Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mite Species
2.2. DE Formulations
2.3. Grain Commodity
2.4. Bioassays
2.5. Data Analysis
3. Results
3.1. Effectiveness of DEs Against A. siro
3.2. Effectiveness of DEs Against T. putrescentiae
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
DE | diatomaceous earth |
References
- Klimov, P.B.; OConnor, B.M. Conservation of the name Tyrophagus putrescentiae, a medically and economically important mite species (Acari: Acaridae). Int. J. Acarol. 2009, 35, 95–101. [Google Scholar] [CrossRef]
- Malik, A.; Gulati, R.; Duhan, K.; Poonia, A. Tyrophagus Putrescentiae (Schrank) (Acari: Acaridae) as a pest of grains: A review. J. Entomol. Zool. Stud. 2018, 6, 2543–2550. [Google Scholar]
- Hubert, J.; Mûnzbergova, Z.; Kučerová, Z.; Stejskal, V. Comparison of communities of stored product mites in grain mass and grain residues in the Czech Republic. Exp. Appl. Acarol. 2006, 39, 149–158. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Klejdysz, T.; Subramanyam, B.H.; Nawrot, J. Atlas of Stored-Product Insects and Mites; AACC International: St. Paul, MN, USA, 2013. [Google Scholar]
- Collins, D.A. A review on the factors affecting mite growth in stored grain commodities. Exp. Appl. Acarol. 2012, 56, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P.; Liberato da Silva, G.; Esswein, I.Z.; Dallazen, M.C.; Heidrich, D.; Pagani, D.M.; Hoehne, L.; Scroferneker, M.L.; Valente, P.; Ferla, N.J. Effects of infestations of the storage mite Tyrophagus putrescentiae (Acaridae) on the presence of fungal species and mycotoxin production in stored products. J. Stored Prod. Res 2021, 94, 101883. [Google Scholar] [CrossRef]
- Da Silva, G.L.; Esswein, I.Z.; Heidrich, D.; Dresch, F.; Maciel, M.J.; Pagani, D.M.; Valente, P.; Scroferneker, M.L.; Johann, L.; Ferla, N.J.; et al. Population growth of the stored product pest Tyrophagus putrescentiae (Acari: Acaridae) on environmentally and medically important fungi. Exp. Appl. Acarol. 2019, 78, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Nesvorná, M.; Hujslová, M.; Stará, J.; Hajšlová, J.; Stejskal, V. Acarus siro and Tyrophagus putrescentiae (Acari: Acarididae) transfer of Fusarium culmorum into germinated barley increases mycotoxin deoxynivalenol content in barley under laboratory conditions. Int. J. Acarol. 2013, 39, 235–238. [Google Scholar] [CrossRef]
- Hubert, J. The Pest Importance of Stored Product Mites (Acari: Acaridida); Nova Science Publishers Inc.: New York, NY, USA, 2012. [Google Scholar]
- Hamel, D.; Rozman, V.; Liska, A. Storage of cereals in warehouses with or without pesticides. Insects 2020, 11, 846. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W. Managing resistance to chemical treatments in stored products pests. Stewart Postharvest Rev. 2015, 11, 3. [Google Scholar]
- Hubert, J.; Nesvorná, M.; Bostlova, M.; Sopko, B.; Green, S.J.; Phillips, T.W. The effect of residual pesticide application on microbiomes of the storage mite Tyrophagus putrescentiae. Microb. Ecol. 2023, 85, 1527–1540. [Google Scholar] [CrossRef]
