Abstract
grasp is a software package in Fortran 95, adapted to run in parallel under MPI, for research in atomic physics. The basic premise is that, given a wave function, any observed atomic property can be computed. Thus, the first step is always to determine a wave function. Different properties challenge the accuracy of the wave function in different ways. This software is distributed under the MIT Licence.
1. GRASP for Atomic Physics
1.1. Relativistic vs. Non-Relativistic Calculations
The General Relativistic Atomic Structure Package (grasp) is based on the fully relativistic (four-component) multiconfiguration Dirac–Hartree–Fock (MCDHF) method and is suitable for medium to heavy atomic systems. For light and near neutral systems, where relativistic effects often (though not always) are comparatively small, the Atsp2K Atomic Structure Package [1], based on the non-relativistic multiconfiguration Hartree–Fock (MCHF) method with Breit–Pauli (BP) relativistic corrections, may be a better choice. The MCHF-BP method allows symmetries to be used, which often makes it possible to include more electron correlation. In addition, semi-empirical fine-tuning of the energies can be done, that leads to more accurate results, especially in cases with closely degenerate states. Atsp2K and the corresponding manual can be downloaded from GitHub: https://github.com/compas, accessed on 5 November 2022.
1.2. Features of the Package
The first grasp manual, distributed in 1980, described how a deck of cards needed to be assembled and submitted with the program deck that computed both the wave function and, say, a transition probability. Wave function expansions were just a few configuration state functions (CSFs). Its successor, Grasp92 was quite different. It divided the problem into stages so that all resources available could be used at every stage, and intermediate results were stored. The basic strategy was similar to that of Atsp2K, thereby it became a package rather than a single program. In time, the typical expansion size of a wave function has increased from 100–1000 to 5–50 millions today. What we are describing is the current version that still is evolving. This grasp, like its predecessors, is based on the MCDHF method; see [2,3] for an account of the general theory. The package consists of a number of application programs and tools to compute approximate relativistic wave functions, from which atomic properties such as energy levels, hyperfine structures, Landé -factors, isotope shifts, interactions with external fields, angular couplings for labeling purposes, radial electron density functions and transition energies and transition probabilities for many-electron atomic systems can be computed. There are also some graphical utilities. The application programs and tools, along with the underlying theory, are described in the original write-ups [4,5,6,7,8,9,10,11,12,13,14,15,16]. The present manual updates the previous version (Grasp2018[4]), to include also the most recent application programs. For convenience, the theory, as it applies to all the programs described in this manual, is presented in the accompanying paper [17] in the present Special Issue. The manual and the accompanying theory paper (or TP for short) go hand in hand, and we will refer to the latter in the coming sections. Using grasp, research into highly accurate transition energies and transition rates as well as detailed electron nucleus interactions becomes feasible for a wide range of atomic systems.
The main features of the package are as follows:
- There are efficient and easy to use programs to generate lists of CSFs that capture different electron correlation effects. The concepts of CSFs and electron correlation are discussed in TP Sections 2.4 and 4.
- The interaction matrix, see TP Sections 2.2 and 2.8, is considered to be a series of sparse non-interacting blocks of given parity and J value, with selected eigenvalues and eigenvectors determined from each. For a description of the sparse Davidson eigenvalues library module, see [18].
- Spin-angular integrations are based on second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasi-spin), and a generalized graphical technique. The theoretical background can be found in [19,20,21] as well as in TP Section 2. The spin-angular library is fully documented by Gaigalas [22] in the present Special Issue.
- Wave functions in -coupling can be transformed to a basis of -coupled CSFs, see [23,24,25,26] and TP Section 2.9. Labels in -coupling are used by several programs in the package.
- Wave function in -coupling can be transformed to a basis of several other, e.g., , , coupling schemes CSFs, see [14]. Labels in different coupling schemes are used by many programs in the package.
- Separately optimized initial and final state wave functions can be used to compute transition rates. The non-orthogonality between initial and final state radial orbitals is handled by an efficient biorthonormal transformation technique. The computation of transition rates and the use of transformation techniques are described in TP Section 3.5, see also [27].
- The interaction between the electrons and extended and deformed nuclei can be described in a model independent way. The background assumptions are given in [12] as well as in TP Section 3.3.
- MPI codes for parallel processing are available for the most time-consuming programs of the package.
- Zero- and first-order perturbative methods can be used to handle large CSF expansions; see [2,28] and TP Section 2.8.
1.3. Downloading and Installing GRASP
grasp is a series of libraries, application programs and tools written in Fortran 95 and adapted to run in parallel under MPI, a language-independent communication protocol. In addition, there are GNU Octave and Matlab M-files for graphical purposes. grasp can be downloaded from GitHub: https://github.com/compas, accessed on 5 November 2022. The downloaded package contains the following directories:
The package can be installed using CMake, that generates the necessary build files for either the GNU gfortran or Intel (ifort or ifx) compilers. For backward compatibility, the package can also be installed by running a pre-defined makefile. Detailed instructions can be found on GitHub: https://github.com/compas, accessed on 5 November 2022. Upon successful installation the following 6 static library files, where the suffix .a stands for archive, should appear in the lib directory
The following 25 executable application programs should be found in the bin directory, where the extension _mpi indicates that the executable can be run in parallel under MPI
The following 24 executable tools should also be found in the bin directory.
In addition, there are 4 script files
The use of each of the application programs, tools, and script files will be discussed in the following sections.
| bin | directory where, after compilation, the executables reside |
| lib | directory where, after compilation, the static library archives reside |
| src | directory with the subdirectories appl, containing the source code |
| for the application programs, lib, containing the source code for the | |
| libraries and tool, containing the source code for the tools. | |
| grasptest | directory containing scripts for all the test runs and examples in this manual |
| lib9290.a | libmcp90.a | libmpiu90.a | libdvd90.a | libmod.a | librang90.a |
| hf | jj2lsj | jjgen | rangular | rangular_mpi |
| rbiotransform | rbiotransform_mpi | rci | rci_mpi | rcsfgenerate |
| rcsfinteract | rcsfzerofirst | rdensity | rhfs | hfszeeman95 |
| ris4 | rmcdhf | rmcdhf_mem | rmcdhf_mpi | rmcdhf_mem_mpi |
| rnucleus | rtransition | rtransition_mpi | rtransition_phase | rwfnestimate |
| rasfsplit | rcsfblock | rcsfmr | rcsfsplit | rhfs_lsj |
| rlevelseV | rlevels | rmixaccumulate | rmixextract | rseqenergy |
| rseqhfs | rseqtrans | rtabhfs | rtablevels | rtabtrans1 |
| rtabtrans2 | rtabtransE1 | rwfnmchfmcdf | rwfnplot | rwfnrelabel |
| rwfnrotate | rwfntotxt | wfnplot | fical |
| lscomp.pl | mithit | rsave | rwfnpyplot |
The Coupling program, that is used to find the optimal coupling schemes, can be downloaded from https://github.com/compas/coupling, accessed on 5 November 2022. In this manual, we assume that the Coupling program has been installed and that the corresponding binary file is on the path.
1.4. Changing Parameters in the Package
The application programs are written in terms of some basic parameters. Most, but not all, are set in the directory GRASP2018/src/lib/libmod and can be changed by editing the file parameter_def_M.f90. These include parameters that define the grid, see TP Section 2.2. Often changes are with respect to the location of the first point away from the origin, defined in terms of a variable RNT that changes the number of points of the grid. The above installation sets the maximum number of grid points NNNP for representing the radial parts of the one-electron orbitals to the default value NNNP=590. This default value works fine in most cases. For heavy or super heavy elements, it is sometimes necessary to extend the number of grid points. Another parameter defining the grid is the step-size H. Reducing this parameter would improve the numerical accuracy of the calculations but, at the same time, might require an increase of the number of grid-points. To install the program with an extended grid, start by deleting the old executables and libraries in the GRASP2018/bin and GRASP2018/lib directories by issuing the make clean command in the GRASP2018/src directory and change the number of grid points from NNNP=590 to a larger value, say NNNP=1990. At the same time, set NNN1=2000 (NNN1 = NNNP + 10). Recompile all the package. After recompilation, all programs and tools in the GRASP2018/bin directory will be based on the extended grid. Unless explicitly stated, all examples in this guide are based on programs with the default grid NNNP=590. In Section 13.5, however, we have a specific example with an extended grid.
The rci programs (including the MPI version) have a parameter NINCOR that decides whether the eigenvalue problem stores the interaction matrix in memory or on disk, in terms of the memory requirement for all the non-zero matrix elements. This parameter has been increased to the number of double precision matrix elements that can be stored in 2 Gigabytes of memory. For the MPI version, this is a memory requirement per CPU. Another parameter is IOLPCK that determines whether matrices are stored in a sparse format and solved by the Davidson method or are small enough to be stored in the dense, symmetric matrix format and eigenvalues computed using a Lapack routine. This parameter is set to 2000. Both parameters can be modified by the user.
1.5. Citing the Package
Developing computational methods and programs is challenging, often requiring intensive effort. The work needs to be properly acknowledged and quoted in order to be continued.
- Users of the current package should quote the most recent publication:C. Froese Fischer, G. Gaigalas, P. Jönsson and J. BierońGrasp 2018 - A Fortran 95 version of the General Relativistic Atomic Structure Packagehttps://doi.org/10.1016/j.cpc.2018.10.032, accessed on 5 November 2022.
- In addition, when applicable, users of ris4 should quote it as:J. Ekman, P. Jönsson, M. Godefroid, C. Nazé, G. Gaigalas and J. BierońRis 4: A program for relativistic isotope shift calculationshttps://doi.org/10.1016/j.cpc.2018.08.017, accessed on 5 November 2022.
- Users of Coupling should quote it as:G. GaigalasCoupling: The program for searching optimal coupling scheme in atomic theoryhttps://doi.org/10.1016/j.cpc.2019.106960, accessed on 5 November 2022.
- Users of Hfszeeman95 should quote it as:W. Li, J. Grumer, T. Brage and P. JönssonHfszeeman95—A program for computing weak and intermediate magnetic-field- and hyperfine-induced transition rateshttps://doi.org/10.1016/j.cpc.2020.107211, accessed on 5 November 2022.
- Users of Rdensity should quote it as:S. Schiffmann, J.G. Li, J. Ekman, G. Gaigalas, M. Godefroid, P. Jönsson and J. BierońRelativistic radial electron density functions and natural orbitals from GRASP2018https://doi.org/10.1016/j.cpc.2022.108403, accessed on 5 November 2022.
1.6. Reporting Errors
The programs and tools have been extensively tested and used, but as new calculations are tried, errors may be encountered. If you, the user of the program package, have reasons to believe that there is an error somewhere in the package, please send an email to one of the authors specifying the case that resulted in the error. Additionally, if there are sections in this manual that are unclear, please let us know. Better yet, if you find the needed correction, let us know so that others may benefit as well.
2. Package Structure and File Flow
2.1. Program Naming Conventions
In multiconfiguration calculations, the wave function for an atomic state is approximated by an atomic state function (ASF). The ASF, in turn, is given as an expansion over CSFs
Here denote the configurations together with the angular coupling trees, is parity, J is the total angular quantum number, and are the expansion (mixing) coefficients. The CSFs are given as coupled anti-symmetric products of one-electron orbitals
where the radial parts of the orbitals (the radial wave functions) are numerically represented on a grid, see TP Sections 2.1, 2.2 and 2.4 for a description of the CSFs and their construction. (In the guide the three terms radial orbital, radial part of the orbital, and radial wave function will be used intermixed meaning the same thing. Sometimes we will also loosely speak about the orbitals, meaning the radial parts of the orbitals.)
Given this description, we identify three main concepts:
- lists of CSFs defining the ASFs
- mixing coefficients
- radial parts of orbitals (radial wave functions)
These concepts provide the basis for the program naming conventions: programs generating or manipulating lists of CSFs have names starting with rcsf, programs generating or manipulating mixing coefficients have names starting with rmix, programs generating or manipulating the radial parts of the orbitals (radial wave functions) have names starting with rwfn. Other programs are named according to the atomic properties they compute. There are also a number of programs that produce output tables in LaTeX format. These programs all have names starting with rtab. Finally, there are programs that create GNU Octave and Matlab M-files for plotting properties along iso-electronic sequences. These programs have names starting with rseq.
2.2. Application Programs and Tools
Below is a partial list of programs in the package. The extension _mpi indicates that the program can be run in parallel under MPI:
- rnucleus—define nuclear data, including magnetic dipole and electric quadrupole moments, see TP Section 2.3
- Routines that generate and manipulate lists of CSFs, see TP Section 4:
- (a)
- rcsfgenerate—generate a list of CSFs using rules for excitations.
- (b)
- jjgen—generate a list of CSFs. More general than rcsfgenerate, but more involved to run.
- (c)
- rcsfinteract—reduce a list of CSFs by retaining only CSFs that interact with CSFs of a reference list.
- (d)
- rcsfsplit—split a list of CSFs into a number of lists with CSFs that can be formed from different sets of active orbitals.
- (e)
- rcsfzerofirst—rearrange a list of CSFs in such a way that the most important CSFs are listed at the beginning, defining the zero-order space, and the less important are listed at the end, defining the first-order space, see TP Section 2.8.
- rangular, rangular_mpi—perform angular integration and compute angular coefficients, see TP Section 2.6.
- rwfnestimate—estimate the radial parts of the orbitals (radial wave functions), see TP Section 2.7.
- rmcdhf_mem, rmcdhf, rmcdhf_mem_mpi, rmcdhf_mpi—determine radial parts of the orbitals and mixing coefficients of the CSFs in a relativistic self-consistent-field (SCF) procedure, see TP Section 2.7. The extension _mem indicates that all angular data are kept in core and are not read from disk. rmcdhf_mem and rmcdhf_mem_mpi are the preferred programs when enough RAM is available. Wave functions from these programs are referred to as rmcdhf wave functions.
- rci, rci_mpi—perform relativistic configuration interaction (rci) calculation with transverse photon (Breit) interaction and vacuum polarization and self-energy (QED) corrections, see TP Sections 2.3 and 2.8. Wave functions from these programs are referred to as rci wave functions.
- jj2lsj—a program for converting a portion of the wave function expansion in -coupled CSFs to a basis of -coupled CSFs for labeling purposes, see [23,24,25,26] and TP Section 2.9. Includes a feature to provide unique labels for all the considered states.
- Coupling—a program for searching the optimal coupling scheme, see [14].
- Programs for computing transition probabilities,
- (a)
- rbiotransform, rbiotransform_mpi—perform biorthonormal transformations of wave functions, see TP Section 3.5.
- (b)
- rtransition, rtransition_phase, rtransition_mpi—compute transition properties from transformed wave functions, see TP, Sections 3.5 and 3.6. The extension _phase indicates that the program outputs additional phase information needed by the mithit program. If the jj2lsj program has been run, the labels of the states in the output files are in -coupling. If the Coupling program has been run, the levels of the states in the output files can be presented in other coupling schemes.
- rhfs—compute diagonal and off-diagonal hyperfine interaction constants and Landé -factors, see [8] and TP Sections 3.1 and 3.2.
- ris4—compute isotope shift and detailed electron and nucleus interactions, see [12] and TP Section 3.3.
- hfszeeman95—compute reduced matrix elements for magnetic interactions as well as for hyperfine interactions, see [11] and TP Section 3.2.
- mithit—compute, given reduced matrix elements from hfszeeman95, and plot Zeeman splittings of fine- and hyperfine levels as functions of the magnetic field. Compute transition rates between magnetic fine- and hyperfine structure substates in the presence of an external magnetic field and the rates of hyperfine induced transitions in the field-free limit. Synthesizes spectral profiles, see [11] and TP Section 3.6.
- rdensity—compute the radial electron density function and transform to natural orbitals, see [16] and TP Section 3.4.
A number of generally short programs have been developed as tools to facilitate computational procedures.
- rmixaccumulate—accumulate CSFs corresponding to a specified fraction of the total wave function.
- rmixextract—extract and print the numerical values of the expansion coefficients above a cut-off value along with the corresponding CSFs, in descending order of magnitude, if requested.
- rcsfmr—analyse the wave function expansion in -coupled CSFs and determine a multireference (MR).
- hf—perform a non-relativistic Hartree–Fock (HF) calculation to produce a radial wave function file wfn.out. The file wfn.out should be copied to wfn.inp for further processing by rwfnmchfmcdf.
- rwfnmchfmcdf—convert a non-relativistic Hartree–Fock radial wave function file, wfn.inp, to a grasp radial wave function file, rwfn.out, that can be used with rwfnestimate.
- rwfntotxt—write radial wave functions in binary format to a text file.
- rwfnpyplot—Python script to plot radial wave functions from files produced by rwfntotxt.
- rwfnplot—extract radial wave functions from a radial wave function file and generate a GNU Octave/Matlab M-file that plots the radial wave functions as functions of or r.
- wfnplot—extract radial wave functions from the non-relativistic radial wave function file as produced by the hf program and generate a GNU Octave/Matlab M-file that plots the radial wave functions as functions of or r.
- rwfnrotate—a routine that rotates radial orbitals, useful for debugging purposes.
- rlevels—list the levels in a series of mixing files, in the order of increasing energy and report levels in cm relative to the lowest. If the jj2lsj program has been run, the levels are given in -coupling notation. If the Coupling program has been run, the levels are given in other coupling schemes, as determined by the user.
- rlevelseV—list the levels in a series of mixing files, in the order of increasing energy and report levels in eV relative to the lowest. If the program jj2lsj has been run, the levels are given in -coupling notation. If the program Coupling has been run, the levels are given in other coupling schemes.
- rtablevels—produce LaTeX and ASCII tables of energies from energy files produced by rlevels.
- lscomp.pl—perl script to produce LaTeX tables with composition and energies from energy files rlevels.
- rtabtransE1—produce LaTeX and ASCII tables of transition parameters from files produced by rtransition (E1 transitions only).
- rtabtrans1 and rtabtrans2—produce LaTeX tables of transition parameters and lifetimes from files produced by rtransition.
- rhfs_lsj—give the output from the rhfs program in -coupling notation.
- rtabhfs—produce LaTeX tables of hyperfine interaction constants.
- rseqenergy—produce GNU Octave/Matlab M-files that plot energies as functions of Z along an iso-electronic sequence.
- rseqhfs—produce GNU Octave/Matlab M-files that plot hyperfine interaction constants and Landé -factors as functions of Z along an iso-electronic sequence.
- rseqtrans—produce GNU Octave/Matlab M-files that plot transition parameters as functions of Z along an iso-electronic sequence.
- rsave—a script file such that the command rsave name copies rwfn.out to name.w and rcsf.inp to name.c and moves rmix.out to name.m, rmcdhf.sum to name.sum, rangular.log to name.alog and rmcdhf.log to name.log.
- rasfsplit—splits the files defining a number of ASFs of different symmetry blocks (J and parity) into groups of files, one for each symmetry block.
- rcsfblock—splits the list produced by jjgen into block-form.
- fical—an auxiliary program that computes frequency isotope shifts given the output from ris4 and supplied nuclear data.
2.3. File Naming Convention, Program, and Data Flow
The passing of information between different programs is done through files. This process is greatly simplified by a file naming convention. grasp uses a convention similar to the one for Atsp2K [1]: a name is associated with the results from a calculation, and an extension defines the content and format of a file. Thus, the file name becomes name.extension. Common extensions are listed in Table 1. The tool rsave makes use of these default extensions to save the output files from an rmcdhf calculation. Most programs produce a file that keeps a record of the input data. This file is called a log-file.
Table 1.
Common file extensions.
To perform a calculation, a number of programs need to be run in a predetermined sequence. Figure 1 shows a typical sequence of program calls to compute wave functions and different expectation values. The resulting flow of files is displayed in Figure 2.
Figure 1.
Typical sequence of program calls to compute expectation values and transition rates and to obtain labels in different coupling schemes.
Figure 2.
Flow of files for a normal sequence of program runs. Extensions (c) indicate data files based on rci mixing coefficients. For rtransition the extension x denotes the multipole.
3. Important Concepts and Aspects of Processing
3.1. Generating Lists of CSFs
Wave functions are expanded in CSFs, where effects beyond the single CSF approximation are referred to as correlation effects, see TP Section 4.1. Exploring different electron correlation models and generating lists of CSFs is a major task of the computation. To generate lists of CSFs based on the notion of excitations from orbitals in a MR to an active set of orbitals it is advantageous to use the rcsfgenerate program. (Please note that the word excitation might be a misuse of language in this context, since this term is in general used to indicate a physical process involving a change of state of the considered electron from a higher to a lower binding energy. When refering to constructions of configuration function states (CSFs) in the Dirac-Hartree-Fock theory, we should rather use the phrase substitution or replacement, for which the sign of the one-electron energy change is irrelevant. The latter terminology is preferably adopted in the accompanying theory paper [17]. However, the term excitation has been used in the GRASP community for many years, and it is still present in the fortran programs, as well on the outputs from these programs. Therefore, for the sake of consistency, as well as backward compatibility, in the present paper we continue to use excitation in the context of multiconfiguration expansions.) Different restrictions can be put on the excitations, and it is possible to generate CSFs that describe valence–valence, core–valence and core–core correlation in different combinations, see TP Sections 4.3 and 4.4. To make sure that the generated CSFs interact with the CSFs in the MR the program rcsfinteract should be used.
