Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = Dirac–Hartree–Fock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 875 KiB  
Article
Multi-Configuration Dirac–Hartree–Fock Calculations of Pr9+ and Nd10+: Configuration Resolution and Probing Fine-Structure Constant Variation
by Songya Zhang, Cunqiang Wu, Chenzhong Dong and Xiaobin Ding
Atoms 2025, 13(6), 54; https://doi.org/10.3390/atoms13060054 - 16 Jun 2025
Viewed by 391
Abstract
We present high-precision multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for the metastable states of Pr9+ and Nd10+ ions, systematically investigating their energy levels, transition properties, Landé gJ factors, and hyperfine interaction constants. Our results show excellent agreement with available experimental [...] Read more.
We present high-precision multi-configuration Dirac–Hartree–Fock (MCDHF) calculations for the metastable states of Pr9+ and Nd10+ ions, systematically investigating their energy levels, transition properties, Landé gJ factors, and hyperfine interaction constants. Our results show excellent agreement with available experimental data and theoretical benchmarks, while resolving critical configuration assignment discrepancies through detailed angular momentum coupling analysis. The calculations highlight the significant role of Breit interaction and provide the first theoretical predictions of electric quadrupole hyperfine constants (Bhfs). These findings deliver essential atomic data for the development of next-generation optical clocks and establish lanthanide highly charged ions as exceptional candidates for precision tests of fundamental physics. Full article
(This article belongs to the Special Issue Atomic and Molecular Data and Their Applications: ICAMDATA 2024)
Show Figures

Figure 1

10 pages, 509 KiB  
Article
Energy Levels, Lifetimes, and Transition Properties for N iiiv
by Meichun Li, Juan Du, Kaijian Huang and Wenxian Li
Atoms 2025, 13(6), 49; https://doi.org/10.3390/atoms13060049 - 6 Jun 2025
Viewed by 866
Abstract
We present excitation energies, transition wavelengths, electric dipole (E1) transition rates, oscillator strengths, line strengths, and lifetimes for the 86 lowest states up to and including 1s22s27f in N iii, the 125 lowest states up [...] Read more.
We present excitation energies, transition wavelengths, electric dipole (E1) transition rates, oscillator strengths, line strengths, and lifetimes for the 86 lowest states up to and including 1s22s27f in N iii, the 125 lowest states up to and including 1s22s7f in N iv, and the 53 lowest states up to 1s28g in N v using the multiconfiguration Dirac–Hartree–Fock (MCDHF) and relativistic configuration interaction (RCI) methods. The computed results are then compared with data from the Atomic Spectra Database of the National Institute of Standards and Technology (NIST-ASD), experimental results, and other theoretical studies. For all levels in N iiiv, the root mean square energy differences from the NIST values are 130, 103, and 6 cm−1, respectively. Compared to previous multiconfiguration Hartree–Fock and the Breit–Pauli (MCHF-BP) calculations, 89.3%, 98.5%, and 100% of the log(gf) values for N iiiv agree within 5%, respectively. Full article
(This article belongs to the Special Issue Atomic and Molecular Data and Their Applications: ICAMDATA 2024)
Show Figures

Figure 1

18 pages, 5982 KiB  
Article
Relativistic Atomic Structure Calculations for the Study of Electron Dynamics of Sr+ Ion Confined Inside Fullerene
by Biplab Goswami, Mobassir Ahmad, Jobin Jose and Raghavan K. Easwaran
Atoms 2025, 13(4), 36; https://doi.org/10.3390/atoms13040036 - 18 Apr 2025
Viewed by 349
Abstract
This article presents the maiden investigation of the electronic structural properties of the Sr+ ion confined inside fullerene. The Dirac equations are solved to calculate the energy levels, probability distributions, etc. for various confinement depths of the Gaussian Annular Square Well (GASW) [...] Read more.
This article presents the maiden investigation of the electronic structural properties of the Sr+ ion confined inside fullerene. The Dirac equations are solved to calculate the energy levels, probability distributions, etc. for various confinement depths of the Gaussian Annular Square Well (GASW) potential using the Multi-Configuration Dirac Hartree–Fock (MCDHF) formalism. The wavelengths, transition probabilities, and oscillator strengths are reported for the 5S1/25P1/2 (D1 line) and 5S1/25P3/2 (D2 line) transitions of the encapsulated ion. We also estimate variations in the line intensity ratio, electron density, Coulomb coupling parameter, etc. A suggested direction for the calculation of electron impact ionization cross-section using the binary-encounter Bethe (BEB) model with the present data is also given. Full article
Show Figures