- Sims, P.A.; Mann, D.G.; Medlin, L.K. Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia 2006, 45, 361–402. [Google Scholar] [CrossRef]
- Shah, M.A.; Khan, A.A. Use of diatomaceous earth for the management of stored-product pests. Int. J. Pest Manag. 2014, 60, 100–113. [Google Scholar] [CrossRef]
- Malviya, S.; Scalco, E.; Audic, S.; Vincent, F.; Veluchamy, A.; Poulain, J.; Wincker, P.; Iudicone, D.; de Vargas, C.; Bittner, L.; et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 2016, 113, E1516–E1525. [Google Scholar] [CrossRef]
- De Tommasi, E.; Gielis, J.; Rogato, A. Diatom frustule morphogenesis and function: A multidisciplinary survey. Mar. Genom. 2017, 35, 1–18. [Google Scholar] [CrossRef]
- Maher, S.; Kumeria, T.; Aw, M.S.; Losic, D. Diatom Silica for Biomedical Applications: Recent Progress and Advances. Adv. Healthc. Mater. 2018, 7, e1800552. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert dusts. In Alternatives to Pesticides in Stored-Product IPM; Springer: Boston, MA, USA, 2000; pp. 321–380. [Google Scholar]
- Wakil, W.; Boukouvala, M.C.; Kavallieratos, N.G.; Gidari, D.L.S.; Skourti, A.; Riasat, T. Advances in stored-product pest management: Combined effects of diatomaceous earths with botanicals, insecticides, entomopathogenic/plant pathogenic fungi, and silica gel. Sustainability 2025, 17, 3316. [Google Scholar] [CrossRef]
- Vurro, M.; Miguel-Rojas, C.; Pérez-de-Luque, A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag. Sci. 2019, 75, 2403–2412. [Google Scholar] [CrossRef]
- Audu, A.; Ibrahim, N.D. Evaluation of raw diatomaceous earth, leaf powders of Eucalyptus and Melia as toxicant and repellent against Callosobruchus subinnotatus (Pic.) (Coleoptera: Chrysomelidae). J. Agric. Econ. Environ. Soc. Sci. 2021, 7, 18–32. [Google Scholar]
- Akhoundi, M.; Bruel, C.; Izri, A. Harmful effects of bed bug-killing method of diatomaceous earth on human health. J. Insect Sci. 2019, 19, 5. [Google Scholar] [CrossRef]
- Iatrou, S.A.; Kavallieratos, N.G.; Palyvos, N.E.; Buchelos, C.T.; Tomanović, S. Acaricidal effect of different diatomaceous earth formulations against Tyrophagus putrescentiae (Astigmata: Acaridae) on stored wheat. J. Econ. Entomol. 2010, 103, 190–196. [Google Scholar] [CrossRef]
- Mahmoud, R.H.; Abdel-Khalik, A.R.; Kassem, E.M. Efficacy of diatomaceous earth and sulfur on some mites under laboratory and semi–field conditions. Persian J. Acarol. 2024, 13, 829–839. [Google Scholar]
- Kılıç, N. Efficacy of dust and wettable powder formulation of diatomaceous earth (Detech®) in the control of Tyrophagus putrescentiae (Schrank) (Acari: Acaridae). Insects 2022, 13, 857. [Google Scholar] [CrossRef] [PubMed]
- Adarkwah, C.; Adjei, R.R.; Anankware, J.P.; Obeng-Ofori, D.; Ulrichs, C.; Schöller, M. Bio-insecticidal effectiveness of three formulations of diatomaceous earths against Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) in stored cowpea. J. Plant Dis. Prot. 2021, 128, 809–817. [Google Scholar] [CrossRef]