The reader is advised to work through the examples in Section 5 on how to use rcsfgenerate. The reader may also want to read the write-up of the jjgen program [10], the predecessor of rcsfgenerate. The write-up provides a number of examples on how to generate expansions capturing different correlation effects. The general theory, Z-dependent perturbation theory, for generating CSFs is described in [29], Section 4 and Section 5. See also Section 4.3 of this manual and TP Section 4.2.
3.2. Lists of CSFs and Symmetry Blocks
A list of CSFs starts with a line that defines the core subshells (or orbitals). The core orbitals are fully occupied in all CSFs and need not be part of the specification of the CSFs. After the line with the core orbitals, there is a line of the remaining subshells (peel subshells). The specification of the orbitals is followed by the list of CSFs, where each CSF comprises three lines. The CSFs are arranged into symmetry blocks, where the different blocks are separated by an asterisk. We take a specific example.
Core subshells:
1s 2s 2p- 2p
Peel subshells:
3s 3p- 3p
CSF(s):
3s ( 1) 3p ( 2)
1/2 0
1/2+
3s ( 1) 3p-( 1) 3p ( 1)
1/2 1/2 3/2
1 1/2+
3s ( 1) 3p-( 2)
1/2
1/2+
*
3s ( 1) 3p ( 2)
1/2 2
3/2+
3s ( 1) 3p-( 1) 3p ( 1)
1/2 1/2 3/2
0 3/2+
3s ( 1) 3p-( 1) 3p ( 1)
1/2 1/2 3/2
1 3/2+
*
3s ( 1) 3p ( 2)
1/2 2
5/2+
3s ( 1) 3p-( 1) 3p ( 1)
1/2 1/2 3/2
1 5/2+
There are four core subshells 1s, 2s, 2p-, 2p corresponding to a closed core (in non-relativistic notation) that is common to all CSFs. After the line with core subshells there is the line with the peel subshells, 3s, 3p-, 3p. The peel subshells (or orbitals) are the orbitals in the active set that are used in the construction of the CSFs in the list. The core subshells are not part of the active set. After the orbital specifications, the list of CSFs appear. Each CSF is written on three lines. The first line gives the configuration. The second line gives the J quantum number of each subshell. The third line shows how the J quantum numbers of each subshell are coupled together from left to right. Looking at the first CSF in the list
3s ( 1) 3p ( 2)
1/2 0
1/2+
The 3s ( 1) subshell has and the 3p ( 2) subshell is coupled to . The third line defines how the J quantum numbers of the different shells are coupled from left to right to a final J quantum number , where + denotes positive (even) parity. In some cases, if needed, the second line displays more information than the single J quantum number of the open subshell. For example, for , , rcsfgenerate produces the following:
4f ( 4)
2; 2
2+
4f ( 4)
4; 2
2+
The numbers and preceding the string specify unambiguously the CSF through the seniority number . For convenience, a list of seniority numbers and other needed quantum numbers is given in Table 2 in the accompanying theory paper (TP).
In the current version of the codes, the CSFs are automatically arranged into symmetry blocks, where the different blocks are separated by an asterisk. In the example above, there are three symmetry blocks separated by an asterisk *.
3.3. Spectroscopic Orbitals and Convergence
Major contributors to an ASF define a MR set of CSFs. The orbitals building the reference CSFs of the targeted states are referred to as spectroscopic orbitals. A variational method is used that determines optimized radial functions for which the total energy is stationary with respect to all perturbations satisfying boundary and orthonormality conditions and leads to a non-linear system of equations, see TP Section 2.7. This requires that the radial functions have the same number of nodes as the corresponding hydrogen-like orbitals [29]. The radial equations are solved iteratively by the SCF method, which requires initial estimates that are then improved successively. Orthonormality and the associated Lagrange multipliers may lead to convergence problems, especially for near neutral systems where initial estimates from, e.g., screened hydrogenic functions are not sufficiently accurate.
In general, the program dbsr_hf [30] is the most reliable method for getting started. This is a B-spline solution of the Dirac–Hartree–Fock equation in which orbitals are obtained from eigenvectors of a Dirac-Fock operator and orthogonality is achieved through the use of projection operators. Thus, the node-counting used by differential equation methods is avoided. The command—dbsr_hf Li_092 atom=U ion=Li out_w=1—will determine orbitals for Li-like Uranium, with orbitals output in grasp format. When many CSFS are in the expansion, dbsr_hf will provide orbitals for an EAL approximation. Suppose the calculation is for atom=Cu and the file Cu.c contains the expansion of 3d(10)4s, 3d(10)5s, 3d(9)4s(1)5s(1), in standard clist format, then the command dbsr_hf Cu term=jj out_w=1 will produce a file Cu.w that contains the EAL orbitals in grasp format. Please note that such a calculation need not require a high-level of accuracy, and it might be desirable to reduce the convergence requirement. These generated orbitals can be directly used as input if all orbitals have been estimated.
Instead of the relativistic dbsr_hf program, the non-relativistic HF program can be used, and the radial functions converted to relativistic form. In fact, it is the experience of the authors that the use of converted HF or MCHF radial wave functions generally give very good starting values, and that this may cut down on the number of needed iterations in the SCF procedure. The conversion of HF or MCHF radial wave functions to relativistic radial wave functions is done by rwfnmchfmcdf. In the present implementation, prior to normalization,
which means that the relativistic orbital pair is strictly kinetically matched [3].
The program rwfnestimate has the capability of combining initial estimates from many sources:
- grasp wave function file. Each such file has information about the grid and atomic number so that the radial function can be scaled to the current case.
- Thomas Fermi potential—orbitals from this simple potential are used as estimates.
- Screened hydrogenic functions—these functions can be computed from analytic expressions.
- Screened hydrogenic functions with custom Z—these functions can be computed from analytic expressions.
See Section 6.2 for an example using converted HF wave functions as initial estimates for rmcdhf. The use of screened hydrogenic functions with custom Z is exemplified in Section 6.8 and further discussed in Section 13.6.
3.4. Dealing with Convergence Problems
Most problems are encountered with outer spectroscopic radial functions. However, these orbitals can only converge if they are in an appropriate potential. It is customary to list orbitals in order of decreasing orbital energy so orbital appears towards the end of a list. However, may be a core orbital defining the potential of an outer orbital. So the first thing to do is remove the valence electrons and make sure core orbitals are adequately defined, see [2]. Then consider the following steps:
- Start from relativistic dbsr_hf or converted HF or MCHF radial wave functions as estimates.
- Increase the nuclear charge Z. If convergence is achieved, decrease the nuclear charge in small steps. Remember that Z needs to have an integer value in quantum theory, but may have fractional values in grasp. Use the converged radial wave functions from the previous rmcdhf run as input for the new rmcdhf calculation.
- Use the above strategies together with non-default options in rmcdhf allowing direct control of damping and orbital updates.
- If nothing helps, see if it is possible to start with a different MR set.
Convergence will be further discussed in Section 13 in connection with some practical examples on how convergence of spectroscopic orbitals can be achieved in problematic cases.
3.5. Correlation Orbitals and Layer-by-Layer Calculations
Orbitals introduced to build CSFs that correct the reference CSFs are called correlation orbitals. These are corrections to the wave function due to electron-electron interactions and may no longer have spectroscopic nodal structure. Initial estimates are not as critical. In fact, the mean radius of a converged correlation orbital is similar to that of the occupied orbital in the MR set. Thus, the initial estimate of, say, a correlation orbital may need to be a contracted orbital, something most readily achieved by increasing the nuclear charge of a screened hydrogenic orbital (the custom Z-option for the program rwfnestimate).
Although desirable, it is often not possible to optimize all radial orbitals, spectroscopic and correlation orbitals, simultaneously because of orthonormality constraints. Instead, the calculations can be done layer-by-layer in a procedure that is described as follows:
- Perform calculation for the MR where the orbitals are required to be spectroscopic.
- Use the active set approach to generate the list of CSFs. Increase the active set systematically by adding a layer of correlation orbitals (a layer is a set of correlation orbitals such that there are no two orbitals with the same symmetry). Optimize only the outermost layer and keep the remaining orbitals fixed from the previous calculation.
- Monitor the convergence of the calculated properties such as energy differences, transition rates, hfs, isotope shift, as the active set is increased.
- Stop the calculations when the properties are converged at some level and when it is not meaningful to extend the active set further.
- Relax the rules for generating CSF, perform calculations using rci and check if the calculated properties are converged also with respect to the type (valence–valence, core–valence and core–core, etc.) of included electron correlation, see TP Section 4.4 and [2] for a general discussion of systematic methodologies.
3.6. Simultaneous Calculations for Many Levels
In grasp, calculations can be done for many levels (states) simultaneously, sometimes referred to as ’all levels’ calculations or, if both even and odd parity levels are targeted at the same time, spectrum calculations. Although the wave function for each individual level (state) may not be the most accurate, simultaneous calculations lead to a balanced description of the levels with accurate energy separations. Simultaneous calculations are often done by term, which determines all the levels of an -term, by configuration, which determines all the levels of a configuration, or by parity, which determines all the desired levels with the same parity. Simultaneous calculations can be done also in other ways and may include all desired levels of both parities. Studies have been performed where hundreds of levels in an atomic spectrum have been determined simultaneously [31,32].
In rmcdhf, simultaneous calculations of many levels are done in the so-called extended optimal level (EOL) mode. Here a weighted energy functional of a selected set of levels is constructed, and by applying the variational principle both the radial wave functions and the corresponding expansion coefficients are determined, see [2] and TP Section 2.7. As an example we consider . We want to do the calculation by parity and determine the four levels and simultaneously. The and levels are the lowest of their symmetry. The two are the lowest and the second lowest of their symmetry. In the rmcdhf calculation, we would specify this by saying that we want the serial number 1 of symmetry , the serial numbers 1 and 2 of symmetry , and the serial number 1 of symmetry . In previous studies, levels entering the construction of the energy functional have been equally weighted [33] and also weighted by the statistical weight [31,32]. Depending on the case, other weights may be useful.
3.7. Transverse Photon Interaction and Self-Energy Correction
Relativistic corrections beyond the Dirac–Coulomb approximation for a many-electron system are implemented using assumptions based on one-electron concepts. For example, in the transverse photon interaction
which is the leading correction to the electron-electron Coulomb interaction, the frequency is assumed to be the difference between the diagonal orbital energy parameters. This may be an appropriate assumption for singly occupied orbitals, but is not correct for multiply occupied ones and certainly is not true for correlation orbitals. For these reasons, transverse photon interaction is often computed in the low-frequency limit by multiplying the frequency with a scale factor. The scale factor is often set to . The transverse photon interaction with scaled frequencies is sometimes referred to as the Breit interaction, see TP Section 2.3.
Similarly, the self-energy correction is computed from a screened-hydrogenic approximation, a model that does not apply well to correlation orbitals that are far from hydrogenic. The rci code allows the user to specify the largest principal quantum number for which CSFs are to be considered in the self-energy corrections. For small calculations with a few correlation orbitals, this cut-off is set to the largest principal quantum number of the included orbitals. In large calculations with many correlation orbitals, the cut-off is typically set to a number somewhat larger than the highest principal quantum number of the spectroscopic orbitals. In many research articles, the vacuum polarization and the self-energy correction are referred to as the leading quantum electrodynamic (QED) corrections.
3.8. Biorthonormal Transformations for Transition Calculations
Transition parameters, such as rate and weighted oscillator strength, for a multipole transition of rank L from to , are related to the reduced transition matrix element
where is the transition operator, see TP Section 3.5. This matrix element is very time-consuming to evaluate between separately determined initial and final state wave functions, since the non-orthogonalities of the initial and final state orbital sets prevent Racah-algebra to be used. Provided the CSF expansions for the initial and final states are closed under de-excitation (cud), it is possible to change the wave function representation of the two states in such a way that Racah-algebra can be used for evaluating the matrix elements in the new representation [27]. This cud property is satisfied if for each CSF based on a configuration that is part of the list, all the CSFs based on the configurations where the orbitals are de-excited to orbitals with lower principal quantum numbers are also part of the list. Please note that (i)- an expansion based on the active set approach is closed under de-excitation if the MR is closed under de-excitation and (ii)- CSF lists based on the active set approach from a single core-excited configuration may not be closed under de-excitation although additional CSFs can be introduced to satisfy the cud condition. See also TP Section 3.5.
The procedure for calculating the oscillator strength can be summarized as follows:
- Perform separate rmcdhf or rci calculations for the initial and the final states.
- Change the initial and final state wave function representations by transforming the radial orbital sets to a biorthonormal orbital set. This is followed by a counter-transformation of the initial and final state expansion coefficients to leave the total wave functions invariant.
- Calculate the transition matrix element with the transformed wave functions, for which now the Racah-algebra can be used.
The biorthonormal transformation is very fast and is performed with the program rbiotransform. The evaluation of the transition parameters from the transformed initial and final wave functions is then performed with rtransition.
3.9. Angular Data from rbiotransform and rtransition
The rbiotransform and rtransition programs and their MPI variants save angular data on file to speed up calculations for an iso-electronic sequence. If angular files are available, the programs read these files and the execution time is reduced considerably. If, for some reason, there are incomplete files with angular coefficients, these programs will end with some error message when trying to process the angular data files. In these cases, the user should remove the angular files (they all have a capital T in the extension) and rerun the case again.
3.10. Managing Large Expansions—Zero- and First-Order Calculations
Often the CSFs expansions grow so large that they can not be handled with the available computational resources. In these cases an approximate computational scheme can be employed in which the CSF list is rearranged into zero- and a first-order spaces:
where is the total number of CSFs in the original list. The zero-order space, P, contains the most important CSFs, while the first-order space, Q, contain less important CSFs that can be regarded as minor corrections. Normally . Associated with the rearrangement of the CSFs is a decomposition of the Hamiltonian interaction matrix in submatrices
The energy expression, on which to optimize, is now obtained from the limited interaction matrix where the full , , submatrices are included (interactions within the zero-order space and between the zero- and first-order spaces) but only the diagonal part of , see TP Section 2.8. The rearrangement of the list of CSFs in zero- and first-order spaces is done by the program rcsfzerofirst. In the programs rangular and rci, which set up expressions for the Hamiltonian, there is a question if full interaction should be considered or not. If not full interaction, the user can specify the size of the zero-order space for each symmetry block. See [28] for recent applications of this methodology. The handling of large expansions is discussed and exemplified in Section 14.
3.11. Running Parallel Programs Using MPI
Some of the more time-consuming programs in grasp have been converted to run in parallel under MPI, a language-independent communication protocol used to program parallel computers. In order to compile the programs, MPI libraries need to be installed. For cases where the MPI codes can be used, the increase of speed is often substantial. In Section 6.4 we show in detail how to set up the computational environment and use the MPI codes.
3.12. Restarting rci
rci and rci_mpi produce a file rci.res containing, in sparse representation, the matrix elements of the Hamiltonian. If, for some reason, an rci or rci_mpi run stalls, then the programs can be restarted. During a restart, the rci.res file is read, and the computation continues at the place where the original computation stalled. The restart option is described in Section 6.7.
4. Lists of CSFs
4.1. Configurations, Configuration State Functions
A configuration is a number of orbitals with occupation numbers, e.g.,
where we use the notation for . Frequently, the non-relativistic notation is used, and the configuration is then
CSFs are formed by angular couplings of the orbitals in a relativistic configuration. Depending on the structure of the configuration, i.e., number of open shells, there may be many angular couplings and thus CSFs for each configuration. An angular coupling is sometimes referred to as a coupling tree.
In grasp the CSFs are given in rcsf.inp. The CSFs comprise three lines in the file. The first line gives the configuration, and lines two and three define the coupling tree, see TP Section 2.4. The CSFs are ordered in blocks specified by parity and J symmetry, the blocks being separated by an asterisk *. Below are all the CSFs of even parity belonging to the configuration .
1s ( 2) 2s ( 2) 2p ( 2)
0
0+
1s ( 2) 2s ( 2) 2p-( 2)
0+
*
1s ( 2) 2s ( 2) 2p-( 1) 2p ( 1)
1/2 3/2
1+
*
1s ( 2) 2s ( 2) 2p ( 2)
2
2+
1s ( 2) 2s ( 2) 2p-( 1) 2p ( 1)
1/2 3/2
2+
In the case above we have three symmetry blocks with even parity corresponding to .
grasp handles expansions with hundreds of thousands of CSFs, even on a small scalar computer. On a cluster, expansions with millions of CSFs can be used. The success of a calculation depends on judiciously chosen CSFs.
4.2. Multireference
The starting point for a study is normally a calculation for a number of important CSFs that define the MR. The CSFs in the MR are those that can be formed from nearly degenerate configurations, see [29] chapter 4, ref. [2] and TP Sections 4.1 and 4.4. (When talking about the MR we will, somewhat loosely, refer to both the set of CSFs and the set of configurations from which the CSFs are formed) The wave function based on the CSFs in the MR is the first approximation, and it is the starting point for further refinements. The concept of an MR is best illustrated by some examples.
Suppose we want to compute the wave function for the ground state of Mg I. The , and configurations are formed by orbitals with the same principal quantum numbers and the configurations are closely degenerate. An MR in this case could consist of the CSFs that can be formed from these configurations.
Suppose we want to compute the wave functions for the excited states of Mg I. The and configurations are formed by orbitals with the same principal quantum numbers, and these configurations are closely degenerate. An MR in this case could consist of the CSFs that can be formed from these configurations. However, it turns out that is important, and thus a more suitable MR should consist of CSFs also from the latter configuration.
We want to compute the wave functions for the states of and . The and configurations are formed by orbitals with the same principal quantum numbers, and the configurations are closely degenerate. Thus, the MR for the even states would consist of the CSFs that can be formed from these two configurations. It turns out that the and configurations are important, and a better MR includes CSFs also from these configurations. Looking at there is no other configuration of the same parity that can be formed by orbitals with the same principal quantum numbers. In this case, the MR would consist of CSFs formed from this single configuration. However, also , and are important and the MR should consist of CSFs also from these configurations.
We see that the selection of the MR in advance or a priori is far from trivial, and it often requires a number of exploratory calculations to find a good MR. In other words, the MR is best determined after some correlation studies have been performed. The program rcsfmr, described in Section 6.6, is designed to support the exploratory process.
For ‘all levels’ calculations or spectrum calculations, see Section 6.4, where wave functions are determined for a number of states belonging to several configurations the MR is often taken as the set of CSFs that can be formed from these configurations. Suppose that we want to determine the wave functions for states of the , and configurations in Mg-like ions. The MR in this case would be the CSFs that can be formed from these configurations. If we do the calculations by parity, the MR for the even parity states would be the CSFs formed from even parity configurations and the MR for the odd parity states would be the CSFs formed from odd parity configurations.
4.3. Active Set Approach
CSFs are often generated using the active set approach. In the active set approach, CSFs of a specified parity and J symmetry are obtained from angular couplings of configurations generated by excitations from orbitals of one or more configurations in the MR to orbitals in an active set (AS). Orbitals of a reference configuration are classified as closed (c), inactive (i), active (*), or active having minimal occupation (m). The active set consists of the active orbitals in the reference configuration together with orbitals up to a given limit specified by the highest principal quantum number of each orbital symmetry. Closed orbitals are fully occupied and make up the core. No excitations are allowed from inactive orbitals of the reference configuration. Excitations are allowed from the active orbitals of the reference configuration to orbitals in the active set. Excitations from active orbitals having minimal occupations are such that the occupations after the excitations are always larger or equal to the specified minimal occupation.
Based on perturbation theory one can show that the major electron correlation effects are captured by including, in the ASF, the CSFs that can be formed from configurations obtained by allowing single (S) and double (D) excitations from the most important configurations, defining the MR, to an extended active set of orbitals [29].
For small systems, e.g., nominal three and four electron systems, it is sometimes advantageous to include CSFs that can be formed from all possible excitations: single (S), double (D), triple (T), (Q) quadruple, etc. This expansion is referred to as the complete active space (CAS).
