Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = EIoU loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5181 KiB  
Article
TEB-YOLO: A Lightweight YOLOv5-Based Model for Bamboo Strip Defect Detection
by Xipeng Yang, Chengzhi Ruan, Fei Yu, Ruxiao Yang, Bo Guo, Jun Yang, Feng Gao and Lei He
Forests 2025, 16(8), 1219; https://doi.org/10.3390/f16081219 - 24 Jul 2025
Viewed by 331
Abstract
The accurate detection of surface defects in bamboo is critical to maintaining product quality. Traditional inspection methods rely heavily on manual labor, making the manufacturing process labor-intensive and error-prone. To overcome these limitations, TEB-YOLO is introduced in this paper, a lightweight and efficient [...] Read more.
The accurate detection of surface defects in bamboo is critical to maintaining product quality. Traditional inspection methods rely heavily on manual labor, making the manufacturing process labor-intensive and error-prone. To overcome these limitations, TEB-YOLO is introduced in this paper, a lightweight and efficient defect detection model based on YOLOv5s. Firstly, EfficientViT replaces the original YOLOv5s backbone, reducing the computational cost while improving feature extraction. Secondly, BiFPN is adopted in place of PANet to enhance multi-scale feature fusion and preserve detailed information. Thirdly, an Efficient Local Attention (ELA) mechanism is embedded in the backbone to strengthen local feature representation. Lastly, the original CIoU loss is replaced with EIoU loss to enhance localization precision. The proposed model achieves a precision of 91.7% with only 10.5 million parameters, marking a 5.4% accuracy improvement and a 22.9% reduction in parameters compared to YOLOv5s. Compared with other mainstream models including YOLOv5n, YOLOv7, YOLOv8n, YOLOv9t, and YOLOv9s, TEB-YOLO achieves precision improvements of 11.8%, 1.66%, 2.0%, 2.8%, and 1.1%, respectively. The experiment results show that TEB-YOLO significantly improves detection precision and model lightweighting, offering a practical and effective solution for real-time bamboo surface defect detection. Full article
Show Figures

Figure 1

20 pages, 4920 KiB  
Article
Martian Skylight Identification Based on the Deep Learning Model
by Lihong Li, Lingli Mu, Wei Zhang, Weihua Dong and Yuqing He
Remote Sens. 2025, 17(15), 2571; https://doi.org/10.3390/rs17152571 - 24 Jul 2025
Viewed by 290
Abstract
As a type of distinctive pit on Mars, skylights are entrances to subsurface lava caves. They are very important for studying volcanic activity and potential preserved water ice, and are also considered as potential sites for human extraterrestrial bases in the future. Most [...] Read more.
As a type of distinctive pit on Mars, skylights are entrances to subsurface lava caves. They are very important for studying volcanic activity and potential preserved water ice, and are also considered as potential sites for human extraterrestrial bases in the future. Most skylights are manually identified, which has low efficiency and is highly subjective. Although deep learning methods have recently been used to identify skylights, they face challenges of few effective samples and low identification accuracy. In this article, 151 positive samples and 920 negative samples based on the MRO-HiRISE image data was used to create an initial skylight dataset, which contained few positive samples. To augment the initial dataset, StyleGAN2-ADA was selected to synthesize some positive samples and generated an augmented dataset with 896 samples. On the basis of the augmented skylight dataset, we proposed YOLOv9-Skylight for skylight identification by incorporating Inner-EIoU loss and DySample to enhance localization accuracy and feature extracting ability. Compared with YOLOv9, the P, R, and the F1 of YOLOv9-Skylight were improved by about 9.1%, 2.8%, and 5.6%, respectively. Compared with other mainstream models such as YOLOv5, YOLOv10, Faster R-CNN, Mask R-CNN, and DETR, YOLOv9-Skylight achieved the highest accuracy (F1 = 92.5%), which shows a strong performance in skylight identification. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