Figure 1

14 pages, 749 KiB  
Article
Modelling of X-Ray Spectra Originating from the He- and Li-like Ni Ions for Plasma Electron Temperature Diagnostics Purposes
by Karol Kozioł, Andrzej Brosławski and Jacek Rzadkiewicz
Atoms 2025, 13(2), 18; https://doi.org/10.3390/atoms13020018 - 9 Feb 2025
Viewed by 695
Abstract
The multi-configurational Dirac–Hartree–Fock method has been used to examine the electron correlation effect on wavelengths and transition rates for LK transitions occurring in He- and Li-like nickel ions. The collisional-radiative modelling approach has been used to simulate the X-ray spectra, in [...] Read more.
The multi-configurational Dirac–Hartree–Fock method has been used to examine the electron correlation effect on wavelengths and transition rates for LK transitions occurring in He- and Li-like nickel ions. The collisional-radiative modelling approach has been used to simulate the X-ray spectra, in a 1.585–1.620 Å wavelength range, originating from the He-like nickel ions and their dielectronic Li-, Be-, and B-like satellites for various electron temperature values in the 2 keV to 8 keV range. The presented results may be useful in improving the plasma electron temperature diagnostics based on nickel spectra. Full article
(This article belongs to the Special Issue Atom and Plasma Spectroscopy)
Show Figures

Figure 1

18 pages, 1928 KiB  
Article
Calculated Transition Probabilities for Os VI Spectral Lines of Interest to Nuclear Fusion Research
by Maxime Brasseur, Patrick Palmeri and Pascal Quinet
Atoms 2025, 13(2), 11; https://doi.org/10.3390/atoms13020011 - 21 Jan 2025
Viewed by 916
Abstract
In this work, we present a new set of transition probabilities for experimentally classified spectral lines in the Os VI spectrum. To do this, two independent computational approaches based on the pseudo-relativistic Hartree–Fock, including core polarization effects (HFR+CPOL) and fully relativistic Multiconfiguration Dirac–Hartree–Fock [...] Read more.
In this work, we present a new set of transition probabilities for experimentally classified spectral lines in the Os VI spectrum. To do this, two independent computational approaches based on the pseudo-relativistic Hartree–Fock, including core polarization effects (HFR+CPOL) and fully relativistic Multiconfiguration Dirac–Hartree–Fock (MCDHF) methods, were used, with the detailed comparison of the results obtained with these two approaches allowing us to estimate the quality of the calculated radiative parameters. These atomic data, corresponding to 367 lines of five-times ionized osmium between 438.720 and 1486.275 Å, are expected to be useful for the analysis of the spectra emitted by fusion plasmas in which osmium could appear as a result of transmutation by the neutron bombardment of tungsten used as component of the reactor wall, such as the ITER divertor. Full article
(This article belongs to the Special Issue Atom and Plasma Spectroscopy)
Show Figures

Figure 1

7 pages, 310 KiB  
Article
Calculation of the Breit–Rosenthal Effect in Bi I
by Tarje Arntzen Røger and Jonas R. Persson
Atoms 2024, 12(12), 72; https://doi.org/10.3390/atoms12120072 - 20 Dec 2024
Viewed by 715
Abstract
Corrections to the measured nuclear magnetic moments obtained from hyperfine structure measurements include the Breit–Rosenthal effect. In this paper, we present results from calculations on Bi using the GRASP2018 code. The results indicate that the Breit–Rosenthal effect is on the order of 0.1 [...] Read more.
Corrections to the measured nuclear magnetic moments obtained from hyperfine structure measurements include the Breit–Rosenthal effect. In this paper, we present results from calculations on Bi using the GRASP2018 code. The results indicate that the Breit–Rosenthal effect is on the order of 0.1%fm2, the same order of magnitude as neighbouring elements, while some atomic states may have one order of magnitude smaller values. The ground state 6p3 S3/2o4 is more sensitive to the Breit–Rosenthal effect, and hence the hyperfine anomaly, with a value of −0.25%fm2. Full article
Show Figures

