Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (756)

Search Parameters:
Keywords = EMS approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

14 pages, 1728 KiB  
Article
Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping
by Jorge Davalos-Guzman, Jose L. Chavez-Hurtado and Zabdiel Brito-Brito
Electronics 2025, 14(15), 3097; https://doi.org/10.3390/electronics14153097 - 3 Aug 2025
Viewed by 66
Abstract
The optimization of high-frequency circuits remains a computationally intensive task due to the need for repeated high-fidelity electromagnetic (EM) simulations. To address this challenge, we propose a novel integration of machine learning-generated inverse maps within the space mapping (SM) optimization framework to significantly [...] Read more.
The optimization of high-frequency circuits remains a computationally intensive task due to the need for repeated high-fidelity electromagnetic (EM) simulations. To address this challenge, we propose a novel integration of machine learning-generated inverse maps within the space mapping (SM) optimization framework to significantly accelerate circuit optimization while maintaining high accuracy. The proposed approach leverages Bayesian Neural Networks (BNNs) and surrogate modeling techniques to construct an inverse mapping function that directly predicts design parameters from target performance metrics, bypassing iterative forward simulations. The methodology was validated using a low-pass filter optimization scenario, where the inverse surrogate model was trained using electromagnetic simulations from COMSOL Multiphysics 2024 r6.3 and optimized using MATLAB R2024b r24.2 trust region algorithm. Experimental results demonstrate that our approach reduces the number of high-fidelity simulations by over 80% compared to conventional SM techniques while achieving high accuracy with a mean absolute error (MAE) of 0.0262 (0.47%). Additionally, convergence efficiency was significantly improved, with the inverse surrogate model requiring only 31 coarse model simulations, compared to 580 in traditional SM. These findings demonstrate that machine learning-driven inverse surrogate modeling significantly reduces computational overhead, accelerates optimization, and enhances the accuracy of high-frequency circuit design. This approach offers a promising alternative to traditional SM methods, paving the way for more efficient RF and microwave circuit design workflows. Full article
(This article belongs to the Special Issue Advances in Algorithm Optimization and Computational Intelligence)
Show Figures

Figure 1

17 pages, 451 KiB  
Article
Semiparametric Transformation Models with a Change Point for Interval-Censored Failure Time Data
by Junyao Ren, Shishun Zhao, Dianliang Deng, Tianshu You and Hui Huang
Mathematics 2025, 13(15), 2489; https://doi.org/10.3390/math13152489 - 2 Aug 2025
Viewed by 94
Abstract
Change point models are widely used in medical and epidemiological studies to capture the threshold effects of continuous covariates on health outcomes. These threshold effects represent critical points at which the relationship between biomarkers or risk factors and disease risk shifts, often reflecting [...] Read more.
Change point models are widely used in medical and epidemiological studies to capture the threshold effects of continuous covariates on health outcomes. These threshold effects represent critical points at which the relationship between biomarkers or risk factors and disease risk shifts, often reflecting underlying biological mechanisms or clinically relevant intervention points. While most existing methods focus on right-censored data, interval censoring is common in large-scale clinical trials and follow-up studies, where the exact event times are not observed but are known to fall within time intervals. In this paper, we propose a semiparametric transformation model with an unknown change point for interval-censored data. The model allows flexible transformation functions, including the proportional hazards and proportional odds models, and it accommodates both main effects and their interactions with the threshold variable. Model parameters are estimated via the EM algorithm, with the change point identified through a profile likelihood approach using grid search. We establish the asymptotic properties of the proposed estimators and evaluate their finite-sample performance through extensive simulations, showing good accuracy and coverage properties. The method is further illustrated through an application to the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial data. Full article
(This article belongs to the Special Issue Statistics: Theories and Applications)
Show Figures

Figure 1

38 pages, 1465 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 - 1 Aug 2025
Viewed by 223
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