17 pages, 2115 KiB  
Article
Surface Defect Detection of Magnetic Tiles Based on YOLOv8-AHF
by Cheng Ma, Yurong Pan and Junfu Chen
Electronics 2025, 14(14), 2857; https://doi.org/10.3390/electronics14142857 - 17 Jul 2025
Viewed by 230
Abstract
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with [...] Read more.
Magnetic tiles are an important component of permanent magnet motors, and the quality of magnetic tiles directly affects the performance and service life of a motor. It is necessary to perform defect detection on magnetic tiles in industrial production and remove those with defects. The YOLOv8-AHF algorithm is proposed to improve the ability of network feature information extraction and solve the problem of missed detection or poor detection results in surface defect detection due to the small volume of permanent magnet motor tiles, which reduces the deviation between the predicted box and the true box simultaneously. Firstly, a hybrid module of a combination of atrous convolution and depthwise separable convolution (ADConv) is introduced in the backbone of the model to capture global and local features in magnet tile detection images. In the neck section, a hybrid attention module (HAM) is introduced to focus on the regions of interest in the magnetic tile surface defect images, which improves the ability of information transmission and fusion. The Focal-Enhanced Intersection over Union loss function (Focal-EIoU) is optimized to effectively achieve localization. We conducted comparative experiments, ablation experiments, and corresponding generalization experiments on the magnetic tile surface defect dataset. The experimental results show that the evaluation metrics of YOLOv8-AHF surpass mainstream single-stage object detection algorithms. Compared to the You Only Look Once version 8 (YOLOv8) algorithm, the performance of the YOLOv8-AHF algorithm was improved by 5.9%, 4.1%, 5%, 5%, and 5.8% in terms of mAP@0.5, mAP@0.5:0.95, F1-Score, precision, and recall, respectively. This algorithm achieved significant performance improvement in the task of detecting surface defects on magnetic tiles. Full article
Show Figures

Figure 1

16 pages, 9151 KiB  
Article
Insulator Defect Detection in Complex Environments Based on Improved YOLOv8
by Yuxin Qin, Ying Zeng and Xin Wang
Entropy 2025, 27(6), 633; https://doi.org/10.3390/e27060633 - 13 Jun 2025
Viewed by 530
Abstract
Insulator defect detection is important in ensuring power systems’ safety and stable operation. To solve the problems of its low accuracy, high delay, and large model size in complex environments, following the principle of progressive extraction from high-entropy details to low-entropy semantics, an [...] Read more.
Insulator defect detection is important in ensuring power systems’ safety and stable operation. To solve the problems of its low accuracy, high delay, and large model size in complex environments, following the principle of progressive extraction from high-entropy details to low-entropy semantics, an improved YOLOv8 target detection network for insulator defects based on bidirectional weighted feature fusion was proposed. A C2f_DSC feature extraction module was designed to identify more insulator tube features, an EMA (encoder–modulator–attention) mechanism and a BiFPN (bidirectional weighted feature pyramid network) fusion layer in the backbone network were introduced to extract different features in complex environments, and EIOU (efficient intersection over union) as the model’s loss function was used to accelerate model convergence. The CPLID (China Power Line Insulator Dataset) was tested to verify the effectiveness of the proposed algorithm. The results show its model size is only 6.40 M, and the mean accuracy on the CPLID dataset reaches 98.6%, 0.8% higher than that of the YOLOv8n. Compared with other lightweight models, such as YOLOv8s, YOLOv6, YOLOv5s, and YOLOv3Tiny, not only is the model size reduced, but also the accuracy is effectively improved with the proposed algorithm, demonstrating excellent practicality and feasibility for edge devices. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

31 pages, 12794 KiB  
Article
Enhanced Defect Detection in Additive Manufacturing via Virtual Polarization Filtering and Deep Learning Optimization
by Xu Su, Xing Peng, Xingyu Zhou, Hongbing Cao, Chong Shan, Shiqing Li, Shuo Qiao and Feng Shi
Photonics 2025, 12(6), 599; https://doi.org/10.3390/photonics12060599 - 11 Jun 2025
Cited by 1 | Viewed by 1477
Abstract
Additive manufacturing (AM) is widely used in industries such as aerospace, medical, and automotive. Within this domain, defect detection technology has emerged as a critical area of research focus in the quality inspection phase of AM. The main challenge lies in that under [...] Read more.
Additive manufacturing (AM) is widely used in industries such as aerospace, medical, and automotive. Within this domain, defect detection technology has emerged as a critical area of research focus in the quality inspection phase of AM. The main challenge lies in that under extreme lighting conditions, strong reflected light obscures defect feature information, leading to a significant decrease in the defect detection rate. This paper introduces a novel methodology for intelligent defect detection in AM components with reflective surfaces, leveraging virtual polarization filtering (IEVPF) and an improved YOLO V5-W model. The IEVPF algorithm is designed to enhance image quality through the virtual manipulation of light polarization, thereby improving defect visibility. The YOLO V5-W model, integrated with CBAM attention, DenseNet connections, and an EIoU loss function, demonstrates superior performance in defect identification across various lighting conditions. Experiments show a 40.3% reduction in loss, a 10.8% improvement in precision, a 10.3% improvement in recall, and a 13.7% improvement in mAP compared to the original YOLO V5 model. Our findings highlight the potential of combining virtual polarization filtering with advanced deep learning models for enhanced AM surface defect detection. Full article
(This article belongs to the Special Issue Advances in Micro-Nano Optical Manufacturing)
Show Figures

