Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,131)

Search Parameters:
Keywords = EIS measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1316 KiB  
Article
Molecularly Imprinted Electrochemical Sensor Electrodes Based on Poly-Pyrrole for Sensitive Detection of Morphine in Wastewater
by Pranaya Charkravarthula and Amos Mugweru
Chemosensors 2025, 13(8), 284; https://doi.org/10.3390/chemosensors13080284 - 4 Aug 2025
Abstract
Morphine is an opioid extracted from the poppy plant and highly effective for moderate to severe pain management. Development of techniques to measure the concentration of this highly addictive drug in various matrices is very important. This work was aimed at the development [...] Read more.
Morphine is an opioid extracted from the poppy plant and highly effective for moderate to severe pain management. Development of techniques to measure the concentration of this highly addictive drug in various matrices is very important. This work was aimed at the development of a sensitive electrochemical method for detection of morphine in wastewater. Molecularly imprinted (MIP) electrodes were made by the electro-polymerization process using pyrrole as a monomer. Electro-polymerization was performed on glassy carbon electrodes in the presence of morphine before the extraction of the entrapped morphine molecules. Various techniques were employed to monitor the polymerization and response of the fabricated electrodes toward morphine. These techniques included Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The morphine concentration was determined using SWV and CV by measuring the change in the redox peak current of [Fe(CN)6]−3/−4. These MIP electrode sensors were used to analyze morphine concentrations between 0 and 80.0 nM solution. The SWV showed a wider linear response region than CV. The detection limit using SWV was found to be 1.9 nM, while using CV, the detection limit was 2.75 nM. This MIP electrode sensor exhibited specificity when other closely related molecules were included and hence has potential as a cheap alternative technique for analysis of morphine. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymer (MIP) Sensors)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 - 1 Aug 2025
Viewed by 180
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

13 pages, 5115 KiB  
Article
Study the Effect of Heat Treatment on the Corrosion Resistance of AISI 347H Stainless Steel
by Yunyan Peng, Bo Zhao, Jianhua Yang, Fan Bai, Hongchang Qian, Bingxiao Shi and Luntao Wang
Materials 2025, 18(15), 3486; https://doi.org/10.3390/ma18153486 - 25 Jul 2025
Viewed by 229
Abstract
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet [...] Read more.
AISI 347H stainless steel is widely used in high-temperature environments due to its excellent creep strength and oxidation resistance; however, its corrosion performance remains highly sensitive to thermal oxidation, and the effects of thermal history on its passive film stability are not yet fully understood. This study addresses this knowledge gap by systematically investigating the influence of solution treatment on the corrosion and oxidation resistance of AISI 347H stainless steel. The specimens were subjected to solution heat treatment at 1050 °C, followed by air cooling, and then evaluated through electrochemical testing, high-temperature oxidation experiments at 550 °C, and multiscale surface characterization techniques. The solution treatment refined the austenitic microstructure by dissolving coarse Nb-rich precipitates, as confirmed by SEM and EBSD, and improved passive film integrity. The stabilizing effect of Nb also played a critical role in suppressing sensitization, thereby enhancing resistance to intergranular attack. Electrochemical measurements and EIS analysis revealed a lower corrosion current density and higher charge transfer resistance in the treated samples, indicating enhanced passivation behavior. ToF-SIMS depth profiling and oxide thickness analysis confirmed a slower parabolic oxide growth rate and reduced oxidation rate constant in the solution-treated condition. At 550 °C, oxidation was suppressed by the formation of compact, Cr-rich scales with dual-distributed Nb oxides, effectively limiting diffusion pathways and stabilizing the protective layer. These findings demonstrate that solution treatment is an effective strategy to improve the long-term corrosion and oxidation performance of AISI 347H stainless steel in harsh service environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