- Adarkwah, C.; Tuda, M.; Adjei, R.R.; Obeng-Ofori, D.; Ulrichs, C.; Schöller, M. Evaluation of three German enhanced diatomaceous earth formulations for the management of two major storage pests in Ghana. J. Stored Prod. Res. 2022, 96, 101947. [Google Scholar] [CrossRef]
- Mewis, I.; Ulrichs, C. Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum (Coleoptera: Tenebrionidae), Tenebrio molitor (Coleoptera: Tenebrionidae), Sitophilus granarius (Coleoptera: Curculionidae) and Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [PubMed]
- Kosini, D.; Adamou, M.; Tchindebe, G.; Goudoungou, J.W.; Fotso, T.G.; Moukhtar, M.; Nukenine, E.N. Insecticidal potential of diatomaceous earth against Callosobruchus maculatus (Coleoptera: Chrysomelidae) infesting stored cowpea, Bambara groundnut and soybean in the Sudano-Guinean climatic conditions of Cameroon. J. Stored Prod. Res. 2025, 111, 102533. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Boukouvala, M.C.; Rumbos, C.I. Acaricidal effect of three zeolite formulations on different life stages of Tyrophagus putrescentiae (Schrank) and Acarus siro L. (Sarcoptiformes: Acaridae). J. Stored Prod. Res. 2018, 78, 39–44. [Google Scholar] [CrossRef]
- Hughes, A.M. The Mites of Stored Food and Houses; Technical Bulletin 9; Her Majesty’s Stationery Office: London, UK, 1976. [Google Scholar]
- Kavallieratos, N.G.; Athanassiou, C.G.; Arthur, F.H.; Throne, J.E. Lesser grain borers, Rhyzopertha dominica, select rough rice kernels with cracked hulls for reproduction. J. Insect Sci. 2012, 12, 38. [Google Scholar] [CrossRef]
- Pixton, S.W. Moisture content-its significance and measurement in stored products. J. Stored Prod. Res. 1967, 3, 35–47. [Google Scholar] [CrossRef]
- Pixton, S.W.; Warburton, S. Moisture content/relative humidity equilibrium of some cereal grains at different temperatures. J. Stored Prod. Res. 1971, 6, 283–293. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Sall, J.; Lehman, A.; Creighton, L. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP and JMP IN Software; Duxbury Press: Belmont, CA, USA, 2001. [Google Scholar]
- SAS Institute Inc. Using JMP 16.2; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Losic, D.; Korunic, Z. Diatomaceous earth, a natural insecticide for stored grain protection: Recent progress and perspectives. In Diatom Nanotechnology: Progress and Emerging Applications; Losic, D., Ed.; The Royal Society of Chemistry: London, UK, 2018; pp. 219–247. [Google Scholar]
- Korunić, Z.; Rozman, V.; Halamić, J.; Kalinović, I.; Hamel, D. Insecticide potential of diatomaceous earth from Croatia. IOBC-WPRS Bull. 2011, 69, 389–397. [Google Scholar]
- Korunić, Z. Overview of undesirable effects of using diatomaceous earths for direct mixing with grains. Pestic. Fitomed. 2016, 31, 9–18. [Google Scholar] [CrossRef]