30 pages, 12776 KiB  
Article
Multi-Source Data Integration for Sustainable Management Zone Delineation in Precision Agriculture
by Dušan Jovanović, Miro Govedarica, Milan Gavrilović, Ranko Čabilovski and Tamme van der Wal
Sustainability 2025, 17(15), 6931; https://doi.org/10.3390/su17156931 - 30 Jul 2025
Viewed by 193
Abstract
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, [...] Read more.
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, humus, P2O5, K2O, nitrogen), and vegetation/surface indices (NDVI, SAVI, LCI, BSI) derived from Sentinel-2 imagery. Using kriging, fuzzy k-means clustering, percentile-based classification, and Weighted Overlay Analysis (WOA), MZs were generated for a five-year period (2018–2022), with 2–8 zone classes. Stability and agreement were assessed using the Cohen Kappa, Jaccard, and Dice coefficients on systematic grid samples. Results showed that EM38-MK2 and humus-weighted BSP data produced the most consistent zones (Kappa > 0.90). Sentinel-2 indices demonstrated strong alignment with subsurface data (r > 0.85), offering a low-cost alternative in data-scarce settings. Optimal zoning was achieved with 3–4 classes, balancing spatial coherence and interpretability. These findings underscore the importance of multi-source data integration for robust and scalable MZ delineation and offer actionable guidelines for both data-rich and resource-limited farming systems. This approach promotes sustainable agriculture by improving input efficiency and allowing for targeted, site-specific field management. Full article
Show Figures

Figure 1

17 pages, 440 KiB  
Review
Diagnosis and Management of Upper Tract Urothelial Carcinoma: A Review
by Domenique Escobar, Christopher Wang, Noah Suboc, Anishka D’Souza and Varsha Tulpule
Cancers 2025, 17(15), 2467; https://doi.org/10.3390/cancers17152467 - 25 Jul 2025
Viewed by 447
Abstract
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable [...] Read more.
Background/Objectives: Upper tract urothelial carcinoma (UTUC) is a rare and biologically distinct subset of urothelial malignancies, comprising approximately 5–10% of urothelial cancers. UTUC presents unique diagnostic and therapeutic challenges, with both a higher likelihood of invasive disease at presentation and a less favorable prognosis compared to urothelial carcinoma of the bladder. Current treatment strategies for UTUC are largely derived from bladder cancer studies, underscoring the need for UTUC-directed research. This review provides a comprehensive overview of UTUC, encompassing diagnostic approaches, systemic and intraluminal therapies, surgical management, and future directions. Methods: A narrative review was conducted synthesizing evidence from guideline-based recommendations, retrospective and prospective clinical studies, and ongoing trials focused on UTUC. Results: Neoadjuvant cisplatin-based chemotherapy is increasingly preferred in UTUC due to the risk of postoperative renal impairment that may preclude adjuvant cisplatin use. Surgical management includes kidney-sparing approaches and radical nephroureterectomy (RNU), with selection guided by tumor risk and patient comorbidities. While endoscopic management (EM) preserves renal function, it carries a higher recurrence and surveillance burden; RNU remains standard for high-risk cases. Systemic therapy for advanced and metastatic UTUC mirrors that of bladder urothelial carcinoma. Enfortumab vedotin (EV) plus pembrolizumab showed superior efficacy over chemotherapy in the EV-302 trial, with improved response rate, progression-free survival, and overall survival across subgroups, including UTUC. For patients ineligible for EV, the CheckMate-901 study supported first-line chemoimmunotherapy with gemcitabine, cisplatin, and nivolumab. Further systemic therapy strategies include maintenance avelumab post-chemotherapy (JAVELIN Bladder 100), targeted therapies such as erdafitinib (THOR trial), and trastuzumab deruxtecan (DESTINY-PanTumor02) in FGFR2/3-altered and HER2-positive disease, respectively. Conclusions: Historically, the therapeutic landscape of UTUC has been extrapolated from bladder cancer; however, ongoing research specific to UTUC is deriving more precise regimens involving the use of immune checkpoint inhibitors, antibody–drug conjugates, and biomarker-driven therapies. Full article
(This article belongs to the Special Issue Upper Tract Urothelial Carcinoma: Current Knowledge and Perspectives)
Show Figures