4.4. Different Types of Correlation Effects
For complex systems it may not be possible, or even desirable, to allow excitations from all orbitals of the MR. Often excitations are done only from outer orbitals, and the corresponding CSFs are said to describe valence–valence correlation. If one excitation is from a core orbital and one from an outer orbital, then the corresponding CSFs are said to describe core–valence correlation. If both excitations are from the core, the corresponding CSFs are said to describe core–core correlation, see [2] and TP Section 4.3. A discussion about different correlation effects and their relation to the orbital basis can be found in [34].
As an example of correlation effects, we look at the ground state of Mg . To make things simple, we consider only a single reference.
Valence-valence correlation
CSFs based on configurations of the type represent valence–valence correlation. In the active set approach, these configurations can be formed by starting from and classifying the orbitals as inactive (i) and the orbital as active (*). In our notation, we have
1s(2,i)2s(2,i)2p(6,i)3s(2,*)
SD-excitations are then allowed to orbitals in the active set.
Core–valence correlation
CSFs based on configurations of the type , represent core–valence correlation involving the core. In the active set approach, the configurations of the first type can be formed by starting from and classifying the orbitals as inactive (i), the orbital as active having a minimal occupation 5 and the orbital as active having a minimal occupation 1. In our notation, we have
1s(2,i)2s(2,i)2p(6,5)3s(2,1)
SD-excitations are then allowed to orbitals in the active set. Configurations of the second type can be formed by starting from and classifying the orbitals as inactive (i), the orbital as active having a minimal occupation 1 and the orbital as active having a minimal occupation 1. In our notation, this is
1s(2,i)2s(2,1)2p(6,i)3s(2,1)
SD-excitations are then allowed to orbitals in the active set. In practical applications one most often treats valence–valence and core–valence correlation together and this is achieved by classifying the orbital as active instead of active with minimal occupation 1. This corresponds to
1s(2,i)2s(2,i)2p(6,5)3s(2,*)
and
1s(2,i)2s(2,1)2p(6,i)3s(2,*)
Core–core correlation
CSFs based on configurations of the type , , represent core–core correlation in the core. In the active set approach, these configurations can be formed by starting from and classifying the orbital as inactive (i), the orbitals as active (*) and the orbital as inactive (i). In our notation
1s(2,i)2s(2,*)2p(6,*)3s(2,i)
SD-excitations are then allowed to orbitals in the active set. In practical applications, we very seldom treat core–core correlation alone. Instead, we treat valence–valence, core–valence and core–core correlation together and this is achieved by classifying the orbitals active (*)
1s(2,i)2s(2,*)2p(6,*)3s(2,*)
and allowing SD-excitations to orbitals in the active set.
Atomic properties depend in various ways on electron correlation effects. For transition rate calculations, it is important to include valence–valence and core–valence correlation [35]. For calculations of hyperfine structure and isotope shift, it is important to include also deep core–valence correlation effects [36].
4.5. Doubly Occupied Correlation Orbitals
Accounting for electron correlation effects including core–core often leads to very large expansions. Imposing the restriction that correlation orbitals are doubly occupied reduces the expansion size. For example, if , , , , , , , , are correlation orbitals in relativistic notation only excitation pairs , , , , , , , , etc. are allowed. Such an expansion still describes a fair part of the correlation. A practical example of how to use the restriction that correlation orbitals are doubly occupied is given in Section 5.6.
4.6. CSFs Interacting with the MR
It is important to realize that the active set approach, as we have described it above, is based on generation of configurations that are then coupled to form CSFs. However, not all CSFs generated in this way have non-zero Hamiltonian matrix elements (interact) with CSFs in the MR. Generated CSFs not interacting with the CSFs of the MR can often, though not always, be removed from the list of CSFs without any major loss of accuracy [29,37]. This is done by the program rcsfinteract. The reduction of CSFs is important mainly for complex systems, where the list of CSFs grows very rapidly with the increasing active set of orbitals.
5. Running the CSFs Generation Programs
5.1. First Example: Valence–Valence, Core–Valence and Core–Core for
We want to generate an expansion for the state. In this example, the CSFs are generated by SD-excitations from the MR set to an active set characterized by a maximal principal quantum number . The expansion accounts for valence–valence, core–valence and core–core correlation.
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2s(2,*)
Give configuration 2
>>1s(2,*)2p(2,*)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
......
1 blocks were created
block J/P NCSF
1 0+ 361
Please note that by answering 2 for the number of excitations, we will include both single (S) and double (D) excitations. By default, the orbitals will be in the order etc. There is also the possibility to have a reverse orbital order , a symmetry order or a user defined order. We will look at these options in Section 5.9. The generated file rcsf.out with the CSF list looks like
Core subshells:
Peel subshells:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
CSF(s):
1s ( 2) 2s ( 2)
0+
1s ( 2) 2s ( 1) 3s ( 1)
1/2 1/2
0+
1s ( 2) 2s ( 1) 4s ( 1)
1/2 1/2
0+
1s ( 2) 2p ( 2)
0
0+
1s ( 2) 2p-( 2)
0+
..............
In addition to the file rcsf.out with the list of CSFs, the generation program produces a log-file rcsfgenerate.log that mirrors the input. The latter looks like
* ! Orbital order
0 ! Selected core
1s(2,*)2s(2,*)
1s(2,*)2p(2,*)
*
4s,4p,4d,4f
0 0 ! Lower and higher 2*J
2 ! Number of excitations
n
In practical work, it is often convenient to edit the log-file and use this as input for additional runs of rcsfgenerate.
5.2. Second Example: Valence–Valence, Core–Valence for
We want to generate expansions for . In this example, the CSFs are generated by SD-excitations from to an active set with the restrictions that is closed and that there is at most one excitation from orbitals with . The expansions account for valence–valence and core–valence correlation.
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,1)2p(6,i)3s(1,*)3p(1,*)
Give configuration 2
>>2s(2,i)2p(6,5)3s(1,*)3p(1,*)
Give configuration 3
>>2s(2,1)2p(6,i)3p(1,*)3d(1,*)
Give configuration 4
>>2s(2,i)2p(6,5)3p(1,*)3d(1,*)
Give configuration 5
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
......
3 blocks were created
block J/P NCSF
1 0- 1912
2 1- 5210
3 2- 7122
5.3. Third Example: Valence–Valence, Core–Valence and Intercore for
We want to generate expansions for . In this example, the CSFs are generated by SD-excitations from to an active set with the restrictions that is closed (and hence inactive) and that there is at most one excitation from and , respectively. In this case, in addition to valence–valence and core–valence correlation, also intercore correlation are accounted for through configurations of the form , where is inactive. Please note how much the number of CSFs has increased.
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,1)2p(6,5)3s(1,*)3p(1,*)
Give configuration 2
>>2s(2,1)2p(6,5)3p(1,*)3d(1,*)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
...........
3 blocks were created
block J/P NCSF
1 0- 10743
2 1- 29589
3 2- 41500
5.4. Fourth Example: Valence–Valence and Core–Valence and Large Multireference
We want to generate CSF expansions that describe all 92 states with symmetries of the configurations . In this example, the CSFs are generated by SD-excitations from to an active set with the restriction that there is at most one excitation from . The expansions account for valence–valence and core–valence correlation.
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,1)2s(2,*)2p(2,*)
Give configuration 2
>>1s(2,1)2p(4,*)
Give configuration 3
>>1s(2,1)2s(2,*)2p(1,*)3p(1,*)
Give configuration 4
>>1s(2,1)2s(1,*)2p(2,*)3s(1,*)
Give configuration 5
>>1s(2,1)2s(1,*)2p(2,*)3d(1,*)
Give configuration 6
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,10
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
......
6 blocks were created
block J/P NCSF
1 0+ 14351
2 1+ 38928
3 2+ 53645
4 3+ 56147
5 4+ 48973
6 5+ 36562
5.5. Fifth Example: CSFs Interacting with CSFs in the MR
In this example, we show how to reduce the number of CSFs in the previous list by retaining only the CSFs that interact with the CSFs of the MR through the Dirac–Coulomb or Dirac–Coulomb–Breit Hamiltonian. We start by copying rcsf.out from the previous run to rcsf.inp. After that, we generate the list of CSFs for the MR. For an additional example, see Section 6.3. Please note that the orbital order needs to be the same for the MR file and the file with CSFs that should be reduced, to ensure that this is the case it is sometimes necessary to invoke the user specified orbital ordering, see Section 6.6.
*******************************************************************************
* COPY FILE *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(2,i)2p(2,i)
Give configuration 2
>>1s(2,i)2p(4,i)
Give configuration 3
>>1s(2,i)2s(2,i)2p(1,i)3p(1,i)
Give configuration 4
>>1s(2,i)2s(1,i)2p(2,i)3s(1,i)
Give configuration 5
>>1s(2,i)2s(1,i)2p(2,i)3d(1,i)
Give configuration 6
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,10
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
......
6 blocks were created
block J/P NCSF
1 0+ 14
2 1+ 25
3 2+ 28
4 3+ 16
5 4+ 7
6 5+ 2
*******************************************************************************
* COPY RCSF.OUT TO RCSFMR.INP *
*******************************************************************************
>>cp rcsf.out rcsfmr.inp
*******************************************************************************
* RUN RCSFINTERACT *
* INPUT FILES: rcsf.inp, rcsfmr.inp *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
>>rcsfinteract
RCSFinteract: Determines all the CSFs (rcsf.inp) that interact
with the CSFs in the multireference (rcsfmr.inp)
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: rcsfmr.inp, rcsf.inp
Output file: rcsf.out
Reduction based on Dirac-Coulomb (1) or
Dirac-Coulomb-Breit (2) Hamiltonian?
>>1
.....
There are 25 relativistic subshells;
Block MR NCSF Before NCSF After NCSF
1 14 14351 7765
2 25 38928 24492
3 28 53645 33925
4 16 56147 29299
5 7 48973 17134
6 2 36562 7542
RCSFINTERACT: Execution complete
Comparing with what we had before, we see that there is a great reduction in the number of CSFs, where the removed CSFs are relatively unimportant. The reduction based on the Dirac–Coulomb–Breit Hamiltonian gives somewhat more CSFs compared to the reduction based on the Dirac–Coulomb Hamiltonian. There is, however, not a big difference.
5.6. Sixth Example: Core–Core and Doubly Occupied Orbitals
Allowing SD-excitations from all subshells of an MR without restrictions leads to large expansions. We may impose different restrictions allowing, for example, at most one excitation from the core. The resulting expansion accounts for valence–valence and core–valence electron correlation. Another restriction is to require that all correlation orbitals are doubly occupied in the generated CSFs. This cuts down the expansion size quite substantially, but still efficiently accounts for much of the correlation.
We generate a CSF expansion that describes the states with symmetries of the configuration . CSFs are generated by SD-excitations from to an active set and symmetry with the restriction that there is at most one excitation from . The expansion accounts for valence–valence and core–valence correlation. In addition, there are SD-excitations from to an active set and symmetry with the restriction that the correlation orbitals are doubly occupied (see Section 5.5). This part of the expansion accounts for part of the core–core correlation.
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,5)3s(1,*)3p(1,*)
Give configuration 2
>>2s(2,1)2p(6,i)3s(1,*)3p(1,*)
Give configuration 3
>>2s(2,i)2p(6,5)3p(1,*)3d(1,*)
Give configuration 4
>>2s(2,1)2p(6,i)3p(1,*)3d(1,*)
Give configuration 5
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>8s,8p,8d,8f,8g,8h
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>y
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,*)2p(6,*)3s(1,*)3p(1,*)
Give configuration 2
>>2s(2,*)2p(6,*)3p(1,*)3d(1,*)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>8s,8p,8d,8f,8g,8h
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>-2
Generate more lists ? (y/n)
>>n
......
3 blocks were created
block J/P NCSF
1 0- 21399
2 1- 59512
3 2- 85284
5.7. Running rcsfgenerate More Than Once
We may merge CSF expansions by running rcsfgenerate more than once. In this example, we first generate a CAS expansion for to the orbital set . This is then merged by an SD expansion to a larger orbital set.
*******************************************************************************
* RUN RCSFGENERATE *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2p(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,3
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>3
Generate more lists ? (y/n)
>>y
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2p(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>7s,7p,7d,7f,7g,7h,7i
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,3
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
2 blocks were created
block J/P NCSF
1 1/2- 2408
2 3/2- 4174
As expected, we get the same number of CSFs in the two runs. Please note that the resulting J number needs to be the same when running rcsfgenerate several times for the same parity.
5.8. Running rcsfgenerate for Even and Odd Parity
We want to generate CSFs for odd states with by allowing all SDT-excitations from and for even states with by allowing all SDT-excitations from . In both cases, the excitations are to an active set with .
*******************************************************************************
* RUN RCSFGENERATE FOR ODD AND EVEN PARITY *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2p(1,*)
Give configuration 1
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,3
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>3
Generate more lists ? (y/n)
>>y
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2s(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,1
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>3
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 1/2+ 1463
1 1/2- 1454
2 3/2- 2478
5.9. User Defined Orbital Ordering
In Ce III the ground configuration is , where is to the right of the and orbitals and a user defined orbital order is needed. To illustrate the user defined orbital ordering, we generate a list of CSFs by allowing SD-excitations from to an active orbital set (or 6s,6p,5d,5f in the notation of the rcsfgenerate program).
To generate a list of CSFs where, in the configurations, is to the right of the and orbitals, start by creating a file clist.ref with the desired orbital order; one orbital per line, left justified and with a non-relativistic notation.
1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p 4f 5d 5f 6s 6p
Then run rcsfgenerate as usual, but select the user defined orbital order.
*******************************************************************************
* RUN RCSFGENERATE USING USER DEFINED ORBITAL ORDERING *
* INPUT FILE: clist.ref *
* OUTPUT FILES: rcsf.out, rcsfgenerate.log *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>u
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>3
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>3d(10,c)4s(2,*)4p(6,*)4d(10,*)5s(2,*)5p(6,*)4f(2,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>6s,6p,5d,5f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,12
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
7 blocks were created
block J/P NCSF
1 0+ 26477
2 1+ 74434
3 2+ 112054
4 3+ 133012
5 4+ 137871
6 5+ 127297
7 6+ 107194
The produced output file rcsf.out looks like this
Core subshells:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Peel subshells:
4s 4p- 4p 4d- 4d 5s 5p- 5p 4f- 4f 5d- 5d 5f- 5f 6s 6p- 6p
CSF(s):
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p ( 4) 4f ( 4)
0
0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 1) 5p ( 3) 4f ( 4)
1/2 3/2 2; 2
2 0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 1) 5p ( 3) 4f ( 4)
1/2 3/2 4; 2
2 0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p ( 2) 4f ( 4)
0 0
0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p ( 2) 4f ( 4)
2 2; 2
0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p-( 2) 5p ( 2) 4f ( 4)
2 4; 2
0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5p-( 2) 5p ( 4) 4f ( 4)
0
0+
4s ( 2) 4p-( 2) 4p ( 4) 4d-( 4) 4d ( 6) 5s ( 2) 5p ( 4) 4f-( 1) 4f ( 3)
5/2 5/2
0+
...............
Comment: when using rcsfinteract make sure that you have the same orbital order (and core) for both rcsf.inp and rcsfmr.inp. The additional quantum numbers 2; and 4; for the 4f ( 4) subshell are the seniority quantum numbers.
5.10. Running jjgen
The jjgen program is a more flexible generation program than rcsfgenerate. It has several useful properties, but the input is somewhat longer and more involved. The use of jjgen is described in detail in the original write-up [10]. Please note that after generating a CSF list with jjgen the list needs to be put in block form by rcsfblock.
6. Running the Application Programs
In this section we demonstrate the use of the application programs of grasp in six cases. The use of the tools of grasp is described in Section 7. All data written to the output files are shown, explained and discussed in detail in Section 8. Scripts for example 1 are found in grasptest/example1/script, scripts for example 2 in grasptest/example2/script, etc. Please note that the executables must be on the path! When running the application programs and the tools, the user is encouraged to look at all the output files and use the information in Section 8 to correctly interpret the output data.
6.1. First Example: and in Li I
The first example is for and in Li. The example shows the computation of rmcdhf and rci wave functions, and the subsequent evaluation of hyperfine structure constants, Landé -factors, and isotope shift parameters. In addition, the biorthogonal transformation is applied, and the transition rates computed from the transformed wave functions. The example also illustrates the use of jj2lsj for labeling purposes.
- Overview
- Define nuclear data.
- Obtain common spectroscopic orbitals for the MR set.
- (a)
- Generate configuration state list containing three CSFs: .
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of .
- (e)
- Save output to 2s_2p_DF.
- Improve even states
- (a)
- Generate complete active space (CAS) expansion for .
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on .
- (e)
- Save output to 2s_3.
- (f)
- Perform RCI calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Transform from - to -coupling
- Improve odd states
- (a)
- Generate complete active space (CAS) expansion for .
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of .
- (e)
- Save output to 2p_3.
- (f)
- Perform RCI calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Transform from - to -coupling
- Run rlevels to view energy separations.
- Calculate properties
- (a)
- Calculate hyperfine structure using the rci wave functions.
- (b)
- Calculate isotope shift using the rci wave functions.
- (c)
- Compute the transition rates from the rci wave functions. Calculation in two steps: biorthonormal transformation and evaluation of transition matrix elements using standard Racah algebra methods.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
******************************************************************************* * RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID * * IOUTPUT FILE: isodata * ******************************************************************************* >>rnucleus Enter the atomic number: >>3 Enter the mass number (0 if the nucleus is to be modelled as a point source: >>7 The default root mean squared radius is 2.4440000057220459 fm; (Angeli) the default nuclear skin thickness is 2.2999999999999998 fm; Revise these values? >>n Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static): >>6.941 Enter the nuclear spin quantum number (I) (in units of h / 2 pi): >>1.5 Enter the nuclear dipole moment (in nuclear magnetons): >>3.2564268 Enter the nuclear quadrupole moment (in barns): >>-0.040
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs FOR 2S *
* AND 2P WITH THREE CSFs: 1s(2)2s J=1/2, 1s(2)2p- J=1/2, *
* 1s(2)2p J=3/2 *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(1,i)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>2s
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,1
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>y
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*).
Give configuration 1
>>1s(2,i)2p(1,i)
Give configuration 2
>>
Give set of active orbitals in a comma delimited list ordered by l-symmetry, e.g., 5s,4p,3d
>>1s,2p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,3
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 1/2+ 1
2 1/2- 1
3 3/2- 1
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log 2s_2p_DF.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* * MEANS ALL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.2476D+01 0.9246D+01 0.1000D+01 0.5691D+00 332 T-F
2s 0.2895D+00 0.2308D+01 0.1000D+01 0.3010D+01 355 T-F
2p- 0.2173D+00 0.1444D-03 0.1000D+01 0.3019D+01 358 T-F
2p 0.2173D+00 0.1204D+01 0.2000D+01 0.3020D+01 358 T-F
RWFNESTIMATE: Execution complete
Comment: <r> is the mean orbital radius in a.u. (). MTP is the extension of the orbitals on the grid, for which the upper limit in the default installation is 590 points. SRC is the source of the estimate, in this case T-F (Thomas-Fermi).
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* * MEANS ALL ORBITALS *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
Loading CSF File for ALL blocks
There are 3 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 1/2+ 1 2 1/2- 1 3 3/2- 1
Enter ASF serial numbers for each block
Block 1 ncf = 1 id = 1/2+
>>1
Block 2 ncf = 1 id = 1/2-
>>1
Block 3 ncf = 1 id = 3/2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave 2s_2p_DF
Created 2s_2p_DF.w, 2s_2p_DF.c, 2s_2p_DF.m, 2s_2p_DF.sum, 2s_2p_DF.alog and 2s_2p_DF.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 3 CAS LIST *
* OF CSFs FOR 2S *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfile: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2s(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,1
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>3
Generate more lists ? (y/n)
>>n
.........
1 blocks were created
block J/P NCSF
1 1/2+ 79
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log 2s_3.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
...........
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.2518D+01 0.9280D+01 0.1000D+01 0.5732D+00 355 rwf
2s 0.1963D+00 0.1452D+01 0.1000D+01 0.3873D+01 361 rwf
2p- 0.1287D+00 0.5116D-04 0.1000D+01 0.4796D+01 366 rwf
2p 0.1287D+00 0.4265D+00 0.2000D+01 0.4796D+01 366 rwf
3s 0.9128D-01 0.9783D+00 0.1000D+01 0.8483D+01 369 T-F
3p- 0.7531D-01 0.6591D-04 0.1000D+01 0.9267D+01 371 T-F
3p 0.7531D-01 0.5494D+00 0.2000D+01 0.9267D+01 371 T-F
3d- 0.6228D-01 0.3234D-05 0.2000D+01 0.9127D+01 373 T-F
3d 0.6228D-01 0.3237D-01 0.3000D+01 0.9128D+01 373 T-F
RWFNESTIMATE: Execution complete.