32 pages, 2043 KiB  
Review
Review on Metal (-Oxide, -Nitride, -Oxy-Nitride) Thin Films: Fabrication Methods, Applications, and Future Characterization Methods
by Georgi Kotlarski, Daniela Stoeva, Dimitar Dechev, Nikolay Ivanov, Maria Ormanova, Valentin Mateev, Iliana Marinova and Stefan Valkov
Coatings 2025, 15(8), 869; https://doi.org/10.3390/coatings15080869 - 24 Jul 2025
Viewed by 475
Abstract
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for [...] Read more.
During the last few years, the requirements for highly efficient, sustainable, and versatile materials in modern biomedicine, aircraft and aerospace industries, automotive production, and electronic and electrical engineering applications have increased. This has led to the development of new and innovative methods for material modification and optimization. This can be achieved in many different ways, but one such approach is the application of surface thin films. They can be conductive (metallic), semi-conductive (metal-ceramic), or isolating (polymeric). Special emphasis is placed on applying semi-conductive thin films due to their unique properties, be it electrical, chemical, mechanical, or other. The particular thin films of interest are composite ones of the type of transition metal oxide (TMO) and transition metal nitride (TMN), due to their widespread configurations and applications. Regardless of the countless number of studies regarding the application of such films in the aforementioned industrial fields, some further possible investigations are necessary to find optimal solutions for modern problems in this topic. One such problem is the possibility of characterization of the applied thin films, not via textbook approaches, but through a simple, modern solution using their electrical properties. This can be achieved on the basis of measuring the films’ electrical impedance, since all different semi-conductive materials have different impedance values. However, this is a huge practical work that necessitates the collection of a large pool of data and needs to be based on well-established methods for both characterization and formation of the films. A thorough review on the topic of applying thin films using physical vapor deposition techniques (PVD) in the field of different modern applications, and the current results of such investigations are presented. Furthermore, current research regarding the possible methods for applying such films, and the specifics behind them, need to be summarized. Due to this, in the present work, the specifics of applying thin films using PVD methods and their expected structure and properties were evaluated. Special emphasis was paid to the electrical impedance spectroscopy (EIS) method, which is typically used for the investigation and characterization of electrical systems. This method has increased in popularity over the last few years, and its applicability in the characterization of electrical systems that include thin films formed using PVD methods was proven many times over. However, a still lingering question is the applicability of this method for backwards engineering of thin films. Currently, the EIS method is used in combination with traditional techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and others. There is, however, a potential to predict the structure and properties of thin films using purely a combination of EIS measurements and complex theoretical models. The current progress in the development of the EIS measurement method was described in the present work, and the trend is such that new theoretical models and new practical testing knowledge was obtained that help implement the method in the field of thin films characterization. Regardless of this progress, much more future work was found to be necessary, in particular, practical measurements (real data) of a large variety of films, in order to build the composition–structure–properties relationship. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

20 pages, 8022 KiB  
Article
Corrosion Response of Steel to Penetration of Chlorides in DC-Treated Hardened Portland Cement Mortar
by Milan Kouřil, Jan Saksa, Vojtěch Hybášek, Ivona Sedlářová, Jiří Němeček, Martina Kohoutková and Jiří Němeček
Materials 2025, 18(14), 3365; https://doi.org/10.3390/ma18143365 - 17 Jul 2025
Viewed by 236
Abstract
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete [...] Read more.
Electrochemical treatment by means of direct current (DC) is usually used as a measure for steel rebar corrosion protection, e.g., cathodic protection (CP), electrochemical chloride extraction (ECE), and re-alkalization (RA). However, the passage of an electrical charge through the pore system of concrete or mortar, coupled with the migration of ions, concentration changes, and resulting phase changes, may alter its chloride penetration resistance and, subsequently, the time until rebar corrosion activation. Porosity changes in hardened Portland cement mortar were studied by means of mercury intrusion porosimetry (MIP) and electrochemical impedance spectroscopy (EIS), and alterations in the mortar surface phase composition were observed by means of X-ray diffraction (XRD). In order to innovatively investigate the impact of DC treatment on the properties of the mortar–electrolyte interface, the cathode-facing mortar surface and the anode-facing mortar surface were analyzed separately. The corrosion of steel coupons embedded in DC-treated hardened mortar was monitored by means of the free corrosion potential (Eoc) and polarization resistance (Rp). The results showed that the DC treatment affected the surface porosity of the hardened Portland cement mortar at the nanoscale. Up to two-thirds of the small pores (0.001–0.01 µm) were replaced by medium-sized pores (0.01–0.06 µm), which may be significant for chloride ingress. Although the porosity and phase composition alterations were confirmed using other techniques (EIS and XRD), corrosion tests revealed that they did not significantly affect the time until the corrosion activation of the steel coupons in the mortar. Full article
Show Figures