Figure 1

31 pages, 2271 KiB  
Article
Research on the Design of a Priority-Based Multi-Stage Emergency Material Scheduling System for Drone Coordination
by Shuoshuo Gong, Gang Chen and Zhiwei Yang
Drones 2025, 9(8), 524; https://doi.org/10.3390/drones9080524 - 25 Jul 2025
Viewed by 315
Abstract
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices [...] Read more.
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices often suffer from uneven resource distribution. To address these issues, this paper proposes a priority-based, multi-stage EMS approach with drone coordination. First, we construct a three-level EMS network “storage warehouses–transit centers–disaster areas” by integrating the advantages of large-scale transportation via trains and the flexible delivery capabilities of drones. Second, considering multiple constraints, such as the priority level of disaster areas, drone flight range, transport capacity, and inventory capacities at each node, we formulate a bilevel mixed-integer nonlinear programming model. Third, given the NP-hard nature of the problem, we design a hybrid algorithm—the Tabu Genetic Algorithm combined with Branch and Bound (TGA-BB), which integrates the global search capability of genetic algorithms, the precise solution mechanism of branch and bound, and the local search avoidance features of Tabu search. A stage-adjustment operator is also introduced to better adapt the algorithm to multi-stage scheduling requirements. Finally, we designed eight instances of varying scales to systematically evaluate the performance of the stage-adjustment operator and the Tabu search mechanism within TGA-BB. Comparative experiments were conducted against several traditional heuristic algorithms. The experimental results show that TGA-BB outperformed the other algorithms across all eight test cases, in terms of both average response time and average runtime. Specifically, in Instance 7, TGA-BB reduced the average response time by approximately 52.37% compared to TGA-Particle Swarm Optimization (TGA-PSO), and in Instance 2, it shortened the average runtime by about 97.95% compared to TGA-Simulated Annealing (TGA-SA).These results fully validate the superior solution accuracy and computational efficiency of TGA-BB in drone-coordinated, multi-stage EMS. Full article
Show Figures

Figure 1

37 pages, 8221 KiB  
Review
Epigenetic Profiling of Cell-Free DNA in Cerebrospinal Fluid: A Novel Biomarker Approach for Metabolic Brain Diseases
by Kyle Sporn, Rahul Kumar, Kiran Marla, Puja Ravi, Swapna Vaja, Phani Paladugu, Nasif Zaman and Alireza Tavakkoli
Life 2025, 15(8), 1181; https://doi.org/10.3390/life15081181 - 25 Jul 2025
Viewed by 495
Abstract
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free [...] Read more.
Due to their clinical heterogeneity, nonspecific symptoms, and the limitations of existing biomarkers and imaging modalities, metabolic brain diseases (MBDs), such as mitochondrial encephalopathies, lysosomal storage disorders, and glucose metabolism syndromes, pose significant diagnostic challenges. This review examines the growing potential of cell-free DNA (cfDNA) derived from cerebrospinal fluid (CSF) epigenetic profiling as a dynamic, cell-type-specific, minimally invasive biomarker approach for MBD diagnosis and monitoring. We review important technological platforms and their use in identifying CNS-specific DNA methylation patterns indicative of neuronal injury, neuroinflammation, and metabolic reprogramming, including cfMeDIP-seq, enzymatic methyl sequencing (EM-seq), and targeted bisulfite sequencing. By synthesizing current findings across disorders such as MELAS, Niemann–Pick disease, Gaucher disease, GLUT1 deficiency syndrome, and diabetes-associated cognitive decline, we highlight the superior diagnostic and prognostic resolution offered by CSF cfDNA methylation signatures relative to conventional CSF markers or neuroimaging. We also address technical limitations, interpretive challenges, and translational barriers to clinical implementation. Ultimately, this review explores CSF cfDNA epigenetic analysis as a liquid biopsy modality. The central objective is to assess whether epigenetic profiling of CSF-derived cfDNA can serve as a reliable and clinically actionable biomarker for improving the diagnosis and longitudinal monitoring of metabolic brain diseases. Full article
(This article belongs to the Special Issue Cell-Free DNA as a Biomarker in Metabolic Diseases)
Show Figures

Figure 1

53 pages, 1950 KiB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Viewed by 308
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 7720 KiB  
Article
Comparative Evaluation of Nonparametric Density Estimators for Gaussian Mixture Models with Clustering Support
by Tomas Ruzgas, Gintaras Stankevičius, Birutė Narijauskaitė and Jurgita Arnastauskaitė Zencevičienė
Axioms 2025, 14(8), 551; https://doi.org/10.3390/axioms14080551 - 23 Jul 2025
Viewed by 171
Abstract
The article investigates the accuracy of nonparametric univariate density estimation methods applied to various Gaussian mixture models. A comprehensive comparative analysis is performed for four popular estimation approaches: adaptive kernel density estimation, projection pursuit, log-spline estimation, and wavelet-based estimation. The study is extended [...] Read more.
The article investigates the accuracy of nonparametric univariate density estimation methods applied to various Gaussian mixture models. A comprehensive comparative analysis is performed for four popular estimation approaches: adaptive kernel density estimation, projection pursuit, log-spline estimation, and wavelet-based estimation. The study is extended with modified versions of these methods, where the sample is first clustered using the EM algorithm based on Gaussian mixture components prior to density estimation. Estimation accuracy is quantitatively evaluated using MAE and MAPE criteria, with simulation experiments conducted over 100,000 replications for various sample sizes. The results show that estimation accuracy strongly depends on the density structure, sample size, and degree of component overlap. Clustering before density estimation significantly improves accuracy for multimodal and asymmetric densities. Although no formal statistical tests are conducted, the performance improvement is validated through non-overlapping confidence intervals obtained from 100,000 simulation replications. In addition, several decision-making systems are compared for automatically selecting the most appropriate estimation method based on the sample’s statistical features. Among the tested systems, kernel discriminant analysis yielded the lowest error rates, while neural networks and hybrid methods showed competitive but more variable performance depending on the evaluation criterion. The findings highlight the importance of using structurally adaptive estimators and automation of method selection in nonparametric statistics. The article concludes with recommendations for method selection based on sample characteristics and outlines future research directions, including extensions to multivariate settings and real-time decision-making systems. Full article
Show Figures