Comment: please note how we used the wild card * twice. We start by reading the orbitals from a grasp file (previous run rwfn.out). Using the wild card * the program reads as many orbitals as possible, i.e., , , -, . The orbitals , -, , -, then remain to be estimated, and we use Thomas-Fermi estimates. By again using the wild card * all the remaining orbitals will be Thomas-Fermi estimates. Instead of Thomas-Fermi estimates, we could have used option 4, screened hydrogenic with custom Z and adjusted the charge until the radii <r> of the estimated orbitals overlapped the radii <r> of the and spectroscopic orbitals, see Section 6.8 for an example of the use of option 4.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 3s,3p, 3d. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 3* MEANS 3s, 3p-, 3p, 3d-, 3d *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-consistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 79 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 1/2+ 79
Enter ASF serial numbers for each block
Block 1 ncf = 79 id = 1/2+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>3*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave 2s_3
Created 2s_3.w, 2s_3.c, 2s_3.m, 2s_3.sum, 2s_3.alog and 2s_3.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, 2s_3.c, 2s_3.w *
* OUTPUT FILES: 2s_3.cm, 2s_3.csum, 2s_3.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
Default settings?
>>y
Name of state:
>>2s_3
Block 1 , ncf = 79
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 1/2+ 79
Enter ASF serial numbers for each block
Block 1 ncf = 79 id = 1/2+
>>1
......
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO TRANSFORM FROM JJ- TO LSJ-COUPLING *
* INPUT FILES: 2s_3.c, 2s_3.cm *
* OUTPUT FILE: 2s_3.lsj.lbl, 2s_3.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2021).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>2s_3
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 79 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 3
ncftot = 79
nw = 9
nblock = 1
block ncf nev 2j+1 parity
1 79 1 2 1
Default settings? (y/n)
>>y
....
jj2lsj: Execution Complete
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 3 CAS LIST *
* OF CSFs FOR 2P *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2p(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,3
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>3
Generate more lists ? (y/n)
>>n
....
2 blocks were created
block J/P NCSF
1 1/2- 76
2 3/2- 110
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsfgenerate.log 2p_3.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* WE CAN USE WILD CARDS * TO SPECIFY ORBITALS *
* * MEANS ALL ORBITALS *
* WE TAKE THE SPECTROSCOPIC ORBITALS FROM OUR DF CALCULATION *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>2s_2p_DF.w
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.2518D+01 0.9280D+01 0.1000D+01 0.5732D+00 355 2s_
2s 0.1963D+00 0.1452D+01 0.1000D+01 0.3873D+01 361 2s_
2p- 0.1287D+00 0.5116D-04 0.1000D+01 0.4796D+01 366 2s_
2p 0.1287D+00 0.4265D+00 0.2000D+01 0.4796D+01 366 2s_
3s 0.9128D-01 0.9783D+00 0.1000D+01 0.8483D+01 369 T-F
3p- 0.7531D-01 0.6591D-04 0.1000D+01 0.9267D+01 371 T-F
3p 0.7531D-01 0.5494D+00 0.2000D+01 0.9267D+01 371 T-F
3d- 0.6228D-01 0.3234D-05 0.2000D+01 0.9127D+01 373 T-F
3d 0.6228D-01 0.3237D-01 0.3000D+01 0.9128D+01 373 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 3s,3p, 3d. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 3* MEANS 3s, 3p-, 3p, 3d-, 3d *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 186 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 2 blocks (block J/Parity NCF):
1 1/2- 76 2 3/2- 110
Enter ASF serial numbers for each block
Block 1 ncf = 76 id = 1/2-
>>1
Block 2 ncf = 110 id = 3/2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>3*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
......
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES *
*******************************************************************************
>>rsave 2p_3
Created 2p_3.w, 2p_3.c, 2p_3.m, 2p_3.sum, 2p_3.alog and 2p_3.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, 2p_3.c, 2p_3.w *
* OUTPUT FILES: 2p_3.cm, 2p_3.csum, 2p_3.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
Default settings?
>>y
Name of state:
>>2p_3
Block 1 , ncf = 76
Block 2 , ncf = 110
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 2 blocks (block J/Parity NCF):
1 1/2- 76 2 3/2- 110
Enter ASF serial numbers for each block
Block 1 ncf = 76 id = 1/2-
>>1
Block 2 ncf = 110 id = 3/2-
>>1
....
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO TRANSFORM FROM JJ- TO LSJ-COUPLING *
* INPUT FILES: 2p_3.c, 2p_3.cm *
* OUTPUT FILE: 2p_3.lsj.lbl, 2p_3.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2021).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>2p_3
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 186 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 3
ncftot = 186
nw = 9
nblock = 2
block ncf nev 2j+1 parity
1 76 1 2 -1
2 110 1 4 -1
Default settings? (y/n)
>>y
...
jj2lsj: Execution Complete
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS. *
* IF DESIRED WE CAN INSTEAD RUN RLEVELSEV TO GET THE SEPARATION IN EV *
*******************************************************************************
>> rlevels 2s_3.cm 2p_3.cm
nblock = 1 ncftot = 79 nw = 9 nelec = 3
nblock = 2 ncftot = 186 nw = 9 nelec = 3
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbour
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 1/2 + -7.4719740 0.00 0.00 1s(2).2s_2S
2 1 1/2 - -7.4042610 14861.28 14861.28 1s(2).2p_2P
3 1 3/2 - -7.4042597 14861.57 0.29 1s(2).2p_2P
------------------------------------------------------------------------------------------
*******************************************************************************
* RUN RHFS FOR 2s_3 *
* INPUT FILES: isodata, 2s_3.c, 2s_3.w, 2s_3.cm *
* OUTPUT FILE: 2s_3.ch, 2s_3.choffd *
*******************************************************************************
>>rhfs
RHFS
This is the hyperfine structure program
Input files: isodata, name.c, name.(c)m, name.w
Output files: name.(c)h, name.(c)hoffd
Default settings?
>>y
Name of state
>>2s_3
Mixing coefficients from a CI calc.?
>>y
....
RHFS: Execution complete.
*******************************************************************************
* VIEW DIAGONAL HFS CONSTANTS AND GJ FACTORS *
* OUTPUT SLIGHTLY EDITED TO DISPLAY ONLY THE TOTAL GJ *
*******************************************************************************
>> more 2s_3.ch
Nuclear spin 1.500000000000000D+00 au
Nuclear magnetic dipole moment 3.256426800000000D+00 n.m.
Nuclear electric quadrupole moment -4.000000000000000D-02 barns
Interaction constants:
Level1 J Parity A (MHz) B (MHz) total g_J
1 1/2 + 3.8844184122D+02 -0.0000000000D+00 2.0023047262D+00
*******************************************************************************
* RUN RHFS FOR 2p_3 *
* INPUT FILES: isodata, 2p_3.c, 2p_3.w, 2p_3.cm *
* OUTPUT FILE: 2p_3.ch, 2p_3.choffd *
*******************************************************************************
>>rhfs
RHFS
This is the hyperfine structure program
Input files: isodata, name.c, name.(c)m, name.w
Output files: name.(c)h, name.(c)hoffd
Default settings?
>>y
Name of state
>>2p_3
Mixing coefficients from a CI calc.?
>>y
.....
RHFS: Execution complete.
*******************************************************************************
* VIEW DIAGONAL HFS CONSTANTS AND GJ FACTORS *
* OUTPUT SLIGHTLY EDITED TO DISPLAY ONLY THE TOTAL GJ *
*******************************************************************************
>> more 2p_3.ch
Nuclear spin 1.500000000000000D+00 au
Nuclear magnetic dipole moment 3.256426800000000D+00 n.m.
Nuclear electric quadrupole moment -4.000000000000000D-02 barns
Interaction constants:
Level1 J Parity A (MHz) B (MHz) total g_J
1 1/2 - 4.4821853986D+01 -0.0000000000D+00 6.6588395646D-01
1 3/2 - -3.5378452915D+00 -1.7729096327D-01 1.3340987050D+00
Please note that rhfs computes both diagonal and off-diagonal hyperfine interaction constants. The latter are available in the name.choffd file. The off-diagonal parameters are sometimes available from experiment. For Li I, the interaction constant is for example measured from level-crossing spectroscopy [38]. For systems with small fine-structure separations, the off-diagonal hyperfine parameters are of crucial importance in order to model the observed hyperfine line profiles [39]. For systems with large fine structure separations, the off-diagonal hyperfine constants may be neglected.
*******************************************************************************
* RUN RIS4 FOR 2s_3 *
* INPUT FILES: isodata, 2s_3.c, 2s_3.w, 2s_3.cm *
* OUTPUT FILES: 2s_3.ci *
* 2s_3.IOB, 2s_3.ITB (angular files) *
*******************************************************************************
>>ris4
RIS: Execution begins ...
Default settings?
>>y
Name of state
>>2s_3
Mixing coefficients from a CI calc.?
>>y
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 79 relativistic CSFs;
... load complete;
Loading Radial WaveFunction File ...
nelec = 3
ncftot = 79
nw = 9
nblock = 1
block ncf nev 2j+1 parity
1 79 1 2 1
-------------------------------
RIS_CAL: Execution Begins ...
-------------------------------
NRNUC: 91
Compute higher order field shift electronic factors?
>>y
One-body angular file not available
Two-body angular file not available
Save ang. coefficients of one- and two-body op.?
>>y
.....
RIS: Execution complete.
*******************************************************************************
* VIEW SPECIFIC MASS SHIFT AND FIELD SHIFT PARAMETERS *
* OUTPUT EDITED TO FIT THE PAGE *
*******************************************************************************
>> more 2s_3.ci
Number of eigenvalues: 1
Level J Parity Energy
1 1/2 + -0.7471973983D+01 (a.u.)
Level J Parity Normal mass shift parameter
<K^1> <K^2+K^3> <K^1+K^2+K^3>
1 1/2 + 0.7475765524D+01 -0.6760181109D-02 0.7469005343D+01 (a.u.)
0.2698364414D+05 -0.2440075478D+02 0.2695924338D+05 (GHz u)
Level J Parity Specific mass shift parameter
<K^1> <K^2+K^3> <K^1+K^2+K^3>
1 1/2 + 0.3072684862D+00 -0.2114198685D-03 0.3070570663D+00 (a.u.)
0.1109080195D+04 -0.7631162959D+00 0.1108317079D+04 (GHz u)
Level J Parity Electron density in atomic units
Dens. (a.u.)
1 1/2 + 0.1388454525D+02
Level J Parity Field shift electronic factors and average point discrepancy in fit
F0 (GHz/fm^2) F2 (GHz/fm^4) F4 (GHz/fm^6)
1 1/2 + 0.2049813242D+00 -0.3342886617D-05 0.5289532830D-07
F6 (GHz/fm^8) Disc. (per mille)
1 1/2 + -0.7068539282D-09 0.0000
Level J Parity Field shift electronic factors (corrected for varying density inside nucleus)
F0VED0 (GHz/fm^2) F0VED1 (GHz/fm^4)
1 1/2 + 0.2049364945D+00 -0.2839055991D-05
The normal and specific mass shift parameters are those of the three terms defined in TP Section 3.3, Equations (73) and (74). The field shift electronic factors are the ones defined in TP Section 3.3, Equation (79). and are the parameters defined in TP Section 3.3, Equation (83).
*******************************************************************************
* RUN RIS4 FOR 2p_3 *
* INPUT FILES: isodata, 2p_3.c, 2p_3.w, 2p_3.cm *
* OUTPUT FILES: 2p_3.ci *
* 2p_3.IOB, 2p_3.ITB (angular files) *
*******************************************************************************
>>ris4
RIS: Execution begins ...
Default settings?
>>y
Name of state
>>2p_3
Mixing coefficients from a CI calc.?
>>y
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 186 relativistic CSFs;
... load complete;
Loading Radial WaveFunction File ...
nelec = 3
ncftot = 186
nw = 9
nblock = 2
block ncf nev 2j+1 parity
1 76 1 2 -1
2 110 1 4 -1
-------------------------------
RIS_CAL: Execution Begins ...
-------------------------------
NRNUC: 91
Compute higher order field shift electronic factors?
>>y
One-body angular file not available
Two-body angular file not available
Save ang. coefficients of one- and two-body op.?
>>y
Column 100 complete;
Column 100 complete;
....
RIS: Execution complete.
*******************************************************************************
* VIEW SPECIFIC MASS SHIFT AND FIELD SHIFT PARAMETERS *
* OUTPUT EDITED TO FIT THE PAGE *
*******************************************************************************
>> more 2p_3.ci
Number of eigenvalues: 2
Level J Parity Energy
1 1/2 - -0.7404260995D+01 (a.u.)
1 3/2 - -0.7404259683D+01 (a.u.)
Level J Parity Normal mass shift parameter
<K^1> <K^2+K^3> <K^1+K^2+K^3>
1 1/2 - 0.7409611828D+01 -0.6671237484D-02 0.7402940590D+01 (a.u.)
0.2674486353D+05 -0.2407971433D+02 0.2672078382D+05 (GHz u)
<K^1> <K^2+K^3> <K^1+K^2+K^3>
1 3/2 - 0.7409602908D+01 -0.6657064450D-02 0.7402945843D+01 (a.u.)
0.2674483134D+05 -0.2402855701D+02 0.2672080278D+05 (GHz u)
Level J Parity Specific mass shift parameter
<K^1> <K^2+K^3> <K^1+K^2+K^3>
1 1/2 - 0.2425644688D+00 -0.1746264308D-03 0.2423898424D+00 (a.u.)
0.8755321826D+03 -0.6303110296D+00 0.8749018716D+03 (GHz u)
<K^1> <K^2+K^3> <K^1+K^2+K^3>
1 3/2 - 0.2425741100D+00 -0.1915018511D-03 0.2423826081D+00 (a.u.)
0.8755669823D+03 -0.6912225626D+00 0.8748757597D+03 (GHz u)
Level J Parity Electron density in atomic units
Dens. (a.u.)
1 1/2 - 0.1372240739D+02
1 3/2 - 0.1372240990D+02
Level J Parity Field shift electronic factors and average point discrepancy in fit
F0 (GHz/fm^2) F2 (GHz/fm^4) F4 (GHz/fm^6)
1 1/2 - 0.2025876387D+00 -0.3303847114D-05 0.5227748000D-07
1 3/2 - 0.2025876757D+00 -0.3303847831D-05 0.5227749057D-07
F6 (GHz/fm^8) Disc. (per mille)
1 1/2 - -0.6985943239D-09 0.0000
1 3/2 - -0.6985944586D-09 0.0000
Level J Parity Field shift electronic factors (corrected for varying density inside nucleus)
F0VED0 (GHz/fm^2) F0VED1 (GHz/fm^4)
1 1/2 - 0.2025433326D+00 -0.2805899138D-05
1 3/2 - 0.2025433696D+00 -0.2805899756D-05
Comment: Given the information in 2s_3.ci and 2p_3.ci together with isotopic data, the frequency isotope shift can be computed using the fical program, see Section 12.2.
*******************************************************************************
* RUN RBIOTRANSFORM FOR 2s_3 AND 2p_3 TO TRANSFORM WAVE FUNCTIONS *
* INPUT FILES: isodata, 2s_3.c, 2s_3.w, 2s_3.cm, *
* 2p_3.c, 2p_3.w, 2p_3.cm *
* OUTPUT FILES: 2s_3.cbm, 2s_3.bw, 2p_3.cbm, 2p_3.bw *
* 2s_3.TB, 2p_3.TB (angular files) *
* NOTE THAT THE ORDER OF INITIAL AND FINAL STATE DOES NOT MATTER *
*******************************************************************************
>>rbiotransform
RBIOTRANSFORM
This program transforms the initial and final wave
functions so that standard tensor albegra can be
used in evaluation of the transition parameters
Input files: isodata, name1.c, name1.w, name1.(c)m
name2.c, name2.w, name2.(c)m
name1.TB, name2.TB (optional angular files)
Output files: name1.bw, name1.(c)bm,
name2.bw, name2.(c)bm
name1.TB, name2.TB (angular files)
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s_3
Name of the Final state
>>2p_3
Transformation of all J symmetries?
>>y
....
BIOTRANSFORM: Execution complete.
*******************************************************************************
* RUN RTRANSITION FOR 2s_3 and 2p_3 TO COMPUTE TRANSITION PARAMETERS *
* INPUT FILES: isodata, 2s_3.c, 2s_3.bw, 2s_3.cbm *
* 2p_3.c, 2p_3.bw, 2p_3.cbm *
* OUTPUT FILES: 2s_3.2p_3.ct *
* 2s_3.2p_3.-1T (angular file) *
* NOTE THAT THE ORDER OF INITIAL AND FINAL STATE DOES NOT MATTER *
*******************************************************************************
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s_3
Name of the Final state
>>2p_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 79 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 186 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
1
79
2
76 186
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
there are 265 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>E1
.....
RTRANSITION: Execution complete.
*******************************************************************************
* VIEW COMPUTED TRANSITION PARAMETERS *
*******************************************************************************
>>more 2s_3.2p_3.ct
Transition between files:
f1 = 2s_3
f2 = 2p_3
Electric 2**( 1)-pole transitions
=================================
Upper Lower
Lev J P Lev J P E (Kays) A (s-1) gf S
f2 1 1/2 - f1 1 1/2 + 14861.28 C 3.81311D+07 5.17671D-01 1.14676D+01
B 3.74756D+07 5.08773D-01 1.12705D+01
f2 1 3/2 - f1 1 1/2 + 14861.57 C 3.81334D+07 1.03537D+00 2.29353D+01
B 3.74782D+07 1.01758D+00 2.25413D+01
*******************************************************************************
* VIEW COMPUTED TRANSITION PARAMETERS IN LSJ COUPLING *
*******************************************************************************
>>more 2s_3.2p_3.ct.lsj
Transition between files:
2s_3
2p_3
1 -7.47197398 1s(2).2s_2S
1 -7.40426099 1s(2).2p_2P
14861.28 CM-1 6728.89 ANGS(VAC) 6728.20 ANGS(AIR)
E1 S = 1.12705D+01 GF = 5.08773D-01 AKI = 3.74756D+07 dT = 0.01719
1.14676D+01 5.17671D-01 3.81311D+07
1 -7.47197398 1s(2).2s_2S
3 -7.40425968 1s(2).2p_2P
14861.57 CM-1 6728.76 ANGS(VAC) 6728.06 ANGS(AIR)
E1 S = 2.25413D+01 GF = 1.01758D+00 AKI = 3.74782D+07 dT = 0.01718
2.29353D+01 1.03537D+00 3.81334D+07
Comment: the values in Babushkin gauge are now shown on the first line. In addition, the uncertainty parameter
is given, see TP Section 3.5.
6.2. Second Example: for B II in Different Coupling Schemes – HF Initial Estimates
The second example is for B II in different coupling schemes and aims to illustrate the use of the Coupling program. In this example, we also illustrate how we can use converted HF wave function as starting estimates for the radial orbitals.
- Overview
- Define nuclear data
- Obtain common spectroscopic orbitals for the MR set
- (a)
- Generate configuration list containing 4 CSFs belonging to
- (b)
- Perform angular integration
- (c)
- Perform HF calculation
- (d)
- Convert HF orbitals to relativistic orbitals. We do not need to run rwfnestimate since all orbitals have been estimated
- (e)
- Perform SCF calculation on the weighted average on the state belonging to
- (f)
- Save output to 2s2p_DF
- Transform from - to -coupling
- Run rlevels to view energy separations.
- Run jj2lsj, Coupling, and rlevels to define energy spectra in different coupling scheme.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>5
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>11
The default root mean squared radius is 2.4059998989105225 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>10.81
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1.5
Enter the nuclear dipole moment (in nuclear magnetons):
>>2.6886489
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST FOR *
* 1P_1 AND 3P_0,1,2 WITH FOUR CSFs: 2s2p- J=0, 2s2p- J=1, *
* 2s2p J=1, 2s2p J = 2 *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(1,i)2p(1,i)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>2s,2p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 0- 1
2 1- 2
3 2- 1
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log 2s2p_DF.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
....
RANGULAR: Execution complete.
*******************************************************************************
* RUN HF PROGRAM TO GENERATE NON-RELATIVISTIC RADIAL ORBITALS *
* THAT CAN BE CONVERTED TO RELATIVISTIC ORBITALS *
* OUTPUT FILE: wfn.out *
*******************************************************************************
>>hf
=============================
H A R T R E E - F O C K . 96
=============================
THE DIMENSIONS FOR THE CURRENT VERSION ARE:
NWF= 20 NO=220
START OF CASE
=============
Enter ATOM,TERM,Z
Examples: O,3P,8. or Oxygen,AV,8.
>>B,AV,5.
List the CLOSED shells in the fields indicated (blank line if none)
... ... ... ... ... ... ... ... etc.
>> 1s (Please note that the closed shells should be entered right-justified with
respect to the dots on the line above!!!)