Figure 1

23 pages, 7016 KiB  
Article
SOC Estimation of Lithium-Ion Batteries Utilizing EIS Technology with SHAP–ASO–LightGBM
by Panpan Hu, Chun Yin Li and Chi Chung Lee
Batteries 2025, 11(7), 272; https://doi.org/10.3390/batteries11070272 - 17 Jul 2025
Viewed by 716
Abstract
Accurate State of Charge (SOC) estimation is critical for optimizing the performance and longevity of lithium-ion batteries (LIBs), which are widely used in applications ranging from electric vehicles to renewable energy storage. Traditional SOC estimation methods, such as Coulomb counting and open-circuit voltage [...] Read more.
Accurate State of Charge (SOC) estimation is critical for optimizing the performance and longevity of lithium-ion batteries (LIBs), which are widely used in applications ranging from electric vehicles to renewable energy storage. Traditional SOC estimation methods, such as Coulomb counting and open-circuit voltage measurement, suffer from cumulative errors and slow response times. This paper proposes a novel machine learning-based approach for SOC estimation by integrating Electrochemical Impedance Spectroscopy (EIS) with the SHapley Additive exPlanations (SHAP) method, Atom Search Optimization (ASO), and Light Gradient Boosting Machine (LightGBM). This study focuses on large-capacity lithium iron phosphate (LFP) batteries (3.2 V, 104 Ah), addressing a gap in existing research. EIS data collected at various SOC levels and temperatures were processed using SHAP for feature extraction (FE), and the ASO–LightGBM model was employed for SOC prediction. Experimental results demonstrate that the proposed SHAP–ASO–LightGBM method significantly improves estimation accuracy, achieving an RMSE of 3.3%, MAE of 1.86%, and R2 of 0.99, outperforming traditional methods like LSTM and DNN. The findings highlight the potential of EIS and machine learning (ML) for robust SOC estimation in large-capacity LIBs. Full article
Show Figures

Figure 1

14 pages, 4503 KiB  
Article
A Low-Cost Implementation of a Potato (Solanum tuberosum L.) Moisture Sensor Based on the Howland Current Source Through Discrete Fourier Transform
by Laura Giselle Martinez-Ramirez, Juan M. Sierra-Hernandez, Perla Rosa Fitch-Vargas, Julián Andrés Gómez-Salazar, Carolina Bojórquez-Sánchez and Arturo Alfonso Fernandez-Jaramillo
Sensors 2025, 25(14), 4413; https://doi.org/10.3390/s25144413 - 15 Jul 2025
Viewed by 258
Abstract
The growing demand for the production of food has led to the development of new analytical techniques in the food industry, enabling innovative strategies to streamline food production and ensure its physicochemical and microbiological quality. In this work, a smart sensor was developed [...] Read more.
The growing demand for the production of food has led to the development of new analytical techniques in the food industry, enabling innovative strategies to streamline food production and ensure its physicochemical and microbiological quality. In this work, a smart sensor was developed using the electrical impedance spectroscopy (EIS) technique. The system is based on discrete Fourier transform (DFT) and incorporates a Howland current source. The experimental results showed that the sensor was able to detect the moisture content in potatoes (Solanum tuberosum L.). Favorable responses were obtained by exciting the system with two frequency intervals: 0–100 Hz and 500–5000 Hz. An exhaustive analysis of the frequency response was performed to identify the most linear behavior in the moisture measurement, with an R-squared of 0.786 and signals in intervals from 500 to 5000 Hz. Moreover, the linearity remained stable across most frequencies, resulting in consistent measurements, even with the implementation of low-cost components. Full article
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
Phosphonium Salt-Functionalized β-Cyclodextrin Film for Ultrasensitive and Selective Electrochemical Impedance Spectroscopy Detection of Perchlorate in Drinking Water
by Zeineb Baatout, Achref Jebnouni, Nawfel Sakly, Safa Teka, Nuzaiha Mohamed, Sayda Osman, Raoudha Soury, Mabrouka El Oudi, Salman Hamdan Alsaqri, Nejmeddine Smida Jaballah and Mustapha Majdoub
Polymers 2025, 17(14), 1937; https://doi.org/10.3390/polym17141937 - 15 Jul 2025
Viewed by 396
Abstract
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H [...] Read more.
This work represents the first use of a phosphonium salt-functionalized β-Cyclodextrin polymer (β-CDP) as a highly selective sensing membrane for monitoring the safety of drinking water against perchlorate ions (ClO4) using electrochemical impedance spectroscopy (EIS). Structural confirmation via 1H NMR, 13C NMR, 31P NMR, and FT-IR spectroscopies combined with AFM and contact angle measurements demonstrate how the enhanced solubility of modified cyclodextrin improves thin film quality. The innovation lies in the synergistic combination of two detection mechanisms: the “Host-Guest” inclusion in the cyclodextrin cavity and anionic exchange between the bromide ions of the phosphonium groups and perchlorate anions. Under optimized functionalization conditions, EIS reveals high sensitivity and selectivity, achieving a record-low detection limit (LOD) of ~10−12 M and a wide linear range of detection (10−11 M–10−4 M). Sensing mechanisms at the functionalized transducer interfaces are examined through numerical fitting of Cole-Cole impedance spectra via a single relaxation equivalent circuit. Real water sample analysis confirms the sensor’s practical applicability, with recoveries between 96.9% and 109.8% and RSDs of 2.4–4.8%. Finally, a comparative study with reported membrane sensors shows that β-CDP offers superior performance, wider range, higher sensitivity, lower LOD, and simpler synthesis. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