Figure 1

26 pages, 3162 KiB  
Article
Ab Initio Manganese Kα and Kβ Energy Eigenvalues, Shake-Off Probabilities, Auger Rates, with Convergence Tests
by Jonathan William Dean, Scott Neil Thompson and Christopher Thomas Chantler
Molecules 2024, 29(17), 4199; https://doi.org/10.3390/molecules29174199 - 4 Sep 2024
Cited by 1 | Viewed by 1071
Abstract
This work presents ab initio calculations for the Kα spectrum of manganese (Z = 25, [Ar]3d54s2), a highly complex system due to the five open orbitals in the 3d shell. The spectrum is composed [...] Read more.
This work presents ab initio calculations for the Kα spectrum of manganese (Z = 25, [Ar]3d54s2), a highly complex system due to the five open orbitals in the 3d shell. The spectrum is composed of the canonical diagram line [1s][2p] and shake-off satellite lines [1snl][2pnl] (nl{2s,2p,3s,3p,3d,4s}), where square brackets denote a hole state. The multiconfiguration Dirac–Hartree–Fock method with the active set approach provides the initial and final atomic wavefunctions. Results are presented as energy eigenvalue spectra for the diagram and satellite transitions. The calculated wavefunctions include over one hundred million configuration state functions and over 280,000 independent transition energies for the seven sets of spectra considered. Shake-off probabilities and Auger transition rates determine satellite intensities. The number of configuration state functions ensures highly-converged wavefunctions. Several measures of convergence demonstrate convergence in the calculated parameters. We obtain convergence of the transition energies in all eight transitions to within 0.06 eV and shake-off probabilities to within 4.5%. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

16 pages, 386 KiB  
Article
Natural Orbitals and Targeted Non-Orthogonal Orbital Sets for Atomic Hyperfine Structure Multiconfiguration Calculations
by Mingxuan Ma, Yanting Li, Michel Godefroid, Gediminas Gaigalas, Jiguang Li, Jacek Bieroń, Chongyang Chen, Jianguo Wang and Per Jönsson
Atoms 2024, 12(6), 30; https://doi.org/10.3390/atoms12060030 - 29 May 2024
Cited by 2 | Viewed by 2029
Abstract
Hyperfine structure constants have many applications, but are often hard to calculate accurately due to large and canceling contributions from different terms of the hyperfine interaction operator, and also from different closed and spherically symmetric core subshells that break up due to electron [...] Read more.
Hyperfine structure constants have many applications, but are often hard to calculate accurately due to large and canceling contributions from different terms of the hyperfine interaction operator, and also from different closed and spherically symmetric core subshells that break up due to electron correlation effects. In multiconfiguration calculations, the wave functions are expanded in terms of configuration state functions (CSFs) built from sets of one-electron orbitals. The orbital sets are typically enlarged within the layer-by-layer approach. The calculations are energy-driven, and orbitals in each new layer of correlation orbitals are spatially localized in regions where the weighted total energy decreases the most, overlapping and breaking up different closed core subshells in an irregular pattern. As a result, hyperfine structure constants, computed as expectation values of the hyperfine operators, often show irregular or oscillating convergence patterns. Large orbital sets, and associated large CSF expansions, are needed to obtain converged values of the hyperfine structure constants. We analyze the situation for the states of the {2s22p3,2s22p23p,2s22p24p} odd and {2s22p23s,2s2p4,2s22p24s,2s22p23d} even configurations in N I, and show that the convergence with respect to the increasing sets of orbitals is radically improved by introducing separately optimized orbital sets targeted for describing the spin- and orbital-polarization effects of the 1s and 2s core subshells that are merged with, and orthogonalized against, the ordinary energy-optimized orbitals. In the layer-by-layer approach, the spectroscopic orbitals are kept frozen from the initial calculation and are not allowed to relax in response to the introduced layers of correlation orbitals. To compensate for this lack of variational freedom, the orbitals are transformed to natural orbitals prior to the final calculation based on single and double substitutions from an increased multireference set. The use of natural orbitals has an important impact on the states of the 2s22p23s configuration, bringing the corresponding hyperfine interaction constants in closer agreement with experiment. Relying on recent progress in methodology, the multiconfiguration calculations are based on configuration state function generators, cutting down the time for spin-angular integration by factors of up to 50, compared to ordinary calculations. Full article
Show Figures