Enter electrons outside CLOSED shells (blank line if none)
Example: 2s(1)2p(3)
>>2s(1)2p(1)
There are 3 orbitals as follows:
1s 2s 2p
Orbitals to be varied: ALL/NONE/=i (last i)/comma delimited list/H
>>all
Default electron parameters ? (Y/N/H)
>>y
Default values for remaining parameters? (Y/N/H)
>>y
WEAK ORTHOGONALIZATION DURING THE SCF CYCLE= T
SCF CONVERGENCE TOLERANCE (FUNCTIONS) = 1.00D-08
NUMBER OF POINTS IN THE MAXIMUM RANGE = 220
ITERATION NUMBER 1
----------------
................
ITERATION NUMBER 6
----------------
SCF CONVERGENCE CRITERIA (SCFTOL*SQRT(Z*NWF)) = 1.2D-06
C( 1s 2s) = 0.00000 V( 1s 2s) = -7.06535 EPS = 0.000000
E( 2s 1s) = 0.02654 E( 1s 2s) = 0.01327
EL ED AZ NORM DPM
1s 16.3418222 20.8332819 1.0000000 1.93D-08
2s 1.8579695 4.7336947 1.0000000 1.38D-08
2p 1.4015370 4.0799511 1.0000000 1.74D-08
< 1s| 2s>= 8.0D-09
TOTAL ENERGY (a.u.)
----- ------
Non-Relativistic -24.06678870 Kinetic 24.06678852
Relativistic Shift -0.00587815 Potential -48.13357722
Relativistic -24.07266685 Ratio -2.000000008
Additional parameters ? (Y/N/H)
>>n
Do you wish to continue along the sequence ?
>>n
END OF CASE
===========
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp wfn.out wfn.inp
*******************************************************************************
* RUN RWFNMCHFMCDF TO CONVERT NON-RELATIVISTIC RADIAL ORBITALS TO *
* RELATIVISTIC ONES *
* INPUT FILE: wfn.inp *
* OUTPUT FILE: rwfn.out *
*******************************************************************************
>>rwfnmchmcdf
RWFNMCHFMCDF
This program converts non-relativistic radial
orbitals to relativistic ones in GRASP format
Input file: wfn.inp
Output file: rwfn.out
*******************************************************************************
* COPY FILES *
* WE DONT NEED TO INVOKE RWFNESTIMATE SINCE ALL ORBITALS HAVE *
* BEEN ESTIMATED THROUGH THE MCHF MCDF CONVERSION *
*******************************************************************************
>>cp rwfn.out rwfn.inp
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS. *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS FOR SPECIFYING ORBITALS *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
Loading CSF File for ALL blocks
There are 4 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0- 1 2 1- 2 3 2- 1
Enter ASF serial numbers for each block
Block 1 ncf = 1 id = 0-
>>1
Block 2 ncf = 2 id = 1-
>>1,2
Block 3 ncf = 1 id = 2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
.....
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES *
*******************************************************************************
>>rsave 2s2p_DF
Created 2s2p_DF.w, 2s2p_DF.c, 2s2p_DF.m, 2s2p_DF.sum, 2s2p_DF.alog and 2s2p_DF.log
*******************************************************************************
* RUN JJ2LSJ TO GET THE LSJ-COMPOSITION *
* INPUT FILE: 2s2p_DF.c, 2s2p_DF.m *
* OUTPUT FILE: 2s2p_DF.lsj.lbl, 2s2p_DF.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2021).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>2s2p_DF
Loading Configuration Symmetry List File ...
There are 4 relativistic subshells;
There are 4 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>n
Do you need a unique labeling? (y/n)
>>y
nelec = 4
ncftot = 4
nw = 4
nblock = 3
block ncf nev 2j+1 parity
1 1 1 1 -1
2 2 2 3 -1
3 1 1 5 -1
Default settings? (y/n)
>>y
....
jj2lsj: Execution complete.
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* NOTE: SINCE LSJ-INFORMATION NOW IS AVAILABLE OUTPUT LABELS *
* WILL BE IN LSJ-COUPLING *
* IF DESIRED WE CAN INSTEAD RUN RLEVELSEV TO GET THE SEPARATION IN EV *
*******************************************************************************
>> rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 - -24.1270878 0.00 0.00 1s(2).2s_2S.2p_3P
2 1 1 - -24.1270404 10.39 10.39 1s(2).2s_2S.2p_3P
3 1 2 - -24.1269457 31.17 20.79 1s(2).2s_2S.2p_3P
4 2 1 - -23.9154061 46458.75 46427.58 1s(2).2s_2S.2p_1P
------------------------------------------------------------------------------------------
For interpretation of -coupling notation produced by jj2lsj see Section 8.2, where we discuss in detail the transformation from - to -coupling for the and configurations in Si VIII.
*******************************************************************************
* RUN JJ2LSJ TO GET THE INPUT FOR COUPLING PROGRAM *
* INPUT FILES: 2s2p_DF.c, 2s2p_DF.m *
* OUPUT FILES: 2s2p_DF.lsj.c, 2s2p_DF.lsj.j, 2s2p_DF.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LS-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2021).
Input files: name.c, name.(c)m
Ouput files: name.lsj.lbl,
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>2s2p_DF
Loading Configuration Symmetry List File ...
There are 4 relativistic subshells;
There are 4 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>n
Do you need a unique labeling? (y/n)
>>n
nelec = 4
ncftot = 4
nw = 4
nblock = 3
block ncf nev 2j+1 parity
1 1 1 1 -1
2 2 2 3 -1
3 1 1 5 -1
Default settings? (y/n)
>>n
All levels (Y/N)
>>y
Maximum % of omitted composition
>>0
What is the value below which an eigenvector composition
is to be neglected for printing?
>>0.01
jj2lsj: Execution complete.
*******************************************************************************
* RUN COUPLING TO GET THE IDENTIFICATION STATES IN DIFFERENT *
* COUPLING SCHEMES *
* INPUT FILES: 2s2p_DF.lsj.c, 2s2p_DF.lsj.j *
* OUPUT FILES: 2s2p_DF.coup3.LK3.lbl, 2s2p_DF.coup3.JK3.lbl *
* 2s2p_DF.coup3.LS.lbl, 2s2p_DF.coup3.LS3.lbl *
* 2s2p_DF.coup3.LSJ3.lbl, 2s2p_DF.coup3.jj.lbl *
* 2s2p_DF.coup3.cLSJ3.lbl, 2s2p_DF.coup3.sum *
*******************************************************************************
>>Coupling
Coupling: Transformation of ASFs from a LS-coupled CSF basis
into differete coupled CSF bases (Fortran 95)
(C) (2022) G. Gaigalas, A. Kramida.
Input files: *.lsj.c, *.lsj.j (ATSP (CPC) or GRASP2K types)
Output files: *.coup*.*.lbl, *.coup*.sum
Name of state
>>2s2p_DF
Default settings ? (Y/N)
>>y
Specify the number of coupled shells for evaluation (1,2 or 3):
>>3
3
What is the value below which an eigenvector composition
is to be neglected for printing?
>>0
0.0000000000000000
Specify shells for recoupling (no more than 12)
>>1s,2s,2p
All transformations completed
There is one-to-one classification for LS coupling
There is one-to-one classification for LS3 coupling
There is one-to-one classification for LSJ3 coupling
There is one-to-one classification for LK3 coupling
There is one-to-one classification for JK3 coupling
There is one-to-one classification for cLSJ3 coupling
There is one-to-one classification for jj3 coupling
end subroutine generate_classification_data
Coupling: Execution complete.
*******************************************************************************
* COPY 2s2p_DF.coup3.LK3.lbl TO 2s2p_DF.lsj.lbl. *
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN LK3-COUPLING. COMMENT: RLEVELS TAKES <name.lsj.lbl> *
* FOR THIS REASON WE COPY <name.coup3.LK3.lbl> TO <name.lsj.lbl> *
*******************************************************************************
>>cp 2s2p_DF.coup3.LK3.lbl 2s2p_DF.lsj.lbl
>>rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 - -24.1270878 0.00 0.00 1s2_ 2s_2p_(3P) P_3[1]<0>
2 1 1 - -24.1270404 10.39 10.39 1s2_ 2s_2p_(3P) P_3[1]<1>
3 1 2 - -24.1269457 31.17 20.79 1s2_ 2s_2p_(3P) P_3[1]<2>
4 2 1 - -23.9154061 46458.75 46427.58 1s2_ 2s_2p_(1P) P_1[1]<1>
------------------------------------------------------------------------------------------
*******************************************************************************
* COPY 2s2p_DF.coup3.JK3.lbl TO 2s2p_DF.lsj.lbl. *
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN JK3-COUPLING *
*******************************************************************************
>>cp 2s2p_DF.coup3.JK3.lbl 2s2p_DF.lsj.lbl
>>rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
---------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
---------------------------------------------------------------------------------------------
1 1 0 - -24.1270877 0.00 0.00 1s2_<0>2s_2p_(3P) 3[1]<0>
2 1 1 - -24.1270404 10.39 10.39 1s2_<0>2s_2p_(3P) 3[1]<1>
3 1 2 - -24.1269457 31.17 20.79 1s2_<0>2s_2p_(3P) 3[1]<2>
4 2 1 - -23.9154061 46458.75 46427.58 1s2_<0>2s_2p_(1P) 1[1]<1>
---------------------------------------------------------------------------------------------
*******************************************************************************
* COPY 2s2p_DF.coup3.LS3.lbl TO 2s2p_DF.lsj.lbl. *
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN LS3-COUPLING *
*******************************************************************************
>>cp 2s2p_DF.coup3.LS3.lbl 2s2p_DF.lsj.lbl
>>rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
---------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 - -24.1270877 0.00 0.00 1s2_ 2s_2p_(3P) 3P<0>
2 1 1 - -24.1270404 10.39 10.39 1s2_ 2s_2p_(3P) 3P<1>
3 1 2 - -24.1269457 31.17 20.79 1s2_ 2s_2p_(3P) 3P<2>
4 2 1 - -23.9154061 46458.75 46427.58 1s2_ 2s_2p_(1P) 1P<1>
---------------------------------------------------------------------------------------------
*******************************************************************************
* COPY 2s2p_DF.coup3.LSJ3.lbl TO 2s2p_DF.lsj.lbl. *
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN LSJ3-COUPLING *
*******************************************************************************
>>cp 2s2p_DF.coup3.LSJ3.lbl: 2s2p_DF.lsj.lbl
>>rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 - -24.1270877 0.00 0.00 1s2_ 2s_2p_(3P) (0,0)<0>
2 1 1 - -24.1270404 10.39 10.39 1s2_ 2s_2p_(3P) (0,1)<1>
3 1 2 - -24.1269457 31.17 20.79 1s2_ 2s_2p_(3P) (0,2)<2>
4 2 1 - -23.9154061 46458.75 46427.58 1s2_ 2s_2p_(1P) (0,1)<1>
------------------------------------------------------------------------------------------
*******************************************************************************
* COPY 2s2p_DF.coup3.jj.lbl TO 2s2p_DF.lsj.lbl. *
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN jj-COUPLING *
*******************************************************************************
>>cp 2s2p_DF.coup3.jj.lbl 2s2p_DF.lsj.lbl
>>rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 - -24.1270877 0.00 0.00 1s+2_2s+_<1/2>.2p-_(1/2) <0>
2 1 1 - -24.1270404 10.39 10.39 1s+2_2s+_<1/2>.2p-_(1/2) <1>
3 1 2 - -24.1269457 31.17 20.79 1s+2_2s+_<1/2>.2p+_ <2>
4 2 1 - -23.9154061 46458.75 46427.58 1s+2_2s+_<1/2>.2p+_(3/2) <1>
------------------------------------------------------------------------------------------
*******************************************************************************
* COPY 2s2p_DF.coup3.cLSJ3.lbl TO 2s2p_DF.lsj.lbl. *
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN cLSJ3-COUPLING *
*******************************************************************************
>>cp 2s2p_DF.coup3.cLSJ3.lbl 2s2p_DF.lsj.lbl
>>rlevels 2s2p_DF.m
nblock = 3 ncftot = 4 nw = 4 nelec = 4
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
----------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
----------------------------------------------------------------------------------------------
1 1 0 - -24.1270877 0.00 0.00 1s+2_ (0,0)<0> 2s_2p_(3P)<0> (0,0)<0>
2 1 1 - -24.1270404 10.39 10.39 1s+2_ (0,0)<0> 2s_2p_(3P)<1> (0,1)<1>
3 1 2 - -24.1269457 31.17 20.79 1s+2_ (0,0)<0> 2s_2p_(3P)<2> (0,2)<2>
4 2 1 - -23.9154061 46458.75 46427.58 1s+2_ (0,0)<0> 2s_2p_(1P)<1> (0,1)<1>
----------------------------------------------------------------------------------------------
For definition of different coupling schemes see in [14] and for interpretation of different coupling schemes notation produced by Coupling see Section 8.2.
6.3. Third Example: and for Si VIII in Different Coupling Schemes–Condensing the CSF List
The third example is and in Si VIII, where we compute M1 transition rates and give the transition data in different coupling schemes. This example also illustrates the use of the rcsfinteract program to reduce the expansion sizes by retaining only the CSFs that interact with the CSFs in the MR.
- Overview
- Define nuclear data
- Obtain common spectroscopic orbitals for the MR set
- (a)
- Generate configuration list belonging to and
- (b)
- Perform angular integration
- (c)
- Generate initial estimates of radial orbitals
- (d)
- Perform SCF calculation on the weighted average of all states belonging to and (there are two states with , four states with and one state with , see NIST Tables)
- (e)
- Save output to 2s22p3_2p5_DF
- Improve states
- (a)
- Generate CSF list from SD-excitations from and to
- (b)
- Run rcsfinteract to extract CSFs that interact with CSFs belonging to or
- (c)
- Perform angular integration
- (d)
- Generate initial estimates of radial orbitals
- (e)
- Perform SCF calculation on the weighted average of all states belonging to and
- (f)
- Save output to 2s22p3_2p5_3
- (g)
- Perform rci calculation in which Breit and QED effects are added.
- Transform from - to -coupling
- Run rlevels to view energy separations.
- Run jj2lsj, Coupling, and rlevels to define energy spectra in different coupling schemes for those levels which have , , shells in identification.
- Calculate properties
- (a)
- Compute the M1 transition rates from the rci wave functions. Biorthonormal transformation not needed in this case since the states are described using the same orthonormal orbital set. Copy files and run the transition program.
- (b)
- Compute the M1 transition rates in different coupling schemes for those levels which have , , shells in identification. Display the transition file.
- Program Input
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>14
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>28
The default root mean squared radius is 3.1224000453948975 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>27.9769271
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
Comment: if we are not interested in the hyperfine structure constants we may just set nuclear spin and electromagnetic moments (magnetic dipole and electric quadrupole) to 1.
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST FOR ALL *
* STATES OF 2s(2)2p(3) + 2p(5) *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(2,i)2p(3,i)
Give configuration 2
>>1s(2,i)2p(5,i)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>2s,2p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,5
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 1/2- 2
2 3/2- 4
3 5/2- 1
*******************************************************************************
* COPY FILES *
* NOTE THAT WE COPY THE FILE TO RCSFMR.INP FOR FUTURE USE *
* TOGETHER WITH RCSFINTERACT *
*******************************************************************************
>>cp rcsfgenerate.log 2s22p3_2p5_DF.exc
>>cp rcsf.out rcsf.inp
>>cp rcsf.out rcsfmr.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
........
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>3
Enter the list of relativistic subshells:
>>*
Orbital Z_eff for hydrogenic orbitals
1s 14.00
2s 14.00
2p- 14.00
2p 14.00
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.9826D+02 0.1033D+03 0.1000D+01 0.1068D+00 328 Hyd
2s 0.2458D+02 0.3670D+02 0.1000D+01 0.4269D+00 344 Hyd
2p- 0.2458D+02 0.8338D-01 0.1000D+01 0.3555D+00 343 Hyd
2p 0.2452D+02 0.1492D+03 0.2000D+01 0.3568D+00 343 Hyd
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* *
* NOTE: INSTEAD OF SAYING THAT WE WILL OPTIMIZE ON, FOR EXAMPLE, *
* STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
Loading CSF File for ALL blocks
There are 7 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 1/2- 2 2 3/2- 4 3 5/2- 1
Enter ASF serial numbers for each block
Block 1 ncf = 2 id = 1/2-
>>1-2
Block 2 ncf = 4 id = 3/2-
>>1-4
Block 3 ncf = 1 id = 5/2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
......
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES *
*******************************************************************************
>>rsave 2s22p3_2p5_DF
Created 2s22p3_2p5_DF.w, 2s22p3_2p5_DF.c, 2s22p3_2p5_DF.m, 2s2p3_2p5_DF.sum,
2s2p3_2p5_DF.alog and 2s22p3_2p5_DF.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OBTAINED BY *
* SD-EXCITATIONS FROM 1s(2)2s(2)2p(3) + 1s(2)2p(5) TO n = 3 *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2s(2,*)2p(3,*)
Give configuration 2
>>1s(2,*)2p(5,*)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,5
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 1/2- 595
2 3/2- 914
3 5/2- 847
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsfgenerate.log 2s22p3_2p5_3.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RCSFINTERACT PROGRAM TO DETERMINE WHICH OF THE CSFs IN THE *
* rcsf.inp LIST INTERACTS WITH THE CSFs IN rcsfmr.inp *
* THE INTERACTING CSFs ARE WRITTEN TO rcsf.out *
* INPUT FILES: rcsfmr.inp, rcsf.inp *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
>>rcsfinteract
RCSFinteract: Determines all the CSFs (rcsf.inp) that interact
with the CSFs in the multireference (rcsfmr.inp)
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: rcsfmr.inp, rcsf.inp
Output file: rcsf.out
Reduction based on Dirac-Coulomb (1) or
Dirac-Coulomb-Breit (2) Hamiltonian?
>>1
....
There are 9 relativistic subshells;
Block MR NCSF Before NCSF After NCSF
1 2 595 274
2 4 914 591
3 1 847 300
RCSFINTERACT: Execution complete
Please note that the orbital orders in rcsfmr.inp and rcsf.inp are required to be the same. In the case above, this requirement was fulfilled. In more complex cases, to meet the above requirement, one needs to prescribe the orbital order in the clist.ref file that is used when generating the rcsf.inp list, see Section 6.6.
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>3
Enter the list of relativistic subshells:
>>*
Orbital Z_eff for hydrogenic orbitals
3s 14.00
3p- 14.00
3p 14.00
3d- 14.00
3d 14.00
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.7698D+02 0.1056D+03 0.1000D+01 0.1109D+00 347 rwf
2s 0.1236D+02 0.3088D+02 0.1000D+01 0.5172D+00 351 rwf
2p- 0.1089D+02 0.5761D-01 0.1000D+01 0.4660D+00 352 rwf
2p 0.1086D+02 0.1007D+03 0.2000D+01 0.4675D+00 352 rwf
3s 0.1092D+02 0.1998D+02 0.1000D+01 0.9615D+00 354 Hyd
3p- 0.1092D+02 0.4942D-01 0.1000D+01 0.8901D+00 354 Hyd
3p 0.1090D+02 0.8855D+02 0.2000D+01 0.8918D+00 354 Hyd
3d- 0.1090D+02 0.4311D-01 0.2000D+01 0.7490D+00 353 Hyd
3d 0.1089D+02 0.9250D+02 0.3000D+01 0.7496D+00 353 Hyd
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 3s,3p, 3d. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* *
* NOTE: INSTEAD OF SAYING THAT WE WILL OPTIMIZE ON, FOR EXAMPLE, *
* STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 1164 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 1/2- 274 2 3/2- 590 3 5/2- 300
Enter ASF serial numbers for each block
Block 1 ncf = 274 id = 1/2-
>>1-2
Block 2 ncf = 590 id = 3/2-
>>1-4
Block 3 ncf = 300 id = 5/2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>3*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
.....
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES *
*******************************************************************************
>>rsave 2s22p3_2p5_3
Created 2s22p3_2p5_3.w, 2s22p3_2p5_3.c, 2s22p3_2p5_3.m, 2s22p3_2p5_3.sum,
2s22p3_2p5_3.alog and 2s22p3_2p5_3.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.w *
* OUTPUT FILES: 2s22p3_2p5_3.cm, 2s22p3_2p5_3.csum, 2s22p3_2p5_3.clog *
* rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
* *
* NOTE: INSTEAD OF SAYING THAT WE WILL COMPUTE EIGENVALUES FOR *
* STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog. rci.res
Default settings?