22 pages, 1070 KiB  
Article
Methods for Measuring Open Innovation’s Impact on Innovation Ecosystems in the Context of the European Innovation Scoreboard
by Kristaps Banga and Elina Gaile-Sarkane
Businesses 2025, 5(3), 29; https://doi.org/10.3390/businesses5030029 - 12 Jul 2025
Viewed by 479
Abstract
In today’s globalized and rapidly evolving technological landscape, innovation serves as a critical driver of economic growth and competitive advantage. The concept of an innovation ecosystem has emerged to elucidate the complex interactions among various stakeholders—including public sectors, startups, academia, businesses, NGOs, and [...] Read more.
In today’s globalized and rapidly evolving technological landscape, innovation serves as a critical driver of economic growth and competitive advantage. The concept of an innovation ecosystem has emerged to elucidate the complex interactions among various stakeholders—including public sectors, startups, academia, businesses, NGOs, and venture capitalists—who collaborate and compete to foster technological advancements and economic growth. Open innovation emphasizes leveraging external ideas alongside internal efforts to enhance innovation capabilities, fostering more dynamic and resilient systems. Additionally, learning from innovation failures plays a crucial role in shaping effective strategies for growth, as startups often translate these learnings into robust innovation frameworks. Given the increasing complexity and interconnectedness of innovation ecosystems, traditional metrics often fail to capture their dynamic and collaborative nature. The European Innovation Scoreboard (EIS) provides a comprehensive framework for assessing the innovation performance of EU countries, offering insights into the overall health and performance of innovation ecosystems. This review article addresses the need to identify metrics and methods for measuring open innovation’s impact on innovation ecosystems. Building upon foundational theories and empirical findings, this study proposes a framework for evaluating the impact of open innovation on innovation ecosystems. It integrates insights from the academic literature with EIS metrics to develop robust methods for assessing open innovation’s multifaceted influence. This review article is particularly relevant as firms and policymakers strive to understand which metrics are most affected by open innovation and how these can be leveraged to enhance the performance and sustainability of innovation ecosystems. Full article
Show Figures

