Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping
Abstract
1. Introduction
1.1. Limitations of Traditional Space Mapping
1.2. Emergence of Machine Learning for High-Frequency Circuit Optimization
1.3. Innovation: Machine Learning-Driven Inverse Surrogate Models
1.4. Recent Advancements in AI/ML for RF and Microwave Design
1.5. Contributions and Paper Organization
2. Inverse Surrogate Model Generation and Performance Analysis
2.1. Structure Under Study
2.2. Training Data Generation and Surrogate Modeling
2.3. Mathematical Formulation of the Inverse Model and Optimization Process
2.3.1. Electromagnetic Modeling
- f ∈ [0, 10] GHz is the operating frequency;
- L, W, and S represent the stub length, the width of the center strip, and the coupling gap, respectively.
2.3.2. Inverse Modeling Using Bayesian Neural Networks
2.3.3. Accuracy Metrics
- Mean absolute error (MAE):
- Maximum Absolute Relative Error (MARE):
- Root Mean Squared Error (RMSE):
- Coefficient of determination (R2):
2.3.4. Optimization Strategy
3. Enhanced Convergence Analysis: A Comparative Study of Traditional Space Mapping vs. Inverse Surrogate Modeling
Sensitivity to the Number of Training Samples
4. Comparison of Results
4.1. Accuracy and Convergence Analysis
4.2. Optimization Parameter Evolution
4.3. Computational Efficiency and Burden Reduction
4.4. Comparative Discussion
5. Conclusions
Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pietrenko-Dąbrowska, A.; Koziel, S.; Raef, A.G. Reduced-Cost Optimization-Based Miniaturization of Microwave Passives by Multi-Resolution EM Simulations for Internet of Things and Space-Limited Applications. Electronics 2022, 11, 4094. [Google Scholar] [CrossRef]
- Pissoort, D. Bayesian Optimization for Microwave Devices Using Deep Gaussian Processes. IEEE Trans. Microw. Theory Tech. 2023, 71, 2396–2408. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, M.; Wang, J.; Zhang, Y. AI-Driven Multiobjective Optimization of Antennas Using Surrogate Models and Multi-Fidelity EM Analysis. Sci. Rep. 2025, 15, 21776. [Google Scholar] [CrossRef]
- Bandler, J.W.; Biernacki, R.M.; Chen, S.H.; Grobelny, P.A.; Hemmers, R.H. Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. 1994, 42, 2536–2544. [Google Scholar] [CrossRef]
- Nguyen, T.; Lu, L.; Tanaka, M. Global Parameter Tuning of Microwave Filters via AI-Driven Optimization and EM Co-Simulation. Sci. Rep. 2025, 15, 21776. [Google Scholar] [CrossRef]
- Bakr, M.H.; Bandler, J.W.; Georgieva, N.; Madsen, K. A hybrid aggressive space-mapping algorithm for EM optimization. IEEE Trans. Microw. Theory Tech. 1999, 47, 2440–2449. [Google Scholar] [CrossRef]
- Simpson, T.W.; Peplinski, J.; Koch, P.N.; Allen, J.K. Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 2001, 17, 129–150. [Google Scholar] [CrossRef]
- Queipo, N.V.; Haftka, R.T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P.K. Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 2005, 41, 1–28. [Google Scholar] [CrossRef]
- Bandler, J.W.; Cheng, Q.S.; Dakroury, S.A.; Mohamed, A.S.; Bakr, M.H.; Madsen, K.; Sondergaard, J. Space mapping: The state of the art. IEEE Trans. Microw. Theory Tech. 2004, 52, 337–361. [Google Scholar] [CrossRef]
- Koziel, S.; Bandler, J.W.; Madsen, K. Space mapping optimization algorithms for engineering design. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1601–1604. [Google Scholar] [CrossRef]
- Bandler, J.W.; Cheng, Q.S.; Nikolova, N.K.; Ismail, M.A. Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microw. Theory Tech. 2004, 52, 378–385. [Google Scholar] [CrossRef]
- Koziel, S.; Bandler, J.W. Space-Mapping Optimization With Adaptive Surrogate Model. IEEE Trans. Microw. Theory Tech. 2007, 55, 541–547. [Google Scholar] [CrossRef]
- Koziel, S.; Bandler, J.W.; Madsen, K. Enhanced surrogate models for statistical design exploiting space mapping technology. In Proceedings of the 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005; pp. 1609–1612. [Google Scholar] [CrossRef]
- Amari, S.; LeDrew, C.; Menzel, W. Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microw. Theory Tech. 2006, 54, 2153–2159. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, D.H.; Park, I.H.; Hahn, S.Y. A new design technique of magnetic systems using space mapping algorithm. IEEE Trans. Magn. 2001, 37, 3627–3630. [Google Scholar] [CrossRef]
- Redhe, M.; Nilsson, L. Using space mapping and surrogate models to optimize vehicle crashworthiness design. In Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA, USA, 2–6 September 2002. [Google Scholar] [CrossRef]
- Rayas-Sanchez, J.E.; Lara-Rojo, F.; Martinez-Guerrero, E. A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits. IEEE Trans. Microw. Theory Tech. 2005, 53, 960–968. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Yagoub, M.C.E.; Ding, R.; Zhang, Q.-J. Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans. Microw. Theory Tech. 2005, 53, 2752–2767. [Google Scholar] [CrossRef]