>>y
Name of state:
>>2s22p3_2p5_3
Block 1 , ncf = 274
Block 2 , ncf = 590
Block 3 , ncf = 300
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 1/2- 274 2 3/2- 590 3 5/2- 300
Enter ASF serial numbers for each block
Block 1 ncf = 274 id = 1/2-
>>1-2
Block 2 ncf = 590 id = 3/2-
>>1-4
Block 3 ncf = 300 id = 5/2-
>>1
....
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO GET THE LSJ-COMPOSITION *
* INPUT FILE: 2s22p3_2p5_3.c, 2s22p3_2p5_3.cm *
* OUTPUT FILE: 2s22p3_2p5_3.lsj.lbl, 2s22p3_2p5_3.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2017).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>2s22p3_2p5_3
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 7
ncftot = 1164
nw = 9
nblock = 3
block ncf nev 2j+1 parity
1 274 2 2 -1
2 591 4 4 -1
3 300 1 6 -1
Default settings? (y/n)
>>y
...........
jj2lsj: Execution complete.
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* NOTE: SINCE LSJ-INFORMATION NOW IS AVAILABLE OUTPUT LABELS *
* WILL BE IN LSJ-COUPLING *
* IF DESIRED WE CAN INSTEAD RUN RLEVELSEV TO GET THE SEPARATION IN EV *
*******************************************************************************
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797841 0.00 0.00 1s(2).2s(2).2p(3)4S3_4S
2 2 3/2 - -262.9550555 71269.67 71269.67 1s(2).2s(2).2p(3)2D3_2D
3 1 5/2 - -262.9538206 71540.71 271.04 1s(2).2s(2).2p(3)2D3_2D
4 1 1/2 - -262.7906339 107356.06 35815.34 1s(2).2s(2).2p(3)2P1_2P
5 3 3/2 - -262.7882742 107873.94 517.88 1s(2).2s(2).2p(3)2P1_2P
6 4 3/2 - -259.5241179 824273.45 716399.51 1s(2).2p(5)_2P
7 2 1/2 - -259.4979399 830018.86 5745.41 1s(2).2p(5)_2P
------------------------------------------------------------------------------------------
To interpret the -coupling notation produced by jj2lsj, see Section 8.2.
*******************************************************************************
* THE ABOVE JJ2LJS RUN TRANSFORMED ALL LEVELS TO LSJ COUPLING. *
* BELOW WE WILL TRANSFORM A SUBSET OF THE LEVELS TO OTHER COUPLING *
* SCHEMES. FOR TECHNICAL REASONS WE HAVE TO ADD INFORMATION ALSO *
* FOR THE UNTRANSFORMED LEVELS IN ORDER FOR THE PROGRAMS TO WORK *
* THE LABELS FOR THE UNTRANSFORMED LEVELS WILL BE THOSE FROM THE *
* ABOVE RUN. FOR THIS REASON WE HAVE TO SAVE A COPY OF THE *
* 2s22p3_2p5_3.lsj.lbl LABEL FILE *
*******************************************************************************
>>cp 2s22p3_2p5_3.lsj.lbl 2s22p3_2p5_3.lsj.lbl_SAVE
*******************************************************************************
* RUN JJ2LSJ TO GET THE INPUT FOR COUPLING PROGRAM FOR THOSE *
* LEVELS WHICH HAVE 1s, 2s, AND 2p SHELLS IN IDENTIFICATION *
* INPUT FILES: 2s22p3_2p5_3.c, 2s22p3_2p5_3.cm *
* OUPUT FILES: 2s22p3_2p5_3.lsj.c, 2s22p3_2p5_3.lsj.j, *
* 2s22p3_2p5_3.lsj.lbl *
* *
* THE LEVELS WE ARE INTERESTED IN ARE *
* BLOCK 1, J = 1/2, LEVEL 1 *
* BLOCK 2, J = 3/2, LEVEL 1, 2, 3 (1-3) *
* BLOCK 3, J = 5/2, LEVEL 1 *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LS-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2017).
Input files: name.c, name.(c)m
Ouput files: name.lsj.lbl,
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>2s22p3_2p5_3
Loading Configuration Symmetry List File ...
There are 4 relativistic subshells;
There are 4 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>n
nelec = 4
ncftot = 4
nw = 4
nblock = 3
block ncf nev 2j+1 parity
1 1 1 1 -1
2 2 2 3 -1
3 1 1 5 -1
Default settings? (y/n)
>>n
All levels (Y/N)
>>n
Maximum number of ASFs is: 7
Enter the level numbers of the ASF which are to be transformed,
Enter the block number
>>1
The block number is: 1
e.g., 1 3 4 7--20 48 69--85 :
>>1
Do you need to include more levels? (y/n)
>>y
Enter the block number
>>2
The block number is: 2
e.g., 1 3 4 7--20 48 69--85 :
>>1-3
Do you need to include more levels? (y/n)
>>y
Enter the block number
>>3
The block number is: 3
e.g., 1 3 4 7--20 48 69--85 :
>>1
Do you need to include more levels? (y/n)
>>n
Maximum % of omitted composition
>>0
What is the value below which an eigenvector composition
is to be neglected for printing?
>>0.01
jj2lsj: Execution complete.
*******************************************************************************
* RUN COUPLING TO GET THE IDENTIFICATION STATES IN DIFFERENT *
* COUPLING SCHEMES FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION *
* INPUT FILES: 2s22p3_2p5_3.lsj.c, 2s22p3_2p5_3.lsj.j *
* OUPUT FILES: 2s22p3_2p5_3.coup3.LK3.lbl, 2s22p3_2p5_3.coup3.JK3.lbl *
* 2s22p3_2p5_3.LS.lbl, 2s22p3_2p5_3.coup3.LS3.lbl *
* 2s22p3_2p5_3.coup3.LSJ3.lbl, 2s22p3_2p5_3.coup3.jj.lbl *
* 2s22p3_2p5_3.coup3.cLSJ3.lbl, 2s22p3_2p5_3.coup3.sum *
*******************************************************************************
>>Coupling
Coupling: Transformation of ASFs from a LS-coupled CSF basis
into differete coupled CSF bases (Fortran 95)
(C) (2022) G. Gaigalas, A. Kramida.
Input files: *.lsj.c, *.lsj.j (ATSP (CPC) or GRASP2K types)
Output files: *.coup*.*.lbl, *.coup*.sum
Name of state
>>2s22p3_2p5_3
Default settings ? (Y/N)
>>y
Specify the number of coupled shells for evaluation (1,2 or 3):
>>3
3
What is the value below which an eigenvector composition
is to be neglected for printing?
>>0
0.0000000000000000
Specify shells for recoupling (no more than 12)
>>1s,2s,2p,3s,3p,3d
All transformations completed
There is one-to-one classification for LS coupling
There is one-to-one classification for LS3 coupling
There is one-to-one classification for LSJ3 coupling
There is one-to-one classification for LK3 coupling
There is one-to-one classification for JK3 coupling
There is one-to-one classification for cLSJ3 coupling
There is one-to-one classification for jj3 coupling
end subroutine generate_classification_data
Coupling: Execution complete.
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN LK3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* *
* OBSERVE! *
* ABOVE WE TRANSFORMED ONLY A SUBSET OF THE LEVELS *
* WE NEED, HOWEVER, TO HAVE LABELS FOR ALL LEVELS. WE WILL USE *
* THE LSJ LABELS IN THE FILE 2s22p3_2p5_3.lsj.lbl_SAVE FOR THE *
* UNTRANSFORMED LEVELS. WE CAN BY HAND EDIT THE *
* 2s22p3_2p5_3.coup3.LK3.lbl FILE AND PASTE THE INFORMATION FOR *
* THE UNTRANSFORMED LEVELS FROM THE 2s22p3_2p5_3.lsj.lbl_SAVE *
* FILE AT THE APPROPRIATE PLACE IN 2s22p3_2p5_3.coup3.LK3.lbl *
* ALTERNATIVELY, AND THIS IS WHAT WE WILL DO BELOW, WE CAN USE THE *
* sed COMMAND TO COPY THE APPROPRIATE INFORMATION FOR THE TWO *
* UNTRANSFORMED LEVELS FROM 2s22p3_2p5_3.lsj.lbl_SAVE AND PUT *
* THE INFORMATION IN PATCH1 and PATCH2. *
* WE NOW USE sed TO PASTE THE INFORMATION IN PATCH1 AND PATCH2 *
* AT THE APPROPRIATE PLACE IN 2s22p3_2p5_3.coup3.LK3.lbl *
* THE USER IS ADVICED TO OPEN AND INSPECT BOTH THE *
* 2s22p3_2p5_3.lsj.lbl_SAVE FILE AND THE 2s22p3_2p5_3.coup3.LK3.lbl *
* FILE TO UNDERSTAND WHAT IS GOING ON *
*******************************************************************************
>>sed -n 25,28p 2s22p3_2p5_3.lsj.lbl_SAVE >patch1
>>sed -i 327rpatch1 2s22p3_2p5_3.coup3.LK3.lbl
>>sed -n 6,10p 2s22p3_2p5_3.lsj.lbl_SAVE >patch2
>>sed -i 57rpatch2 2s22p3_2p5_3.coup3.LK3.lbl
>>cp 2s22p3_2p5_3.coup3.LK3.lbl 2s22p3_2p5_3.lsj.lbl
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
---------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
---------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797841 0.00 0.00 1s2_ 2s2_.2p3(4S)(4S) S_4[0]<3/2>
2 2 3/2 - -262.9550555 71269.67 71269.67 1s2_ 2s2_.2p3(2D)(2D) D_2[2]<3/2>
3 1 5/2 - -262.9538206 71540.71 271.04 1s2_ 2s2_.2p3(2D)(2D) D_2[2]<5/2>
4 1 1/2 - -262.7906339 107356.06 35815.34 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<1/2>
5 3 3/2 - -262.7882742 107873.94 517.88 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<3/2>
6 4 3/2 - -259.5241179 824273.45 716399.51 1s(2).2p(5)_2P
7 2 1/2 - -259.4979399 830018.86 5745.41 1s(2).2p(5)_2P
---------------------------------------------------------------------------------------------
Please note that the labels for No 1–5 are in LK3 coupling and the rest (No 6 and 7) in LSJ coupling.
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN JK3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LSJ-COUPLING *
* INFORMATION FROM 2s22p3_2p5_3.lsj.lbl_SAV ADDED *
*******************************************************************************
>>sed -i 327rpatch1 2s22p3_2p5_3.coup3.JK3.lbl
>>sed -i 57rpatch2 2s22p3_2p5_3.coup3.JK3.lbl
>>cp 2s22p3_2p5_3.coup3.JK3.lbl 2s22p3_2p5_3.lsj.lbl
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797841 0.00 0.00 1s2_<0>2s2_.2p3(4S)(4S) 4[0]<3/2>
2 2 3/2 - -262.9550555 71269.67 71269.67 1s2_<0>2s2_.2p3(2D)(2D) 2[2]<3/2>
3 1 5/2 - -262.9538206 71540.71 271.04 1s2_<0>2s2_.2p3(2D)(2D) 2[2]<5/2>
4 1 1/2 - -262.7906339 107356.06 35815.34 1s2_<0>2s2_.2p3(2P)(2P) 2[1]<1/2>
5 3 3/2 - -262.7882742 107873.94 517.88 1s2_<0>2s2_.2p3(2P)(2P) 2[1]<3/2>
6 4 3/2 - -259.5241179 824273.45 716399.51 1s(2).2p(5)_2P
7 2 1/2 - -259.4979399 830018.86 5745.41 1s(2).2p(5)_2P
------------------------------------------------------------------------------------------
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN LS3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LSJ-COUPLING *
* INFORMATION FROM 2s22p3_2p5_3.lsj.lbl_SAV ADDED *
*******************************************************************************
>>sed -i 320rpatch1 2s22p3_2p5_3.coup3.LS3.lbl
>>sed -i 56rpatch2 2s22p3_2p5_3.coup3.LS3.lbl
>>cp 2s22p3_2p5_3.coup3.LS3.lbl 2s22p3_2p5_3.lsj.lbl
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797858 0.00 0.00 1s2_ 2s2_.2p3(4S)(4S) 4S<3/2>
2 2 3/2 - -262.9550573 71269.67 71269.67 1s2_ 2s2_.2p3(2D)(2D) 2D<3/2>
3 1 5/2 - -262.9538223 71540.71 271.04 1s2_ 2s2_.2p3(2D)(2D) 2D<5/2>
4 1 1/2 - -262.7906356 107356.06 35815.35 1s2_ 2s2_.2p3(2P)(2P) 2P<1/2>
5 3 3/2 - -262.7882760 107873.94 517.88 1s2_ 2s2_.2p3(2P)(2P) 2P<3/2>
6 4 3/2 - -259.5241195 824273.48 716399.54 1s(2).2p(5)_2P
7 2 1/2 - -259.4979415 830018.89 5745.41 1s(2).2p(5)_2P
------------------------------------------------------------------------------------------
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN LSJ3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LSJ-COUPLING *
* INFORMATION FROM 2s22p3_2p5_3.lsj.lbl_SAV ADDED *
*******************************************************************************
>>sed -i 327rpatch1 2s22p3_2p5_3.coup3.LSJ3.lbl
>>sed -i 57rpatch2 2s22p3_2p5_3.coup3.LSJ3.lbl
>>cp 2s22p3_2p5_3.coup3.LSJ3.lbl 2s22p3_2p5_3.lsj.lbl
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797841 0.00 0.00 1s2_ 2s2_.2p3(4S)(4S) (0,3/2)<3/2>
2 2 3/2 - -262.9550555 71269.67 71269.67 1s2_ 2s2_.2p3(2D)(2D) (0,3/2)<3/2>
3 1 5/2 - -262.9538206 71540.71 271.04 1s2_ 2s2_.2p3(2D)(2D) (0,5/2)<5/2>
4 1 1/2 - -262.7906339 107356.06 35815.34 1s2_ 2s2_.2p3(2P)(2P) (0,1/2)<1/2>
5 3 3/2 - -262.7882742 107873.94 517.88 1s2_ 2s2_.2p3(2P)(2P) (0,3/2)<3/2>
6 4 3/2 - -259.5241179 824273.45 716399.51 1s(2).2p(5)_2P
7 2 1/2 - -259.4979399 830018.86 5745.41 1s(2).2p(5)_2P
------------------------------------------------------------------------------------------
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN jj-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LSJ-COUPLING *
* INFORMATION FROM 2s22p3_2p5_3.lsj.lbl_SAV ADDED *
*******************************************************************************
>>sed -i 329rpatch1 2s22p3_2p5_3.coup3.jj.lbl
>>sed -i 59rpatch2 2s22p3_2p5_3.coup3.jj.lbl
>>cp 2s22p3_2p5_3.coup3.jj.lbl 2s22p3_2p5_3.lsj.lbl
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797841 0.00 0.00 1s+2_2s+2_<0>.2p-_<1/2>.2p+2(2) <3/2>
2 2 3/2 - -262.9550555 71269.67 71269.67 1s+2_2s+2_<0>.2p-_<1/2>.2p+2(2) <3/2>
3 1 5/2 - -262.9538206 71540.71 271.04 1s+2_2s+2_<0>.2p-_<1/2>.2p+2(2) <5/2>
4 1 1/2 - -262.7906339 107356.06 35815.34 1s+2_2s+2_<0>.2p-_<1/2>.2p+2(0) <1/2>
5 3 3/2 - -262.7882742 107873.94 517.88 1s+2_2s+2_<0>.2p+3(3/2) <3/2>
6 4 3/2 - -259.5241179 824273.45 716399.51 1s(2).2p(5)_2P
7 2 1/2 - -259.4979399 830018.86 5745.41 1s(2).2p(5)_2P
------------------------------------------------------------------------------------------
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* IN cLSJ3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LSJ-COUPLING *
* INFORMATION FROM 2s22p3_2p5_3.lsj.lbl_SAV ADDED *
*******************************************************************************
>>sed -i 327rpatch1 2s22p3_2p5_3.coup3.cLSJ3.lbl
>>sed -i 57rpatch2 2s22p3_2p5_3.coup3.cLSJ3.lbl
>>cp 2s22p3_2p5_3.coup3.cLSJ3.lbl 2s22p3_2p5_3.lsj.lbl
>>rlevels 2s22p3_2p5_3.cm
nblock = 3 ncftot = 1165 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -263.2797841 0.00 0.00 1s+2_ (0,0)<0> 2s2_.2p3(4S)(4S)<3/2> (0,3/2)<3/2>
2 2 3/2 - -262.9550555 71269.67 71269.67 1s+2_ (0,0)<0> 2s2_.2p3(2D)(2D)<3/2> (0,3/2)<3/2>
3 1 5/2 - -262.9538206 71540.71 271.04 1s+2_ (0,0)<0> 2s2_.2p3(2D)(2D)<5/2> (0,5/2)<5/2>
4 1 1/2 - -262.7906339 107356.06 35815.34 1s+2_ (0,0)<0> 2s2_.2p3(2P)(2P)<1/2> (0,1/2)<1/2>
5 3 3/2 - -262.7882742 107873.94 517.88 1s+2_ (0,0)<0> 2s2_.2p3(2P)(2P)<3/2> (0,3/2)<3/2>
6 4 3/2 - -259.5241179 824273.45 716399.51 1s(2).2p(5)_2P
7 2 1/2 - -259.4979399 830018.86 5745.41 1s(2).2p(5)_2P
------------------------------------------------------------------------------------------
For definition of different coupling schemes see in [14] and for interpretation of different coupling schemes notation produced by Coupling see Section 8.2, where we discuss in detail the transformation in different coupling schemes for in B II.
*******************************************************************************
* WE WILL NOW COMPUTE THE M1 TRANSITION RATES *
* IN THIS CASE THE INITIAL AND FINAL STATE FILES ARE THE SAME *
* AND WE DO NOT NEED TO PERFORM A biorthonormal TRANSFORMATION *
* USING RBIOTRANSFORM. JUST COPY FILES TO name.bw AND name.cbm *
* THE 2s22p3_2p5_3.lsj.lbl FILE GIVES THE LABELS THAT WILL BE *
* USED BY THE TRANSITION PROGRAM. WE START BY USING THE LSJ LABELS *
* AND COPY 2s22p3_2p5_3.lsj.lbl_SAVE TO 2s22p3_2p5_3.lsj.lbl *
*******************************************************************************
>>cp 2s22p3_2p5_3.w 2s22p3_2p5_3.bw
>>cp 2s22p3_2p5_3.cm 2s22p3_2p5_3.cbm
>>cp 2s22p3_2p5_3.lsj.lbl_SAVE 2s22p3_2p5_3.lsj.lbl
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* NOTE THAT THE LATTER OUTPUT FILE HAS ALL THE LABELS IN LSJ- *
* COUPLING WHICH IS VERY CONVENIENT *
* *
* PLEASE OBSERVE!! IF WE ARE GOING TO RUN RTRANSITION FOR AN RCI WAVE *
* FUNCTIONS THEN THE LSJ-INFORMATION SHOULD BE AVAILABLE FOR THE SAME *
* WAVE FUNCTION. IF FOR EXAMPLE THE LSJ-INFORMATION FROM JJ2LSJ IS *
* IS AVAILABLE FROM AN RMCDHF RUN AND WE RUN RTRANSITION ON THE RCI *
* WAVE FUNCTION THEN RTRANSITION WILL STOP. IN THIS CASE JUST RERUN *
* JJ2LSJ FOR THE RCI WAVE FUNCTION AND START RTRANSITION AGAIN FOR *
* THE SAME WAVE FUNCTION. IN OUR EXAMPLE JJ2LJS AND RTRANSITION ARE *
* RUN FOR RCI WAVE FUNCTIONS AND EVERYTHING IS OK. *
*******************************************************************************
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
*******************************************************************************
* VIEW THE TRANSITION FILE WHERE THE LABELS ARE IN LSJ COUPLING *
*******************************************************************************
>>more 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj
Transition between files:
2s22p3_2p5_3
2s22p3_2p5_3
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
1 -259.49793990 1s(2).2p(5)_2P
722662.80 CM-1 138.38 ANGS(VAC) 138.38 ANGS(AIR)
M1 S = 1.18001D-11 GF = 3.44839D-16 AKI = 6.00621D-05
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
517.88 CM-1 193094.26 ANGS(VAC) 193074.30 ANGS(AIR)
M1 S = 1.31018D+00 GF = 2.74383D-08 AKI = 1.22716D-03
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
3 -259.52411791 1s(2).2p(5)_2P
716917.39 CM-1 139.49 ANGS(VAC) 139.49 ANGS(AIR)
M1 S = 1.73052D-06 GF = 5.01695D-11 AKI = 4.29992D+00
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
107356.06 CM-1 931.48 ANGS(VAC) 931.48 ANGS(AIR)
M1 S = 1.86549D-03 GF = 8.09867D-09 AKI = 3.11300D+01
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
1 -259.49793990 1s(2).2p(5)_2P
830018.86 CM-1 120.48 ANGS(VAC) 120.48 ANGS(AIR)
M1 S = 5.92158D-07 GF = 1.98756D-11 AKI = 4.56677D+00
..........