- Palyvos, N.E.; Athanassiou, C.G.; Kavallieratos, N.G. Acaricidal effect of a diatomaceous earth formulation against Tyrophagus putrescentiae (Astigmata: Acaridae) and its predator Cheyletus malaccensis (Prostigmata: Cheyletidae) in four grain commodities. J. Econ. Entomol. 2006, 99, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.A.; Cook, D.A. Laboratory studies evaluating the efficacy of diatomaceous earths, on treated surfaces, against stored-product insect and mite pests. J. Stored Prod. Res. 2006, 42, 51–60. [Google Scholar] [CrossRef]
- Cook, D.A.; Armitage, D.M. Efficacy of a diatomaceous earth against mite and insect populations in small beans of wheat under conditions of low temperature and high humidity. Pest Manag. Sci. 2000, 56, 591–596. [Google Scholar] [CrossRef]
- Nesvorna, M.; Hubert, J. Effect of diatomaceous earth-treated wheat on population growth of stored product mites under laboratory test. Int. J. Acarol. 2014, 40, 269–273. [Google Scholar] [CrossRef]
- Sánchez-Ramos, I.; Castañera, P. Development and survival of Tyrophagus putrescentiae (Acari: Acaridae) at constant temperatures. Environ. Entomol. 2001, 30, 1082–1089. [Google Scholar] [CrossRef]
- Hubert, J.; Pekár, S.; Aulický, R.; Nesvorná, M.; Stejskal, V. The effect of stored barley cultivars, temperature and humidity on population increase of Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae. Exp. Appl. Acarol. 2013, 60, 241–252. [Google Scholar] [CrossRef]
- Gebregergis, Z.; Baraki, F.; Fiseseha, D. Effects of environmental factors and storage periods on sesame seed quality and longevity. CAB Agric. Biosci. 2024, 5, 47. [Google Scholar] [CrossRef]
- Jian, F.; Jayas, D.S. The ecosystem approach to grain storage. Agric. Res. 2012, 1, 146–148. [Google Scholar] [CrossRef]
- Edde, P.A.; Eaton, M.; Kells, S.A.; Phillips, T.W. Biology, behavior, and ecology of pests in other durable commodities. In Stored Product Protection; Hagstrum, D.W., Phillips, T.W., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 45–62. [Google Scholar]
Source | A. siro | T. putrescentiae | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Larvae | Nymphs | Adults | Larvae | Nymphs | Adults | ||||||||
df | F | p | F | p | F | p | F | p | F | p | F | p | |
All between | |||||||||||||
Intercept | 1 | 39,950.4 | <0.01 | 21,886.7 | <0.01 | 16,451.4 | <0.01 | 70,870.4 | <0.01 | 30,232.1 | <0.01 | 28,633.6 | <0.01 |
DE formulation | 1 | 3.9 | 0.06 | 4.4 | 0.04 | 1.4 | 0.25 | 5.4 | 0.03 | 3.4 | 0.08 | 6.2 | 0.02 |
Dose | 1 | 17.6 | 0.01 | 13.9 | 0.01 | 17.8 | 0.01 | 24.3 | <0.01 | 24.7 | <0.01 | 34.9 | <0.01 |
DE formulation × dose | 1 | 0.1 | 0.88 | 0.1 | 0.87 | 0.2 | 0.65 | 0.1 | 0.95 | 0.1 | 0.95 | 0.1 | 0.72 |
Within interactions | |||||||||||||
Exposure | 2 | 483.7 | <0.01 | 602.2 | <0.01 | 579.8 | <0.01 | 808.9 | <0.01 | 1186.2 | <0.01 | 592.8 | <0.01 |
Exposure × DE formulation | 2 | 1.3 | 0.28 | 2.0 | 0.15 | 0.8 | 0.47 | 1.7 | 0.20 | 2.8 | 0.08 | 1.0 | 0.39 |
Exposure × dose | 2 | 7.9 | 0.01 | 4.1 | 0.03 | 4.3 | 0.02 | 12.4 | 0.01 | 6.8 | 0.01 | 8.0 | 0.01 |
Exposure × DE formulation × dose | 2 | 0.1 | 0.91 | 2.2 | 0.12 | 3.2 | 0.06 | 0.8 | 0.45 | 1.3 | 0.29 | 1.1 | 0.34 |
Stage | Larvae | Nymphs | Adults | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 200 ppm | 500 ppm | 200 ppm | 500 ppm | 200 ppm | 500 ppm | |||||||
