 0.74 | 63.00 | 0.54 | 0.76 |
Severity | RBR3c vs. RBR5nc | RBR3c vs. RBR1c | RBR5nc vs. RBR1c | Mean Kappa | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | V | L | C | V | L | C | V | L | ||
Not burned | 1.00 | 1.00 | 1.00 | 0.87 | 0.95 | 0.87 | 0.80 | 0.91 | 0.82 | 0.91 |
Low | 0.78 | 0.78 | 0.80 | 0.65 | 0.60 | 0.43 | 0.67 | 0.62 | 0.39 | 0.64 |
Medium | 0.81 | 0.79 | 0.84 | 0.67 | 0.67 | 0.88 | 0.71 | 0.68 | 0.89 | 0.77 |
High | 0.92 | 0.69 | 0.95 | 0.24 | 0.35 | 0.22 | 0.17 | 0.11 | 0.15 | 0.42 |
Extreme | 1.00 | 1.00 | 1.00 | 0.04 | 0.22 | 0.24 | 0.02 | 0.15 | 0.14 | 0.42 |
Overall Kappa | 0.88 | 0.87 | 0.91 | 0.70 | 0.64 | 0.75 | 0.67 | 0.56 | 0.70 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcázar Medina, O.E.; Jardel Peláez, E.J.; Vega-Nieva, D.J.; Silva-Cardoza, A.I.; Cuevas Guzmán, R. Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico. Remote Sens. 2025, 17, 2307. https://doi.org/10.3390/rs17132307
Balcázar Medina OE, Jardel Peláez EJ, Vega-Nieva DJ, Silva-Cardoza AI, Cuevas Guzmán R. Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico. Remote Sensing. 2025; 17(13):2307. https://doi.org/10.3390/rs17132307
Chicago/Turabian StyleBalcázar Medina, Oscar Enrique, Enrique J. Jardel Peláez, Daniel José Vega-Nieva, Adrián Israel Silva-Cardoza, and Ramón Cuevas Guzmán. 2025. "Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico" Remote Sensing 17, no. 13: 2307. https://doi.org/10.3390/rs17132307
APA StyleBalcázar Medina, O. E., Jardel Peláez, E. J., Vega-Nieva, D. J., Silva-Cardoza, A. I., & Cuevas Guzmán, R. (2025). Mapping Soil Burn Severity and Crown Scorch Percentage with Sentinel-2 in Seasonally Dry Deciduous Oak and Pine Forests in Western Mexico. Remote Sensing, 17(13), 2307. https://doi.org/10.3390/rs17132307