Figure 1

20 pages, 4951 KiB  
Article
LNT-YOLO: A Lightweight Nighttime Traffic Light Detection Model
by Syahrul Munir and Huei-Yung Lin
Smart Cities 2025, 8(3), 95; https://doi.org/10.3390/smartcities8030095 - 6 Jun 2025
Viewed by 1136
Abstract
Autonomous vehicles are one of the key components of smart mobility that leverage innovative technology to navigate and operate safely in urban environments. Traffic light detection systems, as a key part of autonomous vehicles, play a key role in navigation during challenging traffic [...] Read more.
Autonomous vehicles are one of the key components of smart mobility that leverage innovative technology to navigate and operate safely in urban environments. Traffic light detection systems, as a key part of autonomous vehicles, play a key role in navigation during challenging traffic scenarios. Nighttime driving poses significant challenges for autonomous vehicle navigation, particularly in regard to the accuracy of traffic lights detection (TLD) systems. Existing TLD methodologies frequently encounter difficulties under low-light conditions due to factors such as variable illumination, occlusion, and the presence of distracting light sources. Moreover, most of the recent works only focused on daytime scenarios, often overlooking the significantly increased risk and complexity associated with nighttime driving. To address these critical issues, this paper introduces a novel approach for nighttime traffic light detection using the LNT-YOLO model, which is based on the YOLOv7-tiny framework. LNT-YOLO incorporates enhancements specifically designed to improve the detection of small and poorly illuminated traffic signals. Low-level feature information is utilized to extract the small-object features that have been missing because of the structure of the pyramid structure in the YOLOv7-tiny neck component. A novel SEAM attention module is proposed to refine the features that represent both the spatial and channel information by leveraging the features from the Simple Attention Module (SimAM) and Efficient Channel Attention (ECA) mechanism. The HSM-EIoU loss function is also proposed to accurately detect a small traffic light by amplifying the loss for hard-sample objects. In response to the limited availability of datasets for nighttime traffic light detection, this paper also presents the TN-TLD dataset. This newly curated dataset comprises carefully annotated images from real-world nighttime driving scenarios, featuring both circular and arrow traffic signals. Experimental results demonstrate that the proposed model achieves high accuracy in recognizing traffic lights in the TN-TLD dataset and in the publicly available LISA dataset. The LNT-YOLO model outperforms the original YOLOv7-tiny model and other state-of-the-art object detection models in mAP performance by 13.7% to 26.2% on the TN-TLD dataset and by 9.5% to 24.5% on the LISA dataset. These results underscore the model’s feasibility and robustness compared to other state-of-the-art object detection models. The source code and dataset will be available through the GitHub repository. Full article
Show Figures

Figure 1

19 pages, 765 KiB  
Article
TCE-YOLOv5: Lightweight Automatic Driving Object Detection Algorithm Based on YOLOv5
by Han Wang, Zhenwei Yang, Qiaoshou Liu, Qiang Zhang and Honggang Wang
Appl. Sci. 2025, 15(11), 6018; https://doi.org/10.3390/app15116018 - 27 May 2025
Viewed by 467
Abstract
In automatic driving systems, accurate and efficient object detection is essential to ensure driving safety and improve the driving experience. However, autonomous vehicles deal with large amounts of real-time data, which places extremely high demands on computing resources. Therefore, a lightweight object detection [...] Read more.
In automatic driving systems, accurate and efficient object detection is essential to ensure driving safety and improve the driving experience. However, autonomous vehicles deal with large amounts of real-time data, which places extremely high demands on computing resources. Therefore, a lightweight object detection algorithm based on YOLOv5 is proposed to solve the problem of excessive network parameters in automatic driving scenarios. Firstly, the Bottleneck convolution kernel channels in the C3 module were grouped to greatly reduce the number of parameters. Secondly, the C3 module in the neck is replaced by the Res2Net module, which extracts features at different scales through multiple branches, not only ensuring rich details, but also enhancing the generalization ability of the network. Finally, the EIOU loss function is introduced to measure the overlap between the predicted box and the real box more accurately and improve the detection accuracy. The test results of KITTI and CCTSDB2021 public traffic datasets show that compared with the original YOLOv5 model, the improved algorithm reduces the number of parameters by 20%, the calculation amount by 21%, and mAP@0.5 by 1.0%. After TensorRT optimization, the inference speed of our model on Jetson Xavier NX reaches 61 frames/s, which is 15% higher than the original YOLOv5, and satisfies the requirements of real-time detection. Full article
Show Figures