DE | Exposure | t | p | t | p | t | p | ||||||
InsectoSec | 1 day | 25.2 ± 2.2 c | 32.6 ± 1.3 c * | 2.7 | 0.02 | 21.5 ± 1.5 c | 27.4 ± 1.7 c * | 2.5 | 0.02 | 16.3 ± 1.6 c | 25.9 ± 2.8 c * | 2.8 | 0.01 |
2 days | 52.6 ± 2.1 b | 64.4 ± 1.1 b * | 4.6 | 0.01 | 47.4 ± 2.1 b | 58.5 ± 2.4 b * | 3.4 | 0.01 | 42.2 ± 2.2 b | 54.8 ± 3.8 b * | 2.7 | 0.01 | |
5 days | 96.3 ± 2.3 a | 100.0 ± 0.0 a | 1.6 | 0.13 | 84.4 ± 2.5 a | 99.3 ± 0.7 a * | 5.4 | <0.01 | 81.5 ± 2.4 a | 95.6 ± 2.2 a * | 4.2 | 0.01 | |
Fossil Shield | 1 days | 22.2 ± 2.2 c | 27.4 ± 2.1 c | 1.5 | 0.14 | 18.5 ± 2.2 c | 22.2 ± 2.2 c | 1.2 | 0.27 | 15.6 ± 1.6 c | 20.7 ± 2.1 c | 2.0 | 0.06 |
2 days | 49.6 ± 1.6 b | 61.5 ± 3.1 b * | 3.2 | 0.01 | 42.2 ± 2.2 b | 56.3 ± 3.7 b * | 3.0 | 0.01 | 39.3 ± 2.1 b | 53.3 ± 3.7 b * | 3.3 | 0.01 | |
5 days | 93.3 ± 1.6 a | 99.3 ± 0.7 a * | 3.4 | 0.01 | 83.7 ± 3.5 a | 92.6 ± 2.6 a | 2.2 | 0.06 | 80.7 ± 3.4 a | 89.6 ± 2.3 a * | 2.1 | 0.05 | |
F | 98.2 | 135.6 | 102.0 | 97.1 | 141.6 | 65.5 | |||||||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Stage | Larvae | Nymphs | Adults | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 200 ppm | 500 ppm | 200 ppm | 500 ppm | 200 ppm | 500 ppm | |||||||
DE | Exposure | t | p | t | p | t | p | ||||||
InsectoSec | 1 day | 26.7 ± 1.8 c | 34.8 ± 1.5 c * | 3.7 | 0.01 | 23.7 ± 2.5 c | 31.1 ± 1.1 c * | 2.6 | 0.02 | 18.5 ± 1.0 c | 28.9 ± 2.0 c * | 3.3 | 0.01 |
2 days | 55.6 ± 1.1 b | 66.7 ± 2.2 b * | 4.7 | 0.01 | 50.4 ± 3.5 b | 62.2 ± 1.1 b * | 3.2 | 0.01 | 45.2 ± 1.5 b | 60.0 ± 2.2 b * | 5.5 | <0.01 | |
5 days | 100.0 ± 0.0 a | 100.0 ± 0.0 a | - | - | 86.7 ± 4.3 a | 100 ± 0.0 a * | 3.0 | 0.01 | 83.7 ± 1.6 a | 100.0 ± 0.0 a * | 9.0 | <0.01 | |
Fossil Shield | 1 day | 24.4 ± 1.9 c | 29.6 ± 1.6 c | 2.1 | 0.06 | 20.7 ± 1.7 b | 25.9 ± 0.7 d * | 2.6 | 0.02 | 16.3 ± 2.0 c | 23.0 ± 2.0 c * | 2.2 | 0.04 |
2 days | 51.1 ± 2.5 b | 63.7 ± 2.3 b * | 3.6 | 0.01 | 44.4 ± 2.2 c | 59.3 ± 2.1 b * | 4.9 | 0.01 | 40.7 ± 1.7 b | 55.6 ± 2.7 b * | 4.5 | 0.01 | |
5 days | 97.0 ± 1.2 a | 100.0 ± 0.0 a * | 2.5 | 0.02 | 84.4 ± 1.9 a | 97.0 ± 1.2 a * | 5.4 | <0.01 | 82.2 ± 1.9 a | 91.1 ± 2.2 a * | 3.0 | 0.01 | |
F | 159.7 | 243.0 | 75.1 | 480.9 | 131.9 | 84.7 | |||||||
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukouvala, M.C.; Filintas, C.S.; Kavallieratos, N.G. Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank). Insects 2025, 16, 693. https://doi.org/10.3390/insects16070693
Boukouvala MC, Filintas CS, Kavallieratos NG. Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank). Insects. 2025; 16(7):693. https://doi.org/10.3390/insects16070693
Chicago/Turabian StyleBoukouvala, Maria C., Constantin S. Filintas, and Nickolas G. Kavallieratos. 2025. "Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank)" Insects 16, no. 7: 693. https://doi.org/10.3390/insects16070693
APA StyleBoukouvala, M. C., Filintas, C. S., & Kavallieratos, N. G. (2025). Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank). Insects, 16(7), 693. https://doi.org/10.3390/insects16070693