5 -262.95382060 1s(2).2s(2).2p(3)2D3_2D
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
36333.23 CM-1 2752.30 ANGS(VAC) 2752.01 ANGS(AIR)
M1 S = 3.63575D-02 GF = 5.34186D-08 AKI = 1.17593D+01
5 -262.95382060 1s(2).2s(2).2p(3)2D3_2D
3 -259.52411791 1s(2).2p(5)_2P
752732.73 CM-1 132.85 ANGS(VAC) 132.85 ANGS(AIR)
M1 S = 1.88251D-06 GF = 5.73023D-11 AKI = 5.41422D+00
*******************************************************************************
* GIVE THE TRANSITION FILE A NEW APPROPRIATE NAME FOR LATER USE *
*******************************************************************************
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_SAVE
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* IN LK3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* COPY THE 2s22p3_2p5_3.coup3.LK3.lbl TO 2s22p3_2p5_3.lsj.lbl *
* IT IS THE LATTER FILE THAT IS READ AND USED BY THE TRANSITION *
* PROGRAM *
*******************************************************************************
>>cp 2s22p3_2p5_3.coup3.LK3.lbl 2s22p3_2p5_3.lsj.lbl
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
*******************************************************************************
* VIEW THE TRANSITION FILE WHERE THE LABELS ARE IN LK3 COUPLING *
* THE DATA IS THE SAME AS ABOVE, ONLY THE LABELS OF THE STATES *
* DIFFER *
*******************************************************************************
>>more 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj
Transition between files:
2s22p3_2p5_3
2s22p3_2p5_3
1 -262.79063388 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<1/2>
1 -259.49793990 1s(2).2p(5)_2P
722662.80 CM-1 138.38 ANGS(VAC) 138.38 ANGS(AIR)
M1 S = 1.18001D-11 GF = 3.44839D-16 AKI = 6.00621D-05
1 -262.79063388 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<1/2>
3 -262.78827423 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<3/2>
517.88 CM-1 193094.26 ANGS(VAC) 193074.30 ANGS(AIR)
M1 S = 1.31018D+00 GF = 2.74383D-08 AKI = 1.22716D-03
1 -262.79063388 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<1/2>
3 -259.52411791 1s(2).2p(5)_2P
716917.39 CM-1 139.49 ANGS(VAC) 139.49 ANGS(AIR)
M1 S = 1.73052D-06 GF = 5.01695D-11 AKI = 4.29992D+00
3 -263.27978407 1s2_ 2s2_.2p3(4S)(4S) S_4[0]<3/2>
1 -262.79063388 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<1/2>
107356.06 CM-1 931.48 ANGS(VAC) 931.48 ANGS(AIR)
M1 S = 1.86549D-03 GF = 8.09867D-09 AKI = 3.11300D+01
3 -263.27978407 1s2_ 2s2_.2p3(4S)(4S) S_4[0]<3/2>
1 -259.49793990 1s(2).2p(5)_2P
830018.86 CM-1 120.48 ANGS(VAC) 120.48 ANGS(AIR)
M1 S = 5.92158D-07 GF = 1.98756D-11 AKI = 4.56677D+00
..........
5 -262.95382060 1s2_ 2s2_.2p3(2D)(2D) D_2[2]<5/2>
3 -262.78827423 1s2_ 2s2_.2p3(2P)(2P) P_2[1]<3/2>
36333.23 CM-1 2752.30 ANGS(VAC) 2752.01 ANGS(AIR)
M1 S = 3.63575D-02 GF = 5.34186D-08 AKI = 1.17593D+01
5 -262.95382060 1s2_ 2s2_.2p3(2D)(2D) D_2[2]<5/2>
3 -259.52411791 1s(2).2p(5)_2P
752732.73 CM-1 132.85 ANGS(VAC) 132.85 ANGS(AIR)
M1 S = 1.88251D-06 GF = 5.73023D-11 AKI = 5.41422D+00
*******************************************************************************
* GIVE THE TRANSITION FILE A NEW APPROPRIATE NAME FOR LATER USE *
*******************************************************************************
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_LK3
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* IN JK3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* COPY THE 2s22p3_2p5_3.coup3.JK3.lbl TO 2s22p3_2p5_3.lsj.lbl *
* IT IS THE LATTER FILE THAT IS READ AND USED BY THE TRANSITION *
* PROGRAM *
*******************************************************************************
>>cp 2s22p3_2p5_3.coup3.JK3.lbl 2s22p3_2p5_3.lsj.lbl
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_JK3
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* IN LS3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* COPY THE 2s22p3_2p5_3.coup3.LS3.lbl TO 2s22p3_2p5_3.lsj.lbl *
* IT IS THE LATTER FILE THAT IS READ AND USED BY THE TRANSITION *
* PROGRAM *
*******************************************************************************
>>cp 2s22p3_2p5_3.coup3.LS3.lbl 2s22p3_2p5_3.lsj.lbl
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
*******************************************************************************
* GIVE THE TRANSITION FILE A NEW APPROPRIATE NAME FOR LATER USE *
*******************************************************************************
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_LS3
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* IN LSJ3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* COPY THE 2s22p3_2p5_3.coup3.LSJ3.lbl TO 2s22p3_2p5_3.lsj.lbl *
* IT IS THE LATTER FILE THAT IS READ AND USED BY THE TRANSITION *
* PROGRAM *
*******************************************************************************
>>cp 2s22p3_2p5_3.coup3.LSJ3.lbl 2s22p3_2p5_3.lsj.lbl
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_LSJ3
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* IN jj-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* COPY THE 2s22p3_2p5_3.coup3.jj.lbl TO 2s22p3_2p5_3.lsj.lbl *
* IT IS THE LATTER FILE THAT IS READ AND USED BY THE TRANSITION *
* PROGRAM *
*******************************************************************************
>>cp 2s22p3_2p5_3.coup3.jj.lbl 2s22p3_2p5_3.lsj.lbl
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
*******************************************************************************
* GIVE THE TRANSITION FILE A NEW APPROPRIATE NAME FOR LATER USE *
*******************************************************************************
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_jj
*******************************************************************************
* RUN RTRANSITION FOR 2s22p3_2p5_3 TO COMPUTE M1 TRANSITION PARAMETERS*
* IN cLSJ3-COUPLING FOR THOSE LEVELS WHICH HAVE 1s, 2s, AND 2p *
* SHELLS IN IDENTIFICATION AND FOR THE REST LS-COUPLING *
* INPUT FILES: isodata, 2s22p3_2p5_3.c, 2s22p3_2p5_3.bw, *
* 2s22p3_2p5_3.cbm, *
* OUTPUT FILE: 2s22p3_2p5_3.2s22p3_2p5_3.ct, *
* 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj *
* 2s22p3_2p5_3.2s22p3_2p5_3.+1T (angular file) *
* *
* COPY THE 2s22p3_2p5_3.coup3.cLSJ3.lbl TO 2s22p3_2p5_3.lsj.lbl *
* IT IS THE LATTER FILE THAT IS READ AND USED BY THE TRANSITION *
* PROGRAM *
*******************************************************************************
>>cp 2s22p3_2p5_3.coup3.cLSJ3.lbl 2s22p3_2p5_3.lsj.lbl
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>2s22p3_2p5_3
Name of the Final state
>>2s22p3_2p5_3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 1164 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
3
274 864 1164
3
274 864 1164
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
1
2 2
there are 2328 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>M1
M1 transitions only between levels with different J?
>>n
.....
RTRANSITION: Execution complete.
*******************************************************************************
* GIVE THE TRANSITION FILE A NEW APPROPRIATE NAME FOR LATER USE *
*******************************************************************************
>>mv 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj 2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj_cLSJ3
6.4. Fourth Example: States in Fe XV Using MPI
The fourth example is to determine the energies for the 10 states belonging to the three even configurations and the 16 states belonging to the two odd configurations . In addition, the E1, M2 and M1 transition data should be computed. The NIST table for these states is shown below.
------------------------------------------------------------
Configuration | Term | J | Level |
--------------------|--------|-----|-----------------------|
| | | |
2p6.3s2 | 1S | 0 | 0 |
| | | |
3s.3p | 3P* | 0 | 233842 |
| | 1 | 239660 |
| | 2 | 253820 |
| | | |
3s.3p | 1P* | 1 | 351911 |
| | | |
3p2 | 3P | 0 | 554524 |
| | | |
3p2 | 1D | 2 | 559600 |
| | | |
3p2 | 3P | 1 | 564602 |
| | 2 | 581803 |
| | | |
3p2 | 1S | 0 | 659627 |
| | | |
3s.3d | 3D | 1 | 678772 |
| | 2 | 679785 |
| | 3 | 681416 |
| | | |
3s.3d | 1D | 2 | 762093 |
| | | |
3p.3d | 3F* | 2 | 928241 |
| | 3 | 938126 |
| | | |
3p.3d | 1D* | 2 | 948513 |
| | | |
3p.3d | 3F* | 4 | 949658 |
| | | |
3p.3d | 3D* | 1 | 982868 |
| | | |
3p.3d | 3P* | 2 | 983514 |
| | | |
3p.3d | 3D* | 3 | 994852 |
| | | |
3p.3d | 3P* | 0 | 995889 |
| | 1 | 996243 |
| | | |
3p.3d | 3D* | 2 | 996623 |
| | | |
3p.3d | 1F* | 3 | 1062515 |
| | | |
3p.3d | 1P* | 1 | 1074887 |
------------------------------------------------------------
The starting point is two separate rmcdhf calculations for the even and odd reference states, respectively. Then one layer of correlation orbitals is included describing valence–valence and core–valence correlation.
-
Overview
-
Define nuclear data.
-
Obtain common spectroscopic orbitals for the even parity MR set
- (a)
-
Generate list of CSFs describing the even states belonging to
- (b)
-
Perform angular integration.
- (c)
-
Generate initial estimates of radial orbitals.
- (d)
-
Perform SCF calculation on the weighted average of the even states.
- (e)
-
Save output to evenmr.
-
Improve even states
- (a)
-
Generate valence–valence and core–valence CSF expansions
- (b)
-
Perform angular integration using MPI.
- (c)
-
Generate initial estimates of radial orbitals.
- (d)
-
Perform SCF MPI calculation on the weighted average of the even states.
- (e)
-
Save output to even4.
- (f)
-
Perform rci MPI calculation in which Breit and QED effects are added.
-
Run jj2lsj to transform to -coupling.
-
Obtain common spectroscopic orbitals for the odd parity MR set
- (a)
-
Generate list of CSFs describing the even states belonging to
- (b)
-
Perform angular integration.
- (c)
-
Generate initial estimates of radial orbitals.
- (d)
-
Perform SCF calculation on the weighted average of the odd states.
- (e)
-
Save output to oddmr.
-
Improve odd states.
- (a)
-
Generate valence–valence and core–valence CSF expansions.
- (b)
-
Perform angular integration using MPI.
- (c)
-
Generate initial estimates of radial orbitals.
- (d)
-
Perform SCF MPI calculation on the weighted average of the odd states.
- (e)
-
Save output to odd4.
- (f)
-
Perform rci MPI calculation in which Breit and QED effects are added.
-
Run jj2lsj to transform to -coupling.
-
Run rlevels, rlevelseV to view energy separations in -coupling scheme.
-
Compute properties.
- (a)
-
Compute transition rates from the rci wave functions. Computation in two steps: biorthonormal transformation and then evaluation of transition matrix elements using standard Racah algebra methods. Both steps use MPI code.
-
Preparation for the MPI Run
We intend to run rangular_mpi, rmcdhf_mpi, and rci_mpi using four processors and a disks file defining the location of the directory (on the disk) in which temporary data should be stored. On our computer, we will run the MPI jobs on four processors from a directory called
/home/tspejo/GRASP2018/grasptest/example4/script
and store the temporary data in
/home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
The disks file corresponding to this case is shown below.
’/home/tspejo/GRASP2018/grasptest/example4/script’
’/home/tspejo/GRASP2018/grasptest/example4/tmp_mpi’
’/home/tspejo/GRASP2018/grasptest/example4/tmp_mpi’
’/home/tspejo/GRASP2018/grasptest/example4/tmp_mpi’
’/home/tspejo/GRASP2018/grasptest/example4/tmp_mpi’
If we use four processors for the MPI run, the full path to the directory storing temporary data should be given four times in the disks file. If we use eight processors for the MPI run, the full path to the directory storing temporary data should be given eight times, etc. The directory storing temporary data can be anywhere in the file system, and need not be on the same level in the file system as the working directory.
Provided the disks file is set up correctly according to the file structure of the local computer, the cpath.f90 routine of the grasp mpi90 library automatically creates the directory in which temporary data are stored along with subdirectories 000, 001, 002 etc. named after the processors, starting with 0. On our system cpath.f90 creates
/home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
along with four subdirectories 000, 001, 002, 003 named after the four processors, starting with 0. If cpath.f90 fails to create the directories specified in the disks file then temporary data are stored in the directory specified by the MPI_TMP environment variable.
On some computer systems, the MPI libraries need to be loaded before the calculation starts. The commands for this depend on the system, but could look like
module add openmpi
Make sure you load MPI libraries for gfortran. For additional runs using the MPI codes, see Section 9.7.
-
Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>26
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>56
The default root mean squared radius is 3.7376999855041504 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>55.845
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs FOR *
* CONFIGURATIONS 3s(2), 3p(2), 3s3p *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(2,i)
Give configuration 2
>>2s(2,i)2p(6,i)3p(2,i)
Give configuration 3
>>2s(2,i)2p(6,i)3s(1,i)3d(1,i)
Give configuration 4
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,6
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
4 blocks were created
block J/P NCSF
1 0+ 3
2 1+ 2
3 2+ 4
4 3+ 1
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log evenmr.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3098D+03 0.2951D+03 0.1000D+01 0.5759D-01 328 T-F
2s 0.6428D+02 0.1015D+03 0.1000D+01 0.2385D+00 346 T-F
2p- 0.6284D+02 0.7744D+00 0.1000D+01 0.2003D+00 346 T-F
2p 0.6217D+02 0.6941D+03 0.2000D+01 0.2028D+00 346 T-F
3s 0.2358D+02 0.5152D+02 0.1000D+01 0.5708D+00 358 T-F
3p- 0.2295D+02 0.4217D+00 0.1000D+01 0.5370D+00 358 T-F
3p 0.2278D+02 0.3794D+03 0.2000D+01 0.5409D+00 358 T-F
3d- 0.2170D+02 0.5565D+00 0.2000D+01 0.4629D+00 358 T-F
3d 0.2165D+02 0.6259D+03 0.3000D+01 0.4642D+00 358 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s,2s,2p,3s,3p,3d AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS FOR SPECIFYING ORBITALS *
* *
* NOTE: INSTEAD OF SAYING THAT WE SHOULD OPTIMIZE ON, FOR EXAMPLE, *
* THE STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
* *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 10 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 4 blocks (block J/Parity NCF):
1 0+ 3 2 1+ 2 3 2+ 4 4 3+ 1
Enter ASF serial numbers for each block
Block 1 ncf = 3 id = 0+
>>1-3
Block 2 ncf = 2 id = 1+
>>1-2
Block 3 ncf = 4 id = 2+
>>1-4
Block 4 ncf = 1 id = 3+
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
..............
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog name.log *
*******************************************************************************
>>rsave evenmr
Created evenmr.w, evenmr.c, evenmr.m, evenmr.sum, evenmr.alog and evenmr.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 4 VALENCE-VALENCE AND *
* CORE-VALENCE LIST *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,5)3s(2,*)
Give configuration 2
>>2s(2,1)2p(6,i)3s(2,*)
Give configuration 3
>>2s(2,i)2p(6,5)3p(2,*)
Give configuration 4
>>2s(2,1)2p(6,i)3p(2,*)
Give configuration 5
>>2s(2,i)2p(6,5)3s(1,*)3d(1,*)
Give configuration 6
>>2s(2,1)2p(6,i)3s(1,*)3d(1,*)
Give configuration 7
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,6
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
4 blocks were found
block J/P NCSF
1 0+ 556
2 1+ 1448
3 2+ 1898
4 3+ 1810
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log even4.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR_MPI USING 4 PROCESSES TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,..IN 000, 001, 002, 003 *
*******************************************************************************
>>mpirun -np 4 rangular_mpi
====================================================
RANGULAR_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: atom1 ID: 000
Host: atom1 ID: 001
Host: atom1 ID: 002
Host: atom1 ID: 003
Date and Time:
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
Start Dir:
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
Serial I/O Dir (node-0 only):
atom1: /home/tspejo/GRASP2018/grasptest/example4/script
Work Dir (Parallel I/O):
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
Full interaction? (y/n)
>>y
.........
mpi stopped by node- 0 from RANGULAR_MPI: Execution complete.
mpi stopped by node- 2 from RANGULAR_MPI: Execution complete.
mpi stopped by node- 1 from RANGULAR_MPI: Execution complete.
mpi stopped by node- 3 from RANGULAR_MPI: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4---Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.2803D+03 0.2923D+03 0.1000D+01 0.5839D-01 354 rwf
2s 0.4802D+02 0.9081D+02 0.1000D+01 0.2623D+00 358 rwf
2p- 0.4353D+02 0.6335D+00 0.1000D+01 0.2298D+00 358 rwf
2p 0.4305D+02 0.5671D+03 0.2000D+01 0.2326D+00 358 rwf
3s 0.1667D+02 0.4072D+02 0.1000D+01 0.6859D+00 362 rwf
3p- 0.1543D+02 0.2995D+00 0.1000D+01 0.6765D+00 363 rwf
3p 0.1534D+02 0.2693D+03 0.2000D+01 0.6810D+00 363 rwf
3d- 0.1358D+02 0.2668D+00 0.2000D+01 0.6260D+00 364 rwf
3d 0.1356D+02 0.3005D+03 0.3000D+01 0.6270D+00 364 rwf
4s 0.1141D+02 0.3095D+02 0.1000D+01 0.1086D+01 366 T-F
4p- 0.1110D+02 0.2579D+00 0.1000D+01 0.1061D+01 367 T-F
4p 0.1104D+02 0.2325D+03 0.2000D+01 0.1066D+01 367 T-F
4d- 0.1053D+02 0.3857D+00 0.2000D+01 0.1002D+01 367 T-F
4d 0.1051D+02 0.4342D+03 0.3000D+01 0.1004D+01 367 T-F
4f- 0.9897D+01 0.2129D+00 0.3000D+01 0.8833D+00 367 T-F
4f 0.9890D+01 0.2598D+03 0.4000D+01 0.8842D+00 367 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM_MPI USING 4 PROCESSES TO OBTAIN SELF CONSISTENT *
* SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 4s,4p,4d,4f. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 4* MEANS 4s, 4p-, 4p, 4d-, 4d, 4f-, 4f *
*******************************************************************************
>>mpirun -np 4 rmcdhf_mem_mpi
====================================================
RMCDHF_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: atom1 ID: 000
Host: atom1 ID: 001
Host: atom1 ID: 002
Host: atom1 ID: 003
Date and Time:
atom1: Date: 20140812 Time: 011653.965 Zone: +0200
atom1: Date: 20140812 Time: 011653.965 Zone: +0200
atom1: Date: 20140812 Time: 011653.965 Zone: +0200
atom1: Date: 20140812 Time: 011653.965 Zone: +0200
Start Dir:
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
Serial I/O Dir (node-0 only):
atom1: /home/tspejo/GRASP2018/grasptest/example4/script
Work Dir (Parallel I/O):
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
Default settings? (y/n)
>>y
-----------------------------------------------------
Spin-angular coefficient are putting into the memory:
-----------------------------------------------------
Total memory on computer: 755.00 Gb
Free memory on computer: 630.17 Gb
Allocation for mcp.30:
Free memory on computer 630.16 Gb
Allocation for mcp.31:
Free memory on computer 630.16 Gb
Allocation for mcp.32:
Free memory on computer 630.16 Gb
Allocation for mcp.33:
Free memory on computer 630.15 Gb
Allocation for mcp.34:
Free memory on computer 630.14 Gb
Allocation for mcp.35:
Free memory on computer 630.13 Gb
Allocation for mcp.36:
Free memory on computer 630.13 Gb
Allocation for mcp.37:
Free memory on computer 630.13 Gb
Allocation for mcp.38:
Free memory on computer 630.13 Gb
Allocation for mcp.39:
Free memory on computer 630.13 Gb
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Loading CSF File for ALL blocks
There are 5712 relativistic CSFs... load complete;
There are 4 blocks (block J/Parity NCF):
1 0+ 556 2 1+ 1448 3 2+ 1898 4 3+ 1810
Enter ASF serial numbers for each block
Block 1 ncf = 556 id = 0+
>>1-3
Block 2 ncf = 1448 id = 1+
>>1-2
Block 3 ncf = 1898 id = 2+
>>1-4
Block 4 ncf = 1810 id = 3+
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Enter orbitals to be varied (Updating order)
>>4*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
.....
mpi stopped by node- 1 from RMCDHF_MPI: Execution complete.
mpi stopped by node- 0 from RMCDHF_MPI: Execution complete.
mpi stopped by node- 3 from RMCDHF_MPI: Execution complete.
mpi stopped by node- 2 from RMCDHF_MPI: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave even4
Created even4.w, even4.c, even4.m, even4.sum, even4.alog and even4.log
*******************************************************************************
* RUN RCI_MPI USING 4 PROCESSES TO INCLUDE BREIT AND QED EFFECTS *
* INPUT FILES : isodata, even4.c, even4.w *
* OUTPUT FILES: even4.cm, even4.csum *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>mpirun -np 4 rci_mpi
====================================================
RCI_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: atom1 ID: 000
Host: atom1 ID: 001
Host: atom1 ID: 002
Host: atom1 ID: 003
Date and Time:
atom1: Date: 20140812 Time: 012250.312 Zone: +0200
atom1: Date: 20140812 Time: 012250.312 Zone: +0200
atom1: Date: 20140812 Time: 012250.312 Zone: +0200
atom1: Date: 20140812 Time: 012250.312 Zone: +0200
Start Dir:
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
Serial I/O Dir (node-0 only):
atom1: /home/tspejo/GRASP2018/grasptest/example4/script
Work Dir (Parallel I/O):
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
Default settings?