Figure 1

21 pages, 5452 KiB  
Article
HFC-YOLO11: A Lightweight Model for the Accurate Recognition of Tiny Remote Sensing Targets
by Jinyin Bai, Wei Zhu, Zongzhe Nie, Xin Yang, Qinglin Xu and Dong Li
Computers 2025, 14(5), 195; https://doi.org/10.3390/computers14050195 - 18 May 2025
Cited by 1 | Viewed by 1362
Abstract
To address critical challenges in tiny object detection within remote sensing imagery, including resolution–semantic imbalance, inefficient feature fusion, and insufficient localization accuracy, this study proposes Hierarchical Feature Compensation You Only Look Once 11 (HFC-YOLO11), a lightweight detection model based on hierarchical feature compensation. [...] Read more.
To address critical challenges in tiny object detection within remote sensing imagery, including resolution–semantic imbalance, inefficient feature fusion, and insufficient localization accuracy, this study proposes Hierarchical Feature Compensation You Only Look Once 11 (HFC-YOLO11), a lightweight detection model based on hierarchical feature compensation. Firstly, by reconstructing the feature pyramid architecture, we preserve the high-resolution P2 feature layer in shallow networks to enhance the fine-grained feature representation for tiny targets, while eliminating redundant P5 layers to reduce the computational complexity. In addition, a depth-aware differentiated module design strategy is proposed: GhostBottleneck modules are adopted in shallow layers to improve its feature reuse efficiency, while standard Bottleneck modules are maintained in deep layers to strengthen the semantic feature extraction. Furthermore, an Extended Intersection over Union loss function (EIoU) is developed, incorporating boundary alignment penalty terms and scale-adaptive weight mechanisms to optimize the sub-pixel-level localization accuracy. Experimental results on the AI-TOD and VisDrone2019 datasets demonstrate that the improved model achieves mAP50 improvements of 3.4% and 2.7%, respectively, compared to the baseline YOLO11s, while reducing its parameters by 27.4%. Ablation studies validate the balanced performance of the hierarchical feature compensation strategy in the preservation of resolution and computational efficiency. Visualization results confirm an enhanced robustness against complex background interference. HFC-YOLO11 exhibits superior accuracy and generalization capability in tiny object detection tasks, effectively meeting practical application requirements for tiny object recognition. Full article
Show Figures

Figure 1

25 pages, 16964 KiB  
Article
AAB-YOLO: An Improved YOLOv11 Network for Apple Detection in Natural Environments
by Liusong Yang, Tian Zhang, Shihan Zhou and Jingtan Guo
Agriculture 2025, 15(8), 836; https://doi.org/10.3390/agriculture15080836 - 12 Apr 2025
Cited by 3 | Viewed by 742
Abstract
Apple detection in natural environments is crucial for advancing agricultural automation. However, orchards often employ bagging techniques to protect apples from pests and improve quality, which introduces significant detection challenges due to the varied appearance and occlusion of apples caused by bags. Additionally, [...] Read more.
Apple detection in natural environments is crucial for advancing agricultural automation. However, orchards often employ bagging techniques to protect apples from pests and improve quality, which introduces significant detection challenges due to the varied appearance and occlusion of apples caused by bags. Additionally, the complex and variable natural backgrounds further complicate the detection process. To address these multifaceted challenges, this study introduces AAB-YOLO, a lightweight apple detection model based on an improved YOLOv11 framework. AAB-YOLO incorporates ADown modules to reduce model complexity, the C3k2_ContextGuided module for enhanced understanding of complex scenes, and the Detect_SEAM module for improved handling of occluded apples. Furthermore, the Inner_EIoU loss function is employed to boost detection accuracy and efficiency. The experimental results demonstrate significant improvements: mAP@50 increases from 0.917 to 0.921, precision rises from 0.948 to 0.951, and recall improves by 1.04%, while the model’s parameter count and computational complexity are reduced by 37.7% and 38.1%, respectively. By achieving lightweight performance while maintaining high accuracy, AAB-YOLO effectively meets the real-time apple detection needs in natural environments, overcoming the challenges posed by orchard bagging techniques and complex backgrounds. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