- Zhang, Q.-J.; Gupta, K.C.; Devabhaktuni, V.K. Artificial neural networks for RF and microwave design—from theory to practice. IEEE Trans. Microw. Theory Tech. 2003, 51, 1339–1350. [Google Scholar] [CrossRef]
- Rayas-Sanchez, J.E. EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art. IEEE Trans. Microw. Theory Tech. 2004, 52, 420–435. [Google Scholar] [CrossRef]
- Dávalos-Guzmán, J.; Chavez-Hurtado, J.L.; Brito-Brito, Z. Neural Network Learning Techniques Comparison for a Multiphysics Second Order Low-Pass Filter. In Proceedings of the 2023 IEEE MTT-S Latin America Microwave Conference (LAMC), San José, Costa Rica, 6–8 December 2023; pp. 102–104. [Google Scholar] [CrossRef]
- Rayas-Sanchez, J.E.; Lara-Rojo, F.; Martinez-Guerrero, E. A linear inverse space mapping algorithm for microwave design in the frequency and transient domains. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535), Fort Worth, TX, USA, 6–11 June 2004; Volume 3, pp. 1847–1850. [Google Scholar] [CrossRef]
- Koziel, S.; Yang, X.-S.; Zhang, Q.-J. Simulation-Driven Design Optimization and Modeling for Microwave Engineering; Imperial College Press: London, UK, 2013. [Google Scholar]
- Koziel, S.; Leifsson, L. Surrogate-Based Modeling and Optimization: Applications in Engineering, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Cheng, Q.S.; Liu, B.; Wang, Y.; Guo, C.; Ye, T.T. State-of-the-Art: AI-Assisted Surrogate Modeling and Optimization for Microwave Filters. IEEE Trans. Microw. Theory Tech. 2022, 70, 4635–4651. [Google Scholar] [CrossRef]
- Rayas-Sánchez, J.E.; Koziel, S.; Bandler, J.W. Advanced RF and Microwave Design Optimization: A Journey and a Vision of Future Trends. IEEE J. Microw. 2021, 1, 481–493. [Google Scholar] [CrossRef]
- Sharifuzzaman, S.A.S.M.; Tanveer, J.; Chen, Y.; Chan, J.H.; Kim, H.S.; Kallu, K.D.; Ahmed, S. Bayes R-CNN: An Uncertainty-Aware Bayesian Approach to Object Detection in Remote Sensing Imagery for Enhanced Scene Interpretation. Remote Sens. 2024, 16, 2405. [Google Scholar] [CrossRef]
- Browne, J. 2025’s Top Trends: Artificial Intelligence and Machine Learning Bring Smarts to RF Systems. Microwaves & RF, 26 November 2024. [Google Scholar]
- Liang, J.; Yu, Z.L.; Gu, Z.; Li, Y. Electromagnetic Source Imaging With a Combination of Sparse Bayesian Learning and Deep Neural Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 2338–2348. [Google Scholar] [CrossRef]
- Koziel, S.; Pietrenko-Dabrowska, A. Optimization of microwave components using machine learning and rapid sensitivity analysis. Sci. Rep. 2024, 14, 31265. [Google Scholar] [CrossRef]
- Davalos-Guzman, J.; Chavez-Hurtado, J.L.; Brito-Brito, Z. Integrative BNN-LHS Surrogate Modeling and Thermo-Mechanical-EM Analysis for Enhanced Characterization of High-Frequency Low-Pass Filters in COMSOL. Micromachines 2024, 15, 647. [Google Scholar] [CrossRef]
- Rayas-Sánchez, J.E.; Brito-Brito, Z.; Cervantes-González, J.C.; López, C.A. Systematic configuration of coarsely discretized 3D EM solvers for reliable and fast simulation of high-frequency planar structures. In Proceedings of the 2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Cusco, Peru, 27 February 2013; pp. 1–4. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar] [CrossRef]
- Dávalos-Guzmán, J.; Chavez-Hurtado, J.L.; Brito-Brito, Z.; Ortstein, K. Space Sampling Techniques Comparison for a Synthetic Low-Pass Filter Bayesian Neural Network. In Proceedings of the 2023 IEEE MTT-S Latin America Microwave Conference (LAMC), San José, Costa Rica, 6–8 December 2023; pp. 109–112. [Google Scholar] [CrossRef]
- De Witte, D.; Qing, J.; Couckuyt, I.; Dhaene, T.; Vande Ginste, D.; Spina, D. A Robust Bayesian Optimization Framework for Microwave Circuit Design under Uncertainty. Electronics 2022, 11, 2267. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davalos-Guzman, J.; Chavez-Hurtado, J.L.; Brito-Brito, Z. Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping. Electronics 2025, 14, 3097. https://doi.org/10.3390/electronics14153097
Davalos-Guzman J, Chavez-Hurtado JL, Brito-Brito Z. Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping. Electronics. 2025; 14(15):3097. https://doi.org/10.3390/electronics14153097
Chicago/Turabian StyleDavalos-Guzman, Jorge, Jose L. Chavez-Hurtado, and Zabdiel Brito-Brito. 2025. "Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping" Electronics 14, no. 15: 3097. https://doi.org/10.3390/electronics14153097
APA StyleDavalos-Guzman, J., Chavez-Hurtado, J. L., & Brito-Brito, Z. (2025). Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping. Electronics, 14(15), 3097. https://doi.org/10.3390/electronics14153097