Figure 1

21 pages, 358 KiB  
Systematic Review
The Role of University Professors’ Emotional Competencies in Students’ Academic and Psychological Well-Being: A Systematic Review
by Camilla Brandao De Souza and Alessandra Cecilia Jacomuzzi
Educ. Sci. 2025, 15(7), 882; https://doi.org/10.3390/educsci15070882 - 10 Jul 2025
Viewed by 575
Abstract
In higher education, the emotional intelligence (EI) of university professors, defined as the ability to perceive, understand, manage and utilize emotions effectively, is increasingly recognized as a pivotal factor in enhancing students’ academic achievement and psychological well-being. However, the scarcity of studies directly [...] Read more.
In higher education, the emotional intelligence (EI) of university professors, defined as the ability to perceive, understand, manage and utilize emotions effectively, is increasingly recognized as a pivotal factor in enhancing students’ academic achievement and psychological well-being. However, the scarcity of studies directly linking professors’ EI to students’ well-being highlights a critical research gap. This systematic review investigates how professors’ emotional competencies influence student outcomes—such as academic performance, engagement, motivation, and mental health—and identifies the factors that mediate or moderate these effects. Findings indicate that professors’ EI, particularly empathy, emotional regulation, and interpersonal skills, significantly enhances student engagement, motivation, and academic satisfaction, with indirect effects on psychological well-being. Cultural context, teaching modality (e.g., online vs. in-person), and professors’ age and experience moderate these effects and influence effect sizes. Qualitative synthesis further highlighted contextual gaps in the literature. The limited focus on well-being and outcomes and reliance on self-report measures underscore the need for longitudinal, culturally diverse studies and performance-based EI assessments. The value of this research lies in its potential to inform evidence-based educational practices and institutional policies. By elucidating the role of professors’ EI, the review lays the groundwork for developing faculty training programs aimed at strengthening emotional competencies and fostering inclusive, supportive learning environments that promote student growth and resilience. This is especially relevant given the growing prevalence of stress, anxiety, and disengagement among university students, exacerbated by post-pandemic challenges and academic pressures. Understanding the impact of EI can inform culturally responsive interventions, improve student retention, and enhance institutional effectiveness, thereby addressing a pressing need in contemporary higher education. In today’s rapidly evolving technological, social, and cultural landscape, universities have both the opportunity and the responsibility to act as catalysts for the creation of an educational culture that promotes social well-being. This requires adopting educational and organizational models that prioritize human care and the quality of interpersonal relationships. To be effective, these priorities must be integrated into all university operations, from governance to student support and talent development. Full article
(This article belongs to the Section Higher Education)
11 pages, 4201 KiB  
Proceeding Paper
Portable, Energy-Autonomous Electrochemical Impedance Spectroscopy (EIS) System Based on Python and Single-Board Computer
by Jhon Alvaro Cuastuza and Carlos Andrés Rosero-Zambrano
Eng. Proc. 2025, 87(1), 89; https://doi.org/10.3390/engproc2025087089 - 9 Jul 2025
Viewed by 234
Abstract
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager [...] Read more.
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager to power all components via a lithium-ion battery and solar panel. A commercial EmStat Pico Module and an amperometric biosensor with acetylcholinesterase (AChE) detect chlorpyrifos. Nine water samples with varying concentrations were tested using a 20 Hz–200 kHz frequency sweep and 15 mV excitation. Bode plots and statistical analyses confirmed statistically significant impedance variation as a function of chlorpyrifos concentration, validating the system as a portable, sensitive, and effective tool for environmental monitoring. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

27 pages, 4704 KiB  
Article
Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water
by Ioana Maior, Gabriela Elena Badea, Oana Delia Stănășel, Mioara Sebeșan, Anca Cojocaru, Anda Ioana Graţiela Petrehele, Petru Creț and Cristian Felix Blidar
Energies 2025, 18(14), 3634; https://doi.org/10.3390/en18143634 - 9 Jul 2025
Viewed by 332
Abstract
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of [...] Read more.
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of geothermal waters and their effect on thermal installations. Geothermal waters from Bihor County, Romania, have a variable composition, depending on the crossed geological layers, but also on pressure and temperature. Obviously, water transport and heat transfer are involved in all applications of geothermal waters. This article aims to characterize certain geothermal waters from the point of view of composition and corrosion if used as a thermal agent. Atomic absorption spectroscopy (AAS) and UV–Vis spectroscopy were employed to analyze water specimens. Chemical composition includes calcite (CaCO3), chalcedony (SiO2), goethite (FeO(OH)), and magnetite (Fe3O4), which confirms the corrosion and scale potential of these waters. Corrosion resistance of mild carbon steel, commonly used as pipe material, was studied by the gravimetric method and through electrochemical methodologies, including chronoamperometry, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization method, and open circuit potential measurement (OCP). Statistical analysis shows that the medium corrosion rate of S235 steel, expressed as penetration rate, is between 0.136 mm/year to 0.615 mm/year. The OCP, EIS, and chronoamperometry experiments explain corrosion resistance through the formation of a passive layer on the surface of the metal. This study proposes an innovative methodology and a systematic algorithm for analyzing chemical processes and corrosion phenomena in geothermal installations, emphasizing the necessity of individualized assessments for each aquifer to optimize operational parameters and ensure sustainable resource utilization. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Graphical abstract

24 pages, 12008 KiB  
Article
Electrochemical Behavior of the Ni3Al Intermetallic Alloy in Nitrate Salts
by Daniel Lopez-Dominguez, Nestor Belisario Gomez-Guzman, Cinthya Dinorah Arrieta-Gonzalez, Jonathan de la Vega Olivas, Jose Gonzalo Gonzalez-Rodriguez, Jesus Porcayo-Calderon and Jose Guadalupe Chacon-Nava
Metals 2025, 15(7), 764; https://doi.org/10.3390/met15070764 - 7 Jul 2025
Viewed by 269
Abstract
In this paper, the electrochemical performance of the NiAl intermetallic immersed in the 60% NaNO3-40% KNO3 (wt%) eutectic mixture, also known as Solar Salt, is reported. Mass loss measurements and electrochemical tests evaluate its behavior at different temperatures (300, 400, [...] Read more.
In this paper, the electrochemical performance of the NiAl intermetallic immersed in the 60% NaNO3-40% KNO3 (wt%) eutectic mixture, also known as Solar Salt, is reported. Mass loss measurements and electrochemical tests evaluate its behavior at different temperatures (300, 400, and 500 °C). Mass loss measurements are performed over 1000 h, and electrochemical tests over 100 h. The mass loss results show that the Ni3Al intermetallic exhibits excellent corrosion resistance under the test conditions. Electrochemical measurements confirm the excellent performance of the Ni3Al intermetallic in molten solar salt in the test temperature range. Experimental observations show that increasing temperature decreases the corrosion resistance of the intermetallic and favors the formation of protective layers of the Al2O3 and NaAlO2 types. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