13 pages, 4428 KiB  
Article
YOLO-CBF: Optimized YOLOv7 Algorithm for Helmet Detection in Road Environments
by Zhiqiang Wu, Jiaohua Qin, Xuyu Xiang and Yun Tan
Electronics 2025, 14(7), 1413; https://doi.org/10.3390/electronics14071413 - 31 Mar 2025
Viewed by 515
Abstract
Helmet-wearing detection for electric vehicle riders is essential for traffic safety, yet existing detection models often suffer from high target occlusion and low detection accuracy in complex road environments. To address these issues, this paper proposes YOLO-CBF, an improved YOLOv7-based detection network. The [...] Read more.
Helmet-wearing detection for electric vehicle riders is essential for traffic safety, yet existing detection models often suffer from high target occlusion and low detection accuracy in complex road environments. To address these issues, this paper proposes YOLO-CBF, an improved YOLOv7-based detection network. The proposed model integrates coordinate convolution to enhance spatial information perception, optimizes the Focal EIOU loss function, and incorporates the BiFormer dynamic sparse attention mechanism to achieve more efficient computation and dynamic content perception. These enhancements enable the model to extract key features more effectively, improving detection precision. Experimental results show that YOLO-CBF achieves an average mAP of 95.6% for helmet-wearing detection in various scenarios, outperforming the original YOLOv7 by 4%. Additionally, YOLO-CBF demonstrates superior performance compared to other mainstream object detection models, achieving accurate and reliable helmet detection for electric vehicle riders. Full article
(This article belongs to the Special Issue Advances in Computer Vision and Deep Learning and Its Applications)
Show Figures

Figure 1

18 pages, 10602 KiB  
Article
A Lightweight Network for UAV Multi-Scale Feature Fusion-Based Object Detection
by Sheng Deng and Yaping Wan
Information 2025, 16(3), 250; https://doi.org/10.3390/info16030250 - 20 Mar 2025
Viewed by 697
Abstract
To tackle the issues of small target sizes, missed detections, and false alarms in aerial drone imagery, alongside the constraints posed by limited hardware resources during model deployment, a streamlined object detection approach is proposed to enhance the performance of YOLOv8s. This approach [...] Read more.
To tackle the issues of small target sizes, missed detections, and false alarms in aerial drone imagery, alongside the constraints posed by limited hardware resources during model deployment, a streamlined object detection approach is proposed to enhance the performance of YOLOv8s. This approach introduces a new module, C2f_SEPConv, which incorporates Partial Convolution (PConv) and channel attention mechanisms (Squeeze-and-Excitation, SE), effectively replacing the previous bottleneck and minimizing both the model’s parameter count and computational demands. Modifications to the detection head allow it to perform more effectively in scenarios with small targets in aerial images. To capture multi-scale object information, a Multi-Scale Cross-Axis Attention (MSCA) mechanism is embedded within the backbone network. The neck network integrates a Multi-Scale Fusion Block (MSFB) to combine multi-level features, further boosting detection precision. Furthermore, the Focal-EIoU loss function supersedes the traditional CIoU loss function to address challenges related to the regression of small targets. Evaluations conducted on the VisDrone dataset reveal that the proposed method improves Precision, Recall, mAP0.5, and mAP0.5:0.95 by 4.4%, 5.6%, 6.4%, and 4%, respectively, compared to YOLOv8s, with a 28.3% reduction in parameters. On the DOTAv1.0 dataset, a 2.1% enhancement in mAP0.5 is observed. Full article
Show Figures