Figure 1

14 pages, 458 KiB  
Article
A Systematic Study of Two-Neutrino Double Electron Capture
by Ovidiu Niţescu, Stefan Ghinescu, Sabin Stoica and Fedor Šimkovic
Universe 2024, 10(2), 98; https://doi.org/10.3390/universe10020098 - 17 Feb 2024
Cited by 6 | Viewed by 1897
Abstract
In this paper, we update the phase-space factors for all two-neutrino double electron capture processes. The Dirac–Hartree–Fock–Slater self-consistent method is employed to describe the bound states of captured electrons, enabling a more realistic treatment of atomic screening and more precise binding energies of [...] Read more.
In this paper, we update the phase-space factors for all two-neutrino double electron capture processes. The Dirac–Hartree–Fock–Slater self-consistent method is employed to describe the bound states of captured electrons, enabling a more realistic treatment of atomic screening and more precise binding energies of the captured electrons compared to previous investigations. Additionally, we consider all s-wave electrons available for capture, expanding beyond the K and L1 orbitals considered in prior studies. For light atoms, the increase associated with additional captures compensates for the decrease in decay rate caused by the more precise atomic screening. However, for medium and heavy atoms, an increase in the decay rate, up to 10% for the heaviest atoms, is observed due to the combination of these two effects. In the systematic analysis, we also include capture fractions for the first few dominant partial captures. Our precise model enables a close examination of low Q-value double electron capture in 152Gd, 164Er, and 242Cm, where partial KK captures are energetically forbidden. Finally, with the updated phase-space values, we recalculate the effective nuclear matrix elements and compare their spread with those associated with 2νββ decay. Full article
Show Figures

Figure 1

11 pages, 650 KiB  
Article
Calculation of the Differential Breit-Rosenthal Effect in Pb
by Martin Kinden Karlsen and Jonas R. Persson
Atoms 2024, 12(1), 5; https://doi.org/10.3390/atoms12010005 - 16 Jan 2024
Cited by 1 | Viewed by 1999
Abstract
Recent advancements in studying long chains of unstable nuclei have revitalised interest in investigating the hyperfine anomaly. Hyperfine anomaly is particularly relevant for determining nuclear magnetic dipole moments using hyperfine structures where it limits the accuracy. This research paper focuses on the calculation [...] Read more.
Recent advancements in studying long chains of unstable nuclei have revitalised interest in investigating the hyperfine anomaly. Hyperfine anomaly is particularly relevant for determining nuclear magnetic dipole moments using hyperfine structures where it limits the accuracy. This research paper focuses on the calculation of the differential Breit-Rosenthal effect for the 6p23P1,2, 1D2 and 6p7s3P1 states in Pb, utilising the multi-configurational Dirac-Hartree-Fock code, GRASP2018. The findings show that the differential Breit-Rosenthal effect is typically less than 0.1/fm2, which is often much smaller than the Bohr-Weisskopf effect. The differential Breit-Rosenthal effect for the 6p23P2 state is one order of magnitude smaller than the rest, which is why this state seems to be insensible to the hyperfine anomaly. Full article
Show Figures