16 pages, 1229 KiB  
Article
Nonlinear Hydrogen Bond Network in Small Water Clusters: Combining NMR, DFT, FT-IR, and EIS Research
by Ignat Ignatov, Yordan G. Marinov, Paunka Vassileva, Georgi Gluhchev, Ludmila A. Pesotskaya, Ivan P. Jordanov and Mario T. Iliev
Symmetry 2025, 17(7), 1062; https://doi.org/10.3390/sym17071062 - 4 Jul 2025
Cited by 1 | Viewed by 511
Abstract
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution [...] Read more.
Water’s unique physicochemical properties arise from its dynamic hydrogen-bonding network, yet the precise molecular threshold at which these cooperative behaviors emerge remains a key question. This study employed nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) calculations to investigate the evolution of hydrogen bonding strength in small water clusters, ranging from dimers to pentamers. The observed exponential increase in NMR chemical shift up to the pentamer reflects growing hydrogen bond cooperativity, identifying the (H2O)5 cluster as a critical structural and energetic threshold. At this size, the network achieves sufficient connectivity to support key bulk-like phenomena such as proton transfer and dielectric relaxation. These conclusions were corroborated by complementary FT-IR and electrochemical impedance spectroscopy (EIS) measurements of bulk water. Our results position the water pentamer as the molecular onset of emergent solvent behavior, effectively bridging the divide between discrete clusters and the macroscopic properties of liquid water. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

22 pages, 11408 KiB  
Article
The Influence of Beryllium Incorporation into an Al-5wt.%Cu-1wt.%Si Alloy on the Solidification Cooling Rate, Microstructural Length Scale, and Corrosion Resistance
by Joyce Ranay Santos, Milena Poletto Araújo, Talita Vida, Fabio Faria Conde, Noé Cheung, Amauri Garcia and Crystopher Brito
Metals 2025, 15(7), 736; https://doi.org/10.3390/met15070736 - 30 Jun 2025
Viewed by 327
Abstract
The addition of beryllium (Be) to Al–Cu alloys enhances their mechanical properties and corrosion resistance. This study aims to investigate the effects of solidification cooling rates and the addition of Be on the microstructural refinement and corrosion behavior of an Al–5wt.%Cu–1wt.%Si–0.5wt.%Be alloy. Radial [...] Read more.
The addition of beryllium (Be) to Al–Cu alloys enhances their mechanical properties and corrosion resistance. This study aims to investigate the effects of solidification cooling rates and the addition of Be on the microstructural refinement and corrosion behavior of an Al–5wt.%Cu–1wt.%Si–0.5wt.%Be alloy. Radial solidification under unsteady-state conditions was performed using a stepped brass mold, producing four distinct cooling rates. An experimental growth law, λ2 = 26T˙1/3, was established, confirming the influence of Be and the cooling rate on dendritic size reduction. The final microstructure was characterized by an α-Al dendritic matrix with eutectic compounds (α-Al + θ-Al2Cu + Si + Fe-rich phase) confined to the interdendritic regions. No Be-containing intermetallic phases were detected, and beryllium remained homogeneously distributed within the eutectic. Notably, Be addition promoted a morphological transformation of the Fe-rich phases from angular or acicular forms into a Chinese-script-like structure, which is associated with reduced local stress concentrations. Tensile tests revealed an ultimate tensile strength of 248.8 ± 11.2 MPa and elongation of approximately 6.4 ± 0.5%, indicating a favorable balance between strength and ductility. Corrosion resistance assessment by EIS and polarization tests in a 0.06 M NaCl solution showed a corrosion rate of 28.9 µm·year−1 and an Epit of −645 mV for the Be-containing alloy, which are lower than those measured for the reference Al–Cu and Al–Cu–Si alloys. Full article
Show Figures

Figure 1

Back to TopTop