Graphical abstract

36 pages, 28546 KiB  
Article
An Improved YOLOv8-Based Lightweight Attention Mechanism for Cross-Scale Feature Fusion
by Shaodong Liu, Faming Shao, Weijun Chu, Juying Dai and Heng Zhang
Remote Sens. 2025, 17(6), 1044; https://doi.org/10.3390/rs17061044 - 16 Mar 2025
Cited by 4 | Viewed by 3156
Abstract
This paper addresses the challenge of small object detection in remote sensing image recognition by proposing an improved YOLOv8-based lightweight attention cross-scale feature fusion model named LACF-YOLO. Prior to the backbone network outputting feature maps, this model introduces a lightweight attention module, Triplet [...] Read more.
This paper addresses the challenge of small object detection in remote sensing image recognition by proposing an improved YOLOv8-based lightweight attention cross-scale feature fusion model named LACF-YOLO. Prior to the backbone network outputting feature maps, this model introduces a lightweight attention module, Triplet Attention, and replaces the Concatenation with Fusion (C2f) with a more convenient and higher-performing dilated inverted convolution layer to acquire richer contextual information during the feature extraction phase. Additionally, it employs convolutional blocks composed of partial convolution and pointwise convolution as the main body of the cross-scale feature fusion network to integrate feature information from different levels. The model also utilizes the faster-converging Focal EIOU loss function to enhance accuracy and efficiency. Experimental results on the DOTA and VisDrone2019 datasets demonstrate the effectiveness of the improved model. Compared to the original YOLOv8 model, LACF-YOLO achieves a 2.9% increase in mAP and a 4.6% increase in mAPS on the DOTA dataset and a 3.5% increase in mAP and a 3.8% increase in mAPS on the VisDrone2019 dataset, with a 34.9% reduction in the number of parameters and a 26.2% decrease in floating-point operations. The model exhibits superior performance in aerial object detection. Full article
Show Figures

Figure 1

19 pages, 7587 KiB  
Article
GPC-YOLO: An Improved Lightweight YOLOv8n Network for the Detection of Tomato Maturity in Unstructured Natural Environments
by Yaolin Dong, Jinwei Qiao, Na Liu, Yunze He, Shuzan Li, Xucai Hu, Chengyan Yu and Chengyu Zhang
Sensors 2025, 25(5), 1502; https://doi.org/10.3390/s25051502 - 28 Feb 2025
Cited by 1 | Viewed by 1940
Abstract
Effective fruit identification and maturity detection are important for harvesting and managing tomatoes. Current deep learning detection algorithms typically demand significant computational resources and memory. Detecting severely stacked and obscured tomatoes in unstructured natural environments is challenging because of target stacking, target occlusion, [...] Read more.
Effective fruit identification and maturity detection are important for harvesting and managing tomatoes. Current deep learning detection algorithms typically demand significant computational resources and memory. Detecting severely stacked and obscured tomatoes in unstructured natural environments is challenging because of target stacking, target occlusion, natural illumination, and background noise. The proposed method involves a new lightweight model called GPC-YOLO based on YOLOv8n for tomato identification and maturity detection. This study proposes a C2f-PC module based on partial convolution (PConv) for less computation, which replaced the original C2f feature extraction module of YOLOv8n. The regular convolution was replaced with the lightweight Grouped Spatial Convolution (GSConv) by downsampling to reduce the computational burden. The neck network was replaced with the convolutional neural network-based cross-scale feature fusion (CCFF) module to enhance the adaptability of the model to scale changes and to detect many small-scaled objects. Additionally, the integration of the simple attention mechanism (SimAM) and efficient intersection over union (EIoU) loss were implemented to further enhance the detection accuracy by leveraging these lightweight improvements. The GPC-YOLO model was trained and validated on a dataset of 1249 mobile phone images of tomatoes. Compared to the original YOLOv8n, GPC-YOLO achieved high-performance metrics, e.g., reducing the parameter number to 1.2 M (by 59.9%), compressing the model size to 2.7 M (by 57.1%), decreasing the floating point of operations to 4.5 G (by 45.1%), and improving the accuracy to 98.7% (by 0.3%), with a detection speed of 201 FPS. This study showed that GPC-YOLO could effectively identify tomato fruit and detect fruit maturity in unstructured natural environments. The model has immense potential for tomato ripeness detection and automated picking applications. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