Figure 1

16 pages, 1486 KiB  
Article
A New Method of Remaining Useful Lifetime Estimation for a Degradation Process with Random Jumps
by Yue Zhuo, Lei Feng, Jianxun Zhang, Xiaosheng Si and Zhengxin Zhang
Sensors 2025, 25(15), 4534; https://doi.org/10.3390/s25154534 - 22 Jul 2025
Viewed by 247
Abstract
With the deepening of degradation, the stability and reliability of the degrading system usually becomes poor, which may lead to random jumps occurring in the degradation path. A non-homogeneous jump diffusion process model is introduced to more accurately capture this type of degradation. [...] Read more.
With the deepening of degradation, the stability and reliability of the degrading system usually becomes poor, which may lead to random jumps occurring in the degradation path. A non-homogeneous jump diffusion process model is introduced to more accurately capture this type of degradation. In this paper, the proposed degradation model is translated into a state–space model, and then the Monte Carlo simulation of the state dynamic model based on particle filtering is employed for predicting the degradation evolution and estimating the remaining useful life (RUL). In addition, a general model identification approach is presented based on maximization likelihood estimation (MLE), and an iterative model identification approach is provided based on the expectation maximization (EM) algorithm. Finally, the practical value and effectiveness of the proposed method are validated using real-world degradation data from temperature sensors on a blast furnace wall. The results demonstrate that our approach provides a more accurate and robust RUL estimation compared to CNN and LSTM methods, offering a significant contribution to enhancing predictive maintenance strategies and operational safety for systems with complex, non-monotonic degradation patterns. Full article
Show Figures

Figure 1

12 pages, 219 KiB  
Article
Eye Movements During Pareidolia: Exploring Biomarkers for Thinking and Perception Problems on the Rorschach
by Mellisa Boyle, Barry Dauphin, Harold H. Greene, Mindee Juve and Ellen Day-Suba
J. Eye Mov. Res. 2025, 18(4), 32; https://doi.org/10.3390/jemr18040032 - 22 Jul 2025
Viewed by 632
Abstract
Eye movements (EMs) offer valuable insights into cognitive and perceptual processes, serving as potential biomarkers for disordered thinking. This study explores the relationship between EM indices and perception and thinking problems in the Rorschach Performance Assessment System (R-PAS). Sixty non-clinical participants underwent eye-tracking [...] Read more.
Eye movements (EMs) offer valuable insights into cognitive and perceptual processes, serving as potential biomarkers for disordered thinking. This study explores the relationship between EM indices and perception and thinking problems in the Rorschach Performance Assessment System (R-PAS). Sixty non-clinical participants underwent eye-tracking while completing the Rorschach test, focusing on variables from the Perception and Thinking Problems Domain (e.g., WSumCog, SevCog, FQo%). The results reveal that increased cognitive disturbances were associated with greater exploratory activity but reduced processing efficiency. Regression analyses highlighted the strong predictive role of cognitive variables (e.g., WSumCog) over perceptual ones (e.g., FQo%). Minimal overlap was observed between performance-based (R-PAS) and self-report measures (BSI), underscoring the need for multi-method approaches. The findings suggest that EM patterns could serve as biomarkers for early detection and intervention, offering a foundation for future research on psychotic-spectrum processes in clinical and non-clinical populations. Full article
Show Figures