Figure 1

25 pages, 8162 KiB  
Article
Study of Electron Impact Excitation of Na-like Kr Ion for Impurity Seeding Experiment in Large Helical Device
by Shivam Gupta, Tetsutarou Oishi and Izumi Murakami
Atoms 2023, 11(11), 142; https://doi.org/10.3390/atoms11110142 - 5 Nov 2023
Cited by 4 | Viewed by 2627
Abstract
In this work, a krypton gas impurity seeding experiment was conducted in a Large Helical Device. Emission lines from the Na-like Kr ion in the extreme ultraviolet wavelength region, such as 22.00 nm, 17.89 nm, 16.51 nm, 15.99 nm, and 14.08 nm, respective [...] Read more.
In this work, a krypton gas impurity seeding experiment was conducted in a Large Helical Device. Emission lines from the Na-like Kr ion in the extreme ultraviolet wavelength region, such as 22.00 nm, 17.89 nm, 16.51 nm, 15.99 nm, and 14.08 nm, respective to 2p63p(2P1/2o)2p63s(2S1/2), 2p63p(2P3/2o)2p63s(2S1/2), 2p63d(2D3/2)2p63p(2P3/2o), 2p63d(2D5/2)2p63p(2P3/2o), and 2p63d(2D3/2)2p63p(2P1/2o) transitions, are observed. In order to generate a theoretical synthetic spectrum, an extensive calculation concerning the excitation of the Kr25+ ion through electron impact was performed for the development of a suitable plasma model. For this, the relativistic multiconfiguration Dirac–Hartree–Fock method was employed along with its extension to the relativistic configuration interaction method to compute the relativistic bound-state wave functions and excitation energies of the fine structure levels using the General Relativistic Atomic Structure Package-2018. In addition, another set of calculations was carried out utilizing the relativistic many-body perturbation theory and relativistic configuration interaction methods integrated within the Flexible Atomic Code. To investigate the reliability of our findings, the results of excitation energies, transition probabilities, and weighted oscillator strengths of different dipole-allowed transitions obtained from these different methods are presented and compared with the available data. Further, the detailed electron impact excitation cross-sections and their respective rate coefficients are obtained for various fine structure resolved transitions using the fully relativistic distorted wave method. Rate coefficients, calculated using the Flexible Atomic Code for population and de-population kinetic processes, are integrated into the collisional-radiative plasma model to generate a theoretical spectrum. Further, the emission lines observed from the Kr25+ ion in the impurity seeding experiment were compared with the present plasma model spectrum, demonstrating a noteworthy overall agreement between the measurement and the theoretical synthetic spectrum. Full article
(This article belongs to the Special Issue Atomic Processes for Plasma Modeling Applications)
Show Figures

Figure 1

21 pages, 397 KiB  
Article
Fine-Tuning of Atomic Energies in Relativistic Multiconfiguration Calculations
by Yanting Li, Gediminas Gaigalas, Wenxian Li, Chongyang Chen and Per Jönsson
Atoms 2023, 11(4), 70; https://doi.org/10.3390/atoms11040070 - 8 Apr 2023
Cited by 3 | Viewed by 2120
Abstract
Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in [...] Read more.
Ab initio calculations sometimes do not reproduce the experimentally observed energy separations at a high enough accuracy. Fine-tuning of diagonal elements of the Hamiltonian matrix is a process which seeks to ensure that calculated energy separations of the states that mix are in agreement with experiment. The process gives more accurate measures of the mixing than can be obtained in ab initio calculations. Fine-tuning requires the Hamiltonian matrix to be diagonally dominant, which is generally not the case for calculations based on jj-coupled configuration state functions. We show that this problem can be circumvented by a method that transforms the Hamiltonian in jj-coupling to a Hamiltonian in LSJ-coupling for which fine-tuning applies. The fine-tuned matrix is then transformed back to a Hamiltonian in jj-coupling. The implementation of the method into the General Relativistic Atomic Structure Package is described and test runs to validate the program operations are reported. The new method is applied to the computation of the 2s21S02s2p1,3P1 transitions in C III and to the computation of Rydberg transitions in B I, for which the 2s2p22S1/2 perturber enters the 2s2ns2S1/2 series. Improved convergence patterns and results are found compared with ab initio calculations. Full article
(This article belongs to the Special Issue The General Relativistic Atomic Structure Package—GRASP)
Show Figures