26 pages, 17568 KiB  
Article
Research on Apple Detection and Tracking Count in Complex Scenes Based on the Improved YOLOv7-Tiny-PDE
by Dongxuan Cao, Wei Luo, Ruiyin Tang, Yuyan Liu, Jiasen Zhao, Xuqing Li and Lihua Yuan
Agriculture 2025, 15(5), 483; https://doi.org/10.3390/agriculture15050483 - 24 Feb 2025
Cited by 3 | Viewed by 773
Abstract
Accurately detecting apple fruit can crucially assist in estimating the fruit yield in apple orchards in complex scenarios. In such environments, the factors of density, leaf occlusion, and fruit overlap can affect the detection and counting accuracy. This paper proposes an improved YOLOv7-Tiny-PDE [...] Read more.
Accurately detecting apple fruit can crucially assist in estimating the fruit yield in apple orchards in complex scenarios. In such environments, the factors of density, leaf occlusion, and fruit overlap can affect the detection and counting accuracy. This paper proposes an improved YOLOv7-Tiny-PDE network model based on the YOLOv7-Tiny model to detect and count apples from data collected by drones, considering various occlusion and lighting conditions. First, within the backbone network, we replaced the simplified efficient layer aggregation network (ELAN) with partial convolution (PConv), reducing the network parameters and computational redundancy while maintaining the detection accuracy. Second, in the neck network, we used a dynamic detection head to replace the original detection head, effectively suppressing the background interference and capturing the background information more comprehensively, thus enhancing the detection accuracy for occluded targets and improving the fruit feature extraction. To further optimize the model, we replaced the boundary box loss function from CIOU to EIOU. For fruit counting across video frames in complex occlusion scenes, we integrated the improved model with the DeepSort tracking algorithm based on Kalman filtering and motion trajectory prediction with a cascading matching algorithm. According to experimental results, compared with the baseline YOLOv7-Tiny, the improved model reduced the total parameters by 22.2% and computation complexity by 18.3%. Additionally, in data testing, the p-value improved by 0.5%; the R-value rose by 2.7%; the mAP and F1 scores rose by 4% and 1.7%, respectively; and the MOTA value improved by 2%. The improved model is more lightweight and can preserve a high detection accuracy well, and hence, it can be applied to detection and counting tasks in complex orchards and provides a new solution for fruit yield estimation using lightweight devices. Full article
Show Figures

Figure 1

19 pages, 10954 KiB  
Article
YOLOv8-CBSE: An Enhanced Computer Vision Model for Detecting the Maturity of Chili Pepper in the Natural Environment
by Yane Ma and Shujuan Zhang
Agronomy 2025, 15(3), 537; https://doi.org/10.3390/agronomy15030537 - 23 Feb 2025
Cited by 3 | Viewed by 1046
Abstract
In order to accurately detect the maturity of chili peppers under different lighting and natural environmental scenarios, in this study, we propose a lightweight maturity detection model, YOLOv8-CBSE, based on YOLOv8n. By replacing the C2f module in the original model with the designed [...] Read more.
In order to accurately detect the maturity of chili peppers under different lighting and natural environmental scenarios, in this study, we propose a lightweight maturity detection model, YOLOv8-CBSE, based on YOLOv8n. By replacing the C2f module in the original model with the designed C2CF module, the model integrates the advantages of convolutional neural networks and Transformer architecture, improving the model’s ability to extract local features and global information. Additionally, SRFD and DRFD modules are introduced to replace the original convolutional layers, effectively capturing features at different scales and enhancing the diversity and adaptability of the model through the feature fusion mechanism. To further improve detection accuracy, the EIoU loss function is used instead of the CIoU loss function to provide more comprehensive loss information. The results showed that the average precision (AP) of YOLOv8-CBSE for mature and immature chili peppers was 90.75% and 85.41%, respectively, with F1 scores and a mean average precision (mAP) of 81.69% and 88.08%, respectively. Compared with the original YOLOv8n, the F1 score and mAP of the improved model increased by 0.46% and 1.16%, respectively. The detection effect for chili pepper maturity under different scenarios was improved, which proves the robustness and adaptability of YOLOv8-CBSE. YOLOv8-CBSE also maintains a lightweight design with a model size of only 5.82 MB, enhancing its suitability for real-time applications on resource-constrained devices. This study provides an efficient and accurate method for detecting chili peppers in natural environments, which is of great significance for promoting intelligent and precise agricultural management. Full article
Show Figures

Figure 1

Back to TopTop