Graphical abstract

27 pages, 3019 KiB  
Article
New Deep Learning-Based Approach for Source Code Generation: Application to Computer Vision Systems
by Wafa Alshehri, Salma Kammoun Jarraya and Arwa Allinjawi
AI 2025, 6(7), 162; https://doi.org/10.3390/ai6070162 - 21 Jul 2025
Viewed by 499
Abstract
Deep learning has enabled significant progress in source code generation, aiming to reduce the manual, error-prone, and time-consuming aspects of software development. While many existing models rely on recurrent neural networks (RNNs) with sequence-to-sequence architectures, these approaches struggle with the long and complex [...] Read more.
Deep learning has enabled significant progress in source code generation, aiming to reduce the manual, error-prone, and time-consuming aspects of software development. While many existing models rely on recurrent neural networks (RNNs) with sequence-to-sequence architectures, these approaches struggle with the long and complex token sequences typical in source code. To address this, we propose a grammar-based convolutional neural network (CNN) combined with a tree-based representation to enhance accuracy and efficiency. Our model achieves state-of-the-art results on the benchmark HEARTHSTONE dataset, with a BLEU score of 81.4 and an Acc+ of 62.1%. We further evaluate the model on our proposed dataset, AST2CVCode, designed for computer vision applications, achieving 86.2 BLEU and 51.9% EM. Additionally, we introduce BLEU+, an enhanced evaluation metric tailored for functional correctness in code generation, which achieves a BLEU+ score of 92.0% on the AST2CVCode dataset. These results demonstrate the effectiveness of our approach in both model architecture and evaluation methodology. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

19 pages, 3497 KiB  
Article
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
by Ioanna Karatsi, Sofia Bakogianni and Stavros Koulouridis
Telecom 2025, 6(3), 52; https://doi.org/10.3390/telecom6030052 - 16 Jul 2025
Viewed by 445
Abstract
This study presents an in-depth dosimetry analysis of energy assimilation from EM waves and increase in the temperature during mobile phone usage within an elevator cabin. The cellphone operates at two different frequencies (1000 MHz and 1800 MHz) and is simulated at three [...] Read more.
This study presents an in-depth dosimetry analysis of energy assimilation from EM waves and increase in the temperature during mobile phone usage within an elevator cabin. The cellphone operates at two different frequencies (1000 MHz and 1800 MHz) and is simulated at three different talk positions vertical, tilt, and cheek. Realistic numerical models of a woman in the third trimester of pregnancy and a girl at the age of 5 years are employed. The analysis highlights the necessity of a comprehensive approach to fully grasp the complexities of EM exposure. Full article
Show Figures

Figure 1

20 pages, 774 KiB  
Article
Robust Variable Selection via Bayesian LASSO-Composite Quantile Regression with Empirical Likelihood: A Hybrid Sampling Approach
by Ruisi Nan, Jingwei Wang, Hanfang Li and Youxi Luo
Mathematics 2025, 13(14), 2287; https://doi.org/10.3390/math13142287 - 16 Jul 2025
Viewed by 312
Abstract
Since the advent of composite quantile regression (CQR), its inherent robustness has established it as a pivotal methodology for high-dimensional data analysis. High-dimensional outlier contamination refers to data scenarios where the number of observed dimensions (p) is much greater than the [...] Read more.
Since the advent of composite quantile regression (CQR), its inherent robustness has established it as a pivotal methodology for high-dimensional data analysis. High-dimensional outlier contamination refers to data scenarios where the number of observed dimensions (p) is much greater than the sample size (n) and there are extreme outliers in the response variables or covariates (e.g., p/n > 0.1). Traditional penalized regression techniques, however, exhibit notable vulnerability to data outliers during high-dimensional variable selection, often leading to biased parameter estimates and compromised resilience. To address this critical limitation, we propose a novel empirical likelihood (EL)-based variable selection framework that integrates a Bayesian LASSO penalty within the composite quantile regression framework. By constructing a hybrid sampling mechanism that incorporates the Expectation–Maximization (EM) algorithm and Metropolis–Hastings (M-H) algorithm within the Gibbs sampling scheme, this approach effectively tackles variable selection in high-dimensional settings with outlier contamination. This innovative design enables simultaneous optimization of regression coefficients and penalty parameters, circumventing the need for ad hoc selection of optimal penalty parameters—a long-standing challenge in conventional LASSO estimation. Moreover, the proposed method imposes no restrictive assumptions on the distribution of random errors in the model. Through Monte Carlo simulations under outlier interference and empirical analysis of two U.S. house price datasets, we demonstrate that the new approach significantly enhances variable selection accuracy, reduces estimation bias for key regression coefficients, and exhibits robust resistance to data outlier contamination. Full article
Show Figures

Figure 1

Back to TopTop