Figure 1

369 pages, 1459 KiB  
Article
GRASP Manual for Users
by Per Jönsson, Gediminas Gaigalas, Charlotte Froese Fischer, Jacek Bieroń, Ian P. Grant, Tomas Brage, Jörgen Ekman, Michel Godefroid, Jon Grumer, Jiguang Li and Wenxian Li
Atoms 2023, 11(4), 68; https://doi.org/10.3390/atoms11040068 - 5 Apr 2023
Cited by 45 | Viewed by 5770
Abstract
grasp is a software package in Fortran 95, adapted to run in parallel under MPI, for research in atomic physics. The basic premise is that, given a wave function, any observed atomic property can be computed. Thus, the first step is always to [...] Read more.
grasp is a software package in Fortran 95, adapted to run in parallel under MPI, for research in atomic physics. The basic premise is that, given a wave function, any observed atomic property can be computed. Thus, the first step is always to determine a wave function. Different properties challenge the accuracy of the wave function in different ways. This software is distributed under the MIT Licence. Full article
(This article belongs to the Special Issue The General Relativistic Atomic Structure Package—GRASP)
Show Figures

Figure 1

25 pages, 761 KiB  
Article
Performance Tests and Improvements on the rmcdhf and rci Programs of GRASP
by Yanting Li, Jinqing Li, Changxian Song, Chunyu Zhang, Ran Si, Kai Wang, Michel Godefroid, Gediminas Gaigalas, Per Jönsson and Chongyang Chen
Atoms 2023, 11(1), 12; https://doi.org/10.3390/atoms11010012 - 13 Jan 2023
Cited by 11 | Viewed by 2774
Abstract
The latest published version of GRASP (General-purpose Relativistic Atomic Structure Package), i.e., GRASP2018, retains a few suboptimal subroutines/algorithms, which reflect the limited memory and file storage of computers available in the 1980s. Here we show how the efficiency of the relativistic self-consistent-field (SCF) [...] Read more.
The latest published version of GRASP (General-purpose Relativistic Atomic Structure Package), i.e., GRASP2018, retains a few suboptimal subroutines/algorithms, which reflect the limited memory and file storage of computers available in the 1980s. Here we show how the efficiency of the relativistic self-consistent-field (SCF) procedure of the multiconfiguration-Dirac–Hartree–Fock (MCDHF) method and the relativistic configuration-interaction (RCI) calculations can be improved significantly. Compared with the original GRASP codes, the present modified version reduces the CPU times by factors of a few tens or more. The MPI performances for all the original and modified codes are carefully analyzed. Except for diagonalization, all computational processes show good MPI scaling. Full article
(This article belongs to the Special Issue The General Relativistic Atomic Structure Package—GRASP)
Show Figures

Figure 1

44 pages, 978 KiB  
Article
An Introduction to Relativistic Theory as Implemented in GRASP
by Per Jönsson, Michel Godefroid, Gediminas Gaigalas, Jörgen Ekman, Jon Grumer, Wenxian Li, Jiguang Li , Tomas Brage, Ian P. Grant, Jacek Bieroń and Charlotte Froese Fischer
Atoms 2023, 11(1), 7; https://doi.org/10.3390/atoms11010007 - 31 Dec 2022
Cited by 48 | Viewed by 6158
Abstract
Computational atomic physics continues to play a crucial role in both increasing the understanding of fundamental physics (e.g., quantum electrodynamics and correlation) and producing atomic data for interpreting observations from large-scale research facilities ranging from fusion reactors to high-power laser systems, space-based telescopes [...] Read more.
Computational atomic physics continues to play a crucial role in both increasing the understanding of fundamental physics (e.g., quantum electrodynamics and correlation) and producing atomic data for interpreting observations from large-scale research facilities ranging from fusion reactors to high-power laser systems, space-based telescopes and isotope separators. A number of different computational methods, each with their own strengths and weaknesses, is available to meet these tasks. Here, we review the relativistic multiconfiguration method as it applies to the General Relativistic Atomic Structure Package [grasp2018, C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń, Comput. Phys. Commun. (2018). DOI: 10.1016/j.cpc.2018.10.032]. To illustrate the capacity of the package, examples of calculations of relevance for nuclear physics and astrophysics are presented. Full article
(This article belongs to the Special Issue The General Relativistic Atomic Structure Package—GRASP)
Show Figures

Figure 1

Back to TopTop