>>y
Name of state:
>>even4
Block 1 , ncf = 556
Block 2 , ncf = 1448
Block 3 , ncf = 1898
Block 4 , ncf = 1810
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>4
There are 4 blocks (block J/Parity NCF):
1 0+ 556 2 1+ 1448 3 2+ 1898 4 3+ 1810
Enter ASF serial numbers for each block
Block 1 ncf = 556 id = 0+
>>1-3
Block 2 ncf = 1448 id = 1+
>>1-2
Block 3 ncf = 1898 id = 2+
>>1-4
Block 4 ncf = 1810 id = 3+
>>1
.....
mpi stopped by node- 0 from RCI_MPI: Execution complete.
mpi stopped by node- 3 from RCI_MPI: Execution complete.
mpi stopped by node- 1 from RCI_MPI: Execution complete.
mpi stopped by node- 2 from RCI_MPI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO GET THE LSJ-COMPOSITION *
* INPUT FILE: even4.c, even4.cm *
* OUTPUT FILE: even4.lsj.lbl, even4.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2017).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>even4
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 5712 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 12
ncftot = 5712
nw = 16
nblock = 4
block ncf nev 2j+1 parity
1 556 3 1 1
2 1448 2 3 1
3 1898 4 5 1
4 1810 1 7 1
Default settings? (y/n)
>>y
jj2lsj: Execution complete.
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs FOR *
* CONFIGURATIONS 3s3p, 3p3d *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(1,i)3p(1,i)
Give configuration 2
>>2s(2,i)2p(6,i)3p(1,i)3d(1,i)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,8
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
5 blocks were created
block J/P NCSF
1 0- 2
2 1- 5
3 2- 5
4 3- 3
5 4- 1
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log oddmr.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3098D+03 0.2951D+03 0.1000D+01 0.5759D-01 328 T-F
2s 0.6428D+02 0.1015D+03 0.1000D+01 0.2385D+00 346 T-F
2p- 0.6284D+02 0.7744D+00 0.1000D+01 0.2003D+00 346 T-F
2p 0.6217D+02 0.6941D+03 0.2000D+01 0.2028D+00 346 T-F
3s 0.2358D+02 0.5152D+02 0.1000D+01 0.5708D+00 358 T-F
3p- 0.2295D+02 0.4217D+00 0.1000D+01 0.5370D+00 358 T-F
3p 0.2278D+02 0.3794D+03 0.2000D+01 0.5409D+00 358 T-F
3d- 0.2170D+02 0.5565D+00 0.2000D+01 0.4629D+00 358 T-F
3d 0.2165D+02 0.6259D+03 0.3000D+01 0.4642D+00 358 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s,2s,2p,3s,3p,3d AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 16 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 5 blocks (block J/Parity NCF):
1 0- 2 2 1- 5 3 2- 5 4 3- 3
5 4- 1
Enter ASF serial numbers for each block
Block 1 ncf = 2 id = 0-
>>1-2
Block 2 ncf = 5 id = 1-
>>1-5
Block 3 ncf = 5 id = 2-
>>1-5
Block 4 ncf = 3 id = 3-
>>1-3
Block 5 ncf = 1 id = 4-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
..............
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave oddmr
Created oddmr.w, oddmr.c, oddmr.m, oddmr.sum, oddmr.alog and oddmr.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 4 VALENCE-VALENCE AND *
* CORE-VALENCE LIST *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,5)3s(1,*)3p(1,*)
Give configuration 2
>>2s(2,1)2p(6,i)3s(1,*)3p(1,*)
Give configuration 3
>>2s(2,i)2p(6,5)3p(1,*)3d(1,*)
Give configuration 4
>>2s(2,1)2p(6,i)3p(1,*)3d(1,*)
Give configuration 5
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,8
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
5 blocks were created
block J/P NCSF
1 0- 546
2 1- 1456
3 2- 1891
4 3- 1814
5 4- 1393
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log odd4.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR_MPI USING 4 PROCESSES TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,...IN 000, 001, 002, 003 *
*******************************************************************************
>>mpirun -np 4 rangular_mpi
====================================================
RANGULAR_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: atom1 ID: 000
Host: atom1 ID: 001
Host: atom1 ID: 002
Host: atom1 ID: 003
Date and Time:
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
atom1: Date: 20140812 Time: 011040.566 Zone: +0200
Start Dir:
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
Serial I/O Dir (node-0 only):
atom1: /home/tspejo/GRASP2018/grasptest/example4/script
Work Dir (Parallel I/O):
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
Full interaction? (y/n)
>>y
.........
mpi stopped by node- 0 from RANGULAR_MPI: Execution complete.
mpi stopped by node- 2 from RANGULAR_MPI: Execution complete.
mpi stopped by node- 1 from RANGULAR_MPI: Execution complete.
mpi stopped by node- 3 from RANGULAR_MPI: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.2803D+03 0.2923D+03 0.1000D+01 0.5838D-01 351 rwf
2s 0.4797D+02 0.9077D+02 0.1000D+01 0.2624D+00 357 rwf
2p- 0.4349D+02 0.6336D+00 0.1000D+01 0.2298D+00 358 rwf
2p 0.4301D+02 0.5672D+03 0.2000D+01 0.2326D+00 358 rwf
3s 0.1680D+02 0.4086D+02 0.1000D+01 0.6840D+00 362 rwf
3p- 0.1542D+02 0.2993D+00 0.1000D+01 0.6773D+00 363 rwf
3p 0.1533D+02 0.2692D+03 0.2000D+01 0.6818D+00 363 rwf
3d- 0.1358D+02 0.2660D+00 0.2000D+01 0.6264D+00 364 rwf
3d 0.1357D+02 0.2997D+03 0.3000D+01 0.6274D+00 364 rwf
4s 0.1141D+02 0.3095D+02 0.1000D+01 0.1086D+01 366 T-F
4p- 0.1110D+02 0.2579D+00 0.1000D+01 0.1061D+01 367 T-F
4p 0.1104D+02 0.2325D+03 0.2000D+01 0.1066D+01 367 T-F
4d- 0.1053D+02 0.3857D+00 0.2000D+01 0.1002D+01 367 T-F
4d 0.1051D+02 0.4342D+03 0.3000D+01 0.1004D+01 367 T-F
4f- 0.9897D+01 0.2129D+00 0.3000D+01 0.8833D+00 367 T-F
4f 0.9890D+01 0.2598D+03 0.4000D+01 0.8842D+00 367 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM_MPI USING 4 PROCESSES TO OBTAIN SELF CONSISTENT *
* SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 4s,4p,4d,4f. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 4* MEANS 4s, 4p-, 4p, 4d-, 4d, 4f-, 4f *
*******************************************************************************
>>mpirun -np 4 rmcdhf_mem_mpi
====================================================
RMCDHF_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: atom1 ID: 000
Host: atom1 ID: 001
Host: atom1 ID: 002
Host: atom1 ID: 003
Date and Time:
atom1: Date: 20140812 Time: 020654.423 Zone: +0200
atom1: Date: 20140812 Time: 020654.422 Zone: +0200
atom1: Date: 20140812 Time: 020654.422 Zone: +0200
atom1: Date: 20140812 Time: 020654.422 Zone: +0200
Start Dir:
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
Serial I/O Dir (node-0 only):
atom1: /home/tspejo/GRASP2018/grasptest/example4/script
Work Dir (Parallel I/O):
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
Default settings? (y/n)
>>y
-----------------------------------------------------
Spin-angular coefficient are putting into the memory:
-----------------------------------------------------
Total memory on computer: 755.00 Gb
Free memory on computer: 630.12 Gb
Allocation for mcp.30:
Free memory on computer 630.12 Gb
Allocation for mcp.31:
Free memory on computer 630.12 Gb
Allocation for mcp.32:
Free memory on computer 630.12 Gb
Allocation for mcp.33:
Free memory on computer 630.11 Gb
Allocation for mcp.34:
Free memory on computer 630.09 Gb
Allocation for mcp.35:
Free memory on computer 630.08 Gb
Allocation for mcp.36:
Free memory on computer 630.08 Gb
Allocation for mcp.37:
Free memory on computer 630.08 Gb
Allocation for mcp.38:
Free memory on computer 630.08 Gb
Allocation for mcp.39:
Free memory on computer 630.08 Gb
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Loading CSF File for ALL blocks
There are 7100 relativistic CSFs... load complete;
There are 5 blocks (block J/Parity NCF):
1 0- 546 2 1- 1456 3 2- 1891 4 3- 1814
5 4- 1393
Enter ASF serial numbers for each block
Block 1 ncf = 546 id = 0-
>>1-2
Block 2 ncf = 1456 id = 1-
>>1-5
Block 3 ncf = 1891 id = 2-
>>1-5
Block 4 ncf = 1814 id = 3-
>>1-3
Block 5 ncf = 1393 id = 4-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Enter orbitals to be varied (Updating order)
>>4*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
............
mpi stopped by node- 0 from RMCDHF_MPI: Execution complete.
mpi stopped by node- 2 from RMCDHF_MPI: Execution complete.
mpi stopped by node- 1 from RMCDHF_MPI: Execution complete.
mpi stopped by node- 3 from RMCDHF_MPI: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave odd4
Created odd4.w, odd4.c, odd4.m, odd4.sum, odd4.alog and odd4.log
*******************************************************************************
* RUN RCI_MPI USING 4 PROCESSES TO INCLUDE BREIT AND QED EFFECTS *
* INPUT FILES : isodata, odd4.c, odd4.w *
* OUTPUT FILES: odd4.cm, odd4.csum *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>mpirun -np 4 rci_mpi
====================================================
RCI_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: atom1 ID: 000
Host: atom1 ID: 001
Host: atom1 ID: 002
Host: atom1 ID: 003
Date and Time:
atom1: Date: 20140812 Time: 021251.038 Zone: +0200
atom1: Date: 20140812 Time: 021251.038 Zone: +0200
atom1: Date: 20140812 Time: 021251.038 Zone: +0200
atom1: Date: 20140812 Time: 021251.038 Zone: +0200
Start Dir:
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
atom1: /GRASP2018/grasptest/example4/script
Serial I/O Dir (node-0 only):
atom1: /home/tspejo/GRASP2018/grasptest/example4/script
Work Dir (Parallel I/O):
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
atom1: /home/tspejo/GRASP2018/grasptest/example4/tmp_mpi
Default settings?
>>y
Name of state:
>>odd4
Block 1 , ncf = 546
Block 2 , ncf = 1456
Block 3 , ncf = 1891
Block 4 , ncf = 1814
Block 5 , ncf = 1393
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>4
There are 5 blocks (block J/Parity NCF):
1 0- 546 2 1- 1456 3 2- 1891 4 3- 1814
5 4- 1393
Enter ASF serial numbers for each block
Block 1 ncf = 546 id = 0-
>>1-2
Block 2 ncf = 1456 id = 1-
>>1-5
Block 3 ncf = 1891 id = 2-
>>1-5
Block 4 ncf = 1814 id = 3-
>>1-3
Block 5 ncf = 1393 id = 4-
>>1
....
mpi stopped by node- 0 from RCI_MPI: Execution complete.
mpi stopped by node- 2 from RCI_MPI: Execution complete.
mpi stopped by node- 3 from RCI_MPI: Execution complete.
mpi stopped by node- 1 from RCI_MPI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO GET THE LSJ-COMPOSITION *
* INPUT FILE: odd4.c, odd4.cm *
* OUTPUT FILE: odd4.lsj.lbl, odd4.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2017).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>odd4
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 7100 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 12
ncftot = 7100
nw = 16
nblock = 5
block ncf nev 2j+1 parity
1 546 2 1 -1
2 1456 5 3 -1
3 1891 5 5 -1
4 1814 3 7 -1
5 1393 1 9 -1
Default settings? (y/n)
>>y
jj2lsj: Execution complete.
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS *
* NOTE: SINCE LSJ-INFORMATION NOW IS AVAILABLE OUTPUT LABELS *
* WILL BE IN LSJ-COUPLING *
*******************************************************************************
>>rlevels even4.cm odd4.cm
nblock = 4 ncftot = 5712 nw = 16 nelec = 12
nblock = 5 ncftot = 7100 nw = 16 nelec = 12
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 + -1182.4117992 0.00 0.00 2s(2).2p(6).3s(2)_1S
2 1 0 - -1181.3459632 233923.97 233923.97 2s(2).2p(6).3s_2S.3p_3P
3 1 1 - -1181.3193175 239772.02 5848.05 2s(2).2p(6).3s_2S.3p_3P
4 1 2 - -1181.2548318 253925.01 14152.99 2s(2).2p(6).3s_2S.3p_3P
5 2 1 - -1180.8025239 353195.12 99270.11 2s(2).2p(6).3s_2S.3p_1P
6 2 0 + -1179.8828042 555050.24 201855.12 2s(2).2p(6).3p(2)3P2_3P
7 1 2 + -1179.8592139 560227.72 5177.47 2s(2).2p(6).3p(2)1D2_1D
8 1 1 + -1179.8374539 565003.49 4775.77 2s(2).2p(6).3p(2)3P2_3P
9 2 2 + -1179.7587696 582272.71 17269.22 2s(2).2p(6).3p(2)3P2_3P
10 3 0 + -1179.3935747 662423.72 80151.02 2s(2).2p(6).3p(2)1S0_1S
11 2 1 + -1179.3158027 679492.71 17068.98 2s(2).2p(6).3s_2S.3d_3D
12 3 2 + -1179.3111395 680516.16 1023.45 2s(2).2p(6).3s_2S.3d_3D
13 1 3 + -1179.3038352 682119.26 1603.10 2s(2).2p(6).3s_2S.3d_3D
14 4 2 + -1178.9201602 766326.18 84206.92 2s(2).2p(6).3s_2S.3d_1D
15 2 2 - -1178.1773931 929344.72 163018.54 2s(2).2p(6).3p_2P.3d_3F
16 1 3 - -1178.1321370 939277.28 9932.56 2s(2).2p(6).3p_2P.3d_3F
17 3 2 - -1178.0860896 949383.53 10106.25 2s(2).2p(6).3p_2P.3d_1D
18 1 4 - -1178.0797665 950771.28 1387.75 2s(2).2p(6).3p_2P.3d_3F
19 3 1 - -1177.9273160 984230.30 33459.02 2s(2).2p(6).3p_2P.3d_3D
20 4 2 - -1177.9244263 984864.51 634.21 2s(2).2p(6).3p_2P.3d_3P
21 2 3 - -1177.8730161 996147.75 11283.24 2s(2).2p(6).3p_2P.3d_3D
22 2 0 - -1177.8671996 997424.33 1276.58 2s(2).2p(6).3p_2P.3d_3P
23 4 1 - -1177.8658739 997715.29 290.96 2s(2).2p(6).3p_2P.3d_3P
24 5 2 - -1177.8645522 998005.36 290.07 2s(2).2p(6).3p_2P.3d_3D
25 3 3 - -1177.5443213 1068287.93 70282.57 2s(2).2p(6).3p_2P.3d_1F
26 5 1 - -1177.4837515 1081581.45 13293.52 2s(2).2p(6).3p_2P.3d_1P
------------------------------------------------------------------------------------------
We compare with the energy levels given in the NIST database.
------------------------------------------------------------
Configuration | Term | J | Level |
--------------------|--------|-----|-----------------------|
| | | |
2p6.3s2 | 1S | 0 | 0 |
| | | |
3s.3p | 3P* | 0 | 233842 |
| | 1 | 239660 |
| | 2 | 253820 |
| | | |
3s.3p | 1P* | 1 | 351911 |
| | | |
3p2 | 3P | 0 | 554524 |
| | | |
3p2 | 1D | 2 | 559600 |
| | | |
3p2 | 3P | 1 | 564602 |
| | 2 | 581803 |
| | | |
3p2 | 1S | 0 | 659627 |
| | | |
3s.3d | 3D | 1 | 678772 |
| | 2 | 679785 |
| | 3 | 681416 |
| | | |
3s.3d | 1D | 2 | 762093 |
| | | |
3p.3d | 3F* | 2 | 928241 |
| | 3 | 938126 |
| | | |
3p.3d | 1D* | 2 | 948513 |
| | | |
3p.3d | 3F* | 4 | 949658 |
| | | |
3p.3d | 3D* | 1 | 982868 |
| | | |
3p.3d | 3P* | 2 | 983514 |
| | | |
3p.3d | 3D* | 3 | 994852 |
| | | |
3p.3d | 3P* | 0 | 995889 |
| | 1 | 996243 |
| | | |
3p.3d | 3D* | 2 | 996623 |
| | | |
3p.3d | 1F* | 3 | 1062515 |
| | | |
3p.3d | 1P* | 1 | 1074887 |
------------------------------------------------------------
Please note that this is just a very small example calculation. The agreement between theory and experiment is improved when the active set is extended. If desired, we may display the energy separations in eV by running rlevelseV.
*******************************************************************************
* RUN RLEVELSEV TO VIEW ENERGIES AND ENERGY SEPARATIONS IN EV *
* NOTE: SINCE LSJ-INFORMATION NOW IS AVAILABLE OUTPUT LABELS *
* WILL BE IN LSJ-COUPLING *
*******************************************************************************
>>rlevelseV even4.cm odd4.cm
nblock = 4 ncftot = 5712 nw = 16 nelec = 12
nblock = 5 ncftot = 7100 nw = 16 nelec = 12
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (eV) (eV)
------------------------------------------------------------------------------------------
1 1 0 + -1182.4117992 0.00000 0.00000 2s(2).2p(6).3s(2)_1S
2 1 0 - -1181.3459632 29.00288 29.00288 2s(2).2p(6).3s_2S.3p_3P
3 1 1 - -1181.3193175 29.72794 0.72507 2s(2).2p(6).3s_2S.3p_3P
4 1 2 - -1181.2548318 31.48269 1.75475 2s(2).2p(6).3s_2S.3p_3P
5 2 1 - -1180.8025239 43.79061 12.30792 2s(2).2p(6).3s_2S.3p_1P
6 2 0 + -1179.8828042 68.81746 25.02685 2s(2).2p(6).3p(2)3P2_3P
7 1 2 + -1179.8592139 69.45938 0.64192 2s(2).2p(6).3p(2)1D2_1D
8 1 1 + -1179.8374539 70.05150 0.59212 2s(2).2p(6).3p(2)3P2_3P
9 2 2 + -1179.7587696 72.19261 2.14111 2s(2).2p(6).3p(2)3P2_3P
10 3 0 + -1179.3935747 82.13007 9.93746 2s(2).2p(6).3p(2)1S0_1S
11 2 1 + -1179.3158027 84.24636 2.11628 2s(2).2p(6).3s_2S.3d_3D
12 3 2 + -1179.3111395 84.37325 0.12689 2s(2).2p(6).3s_2S.3d_3D
13 1 3 + -1179.3038352 84.57201 0.19876 2s(2).2p(6).3s_2S.3d_3D
14 4 2 + -1178.9201602 95.01234 10.44033 2s(2).2p(6).3s_2S.3d_1D
15 2 2 - -1178.1773931 115.22406 20.21172 2s(2).2p(6).3p_2P.3d_3F
16 1 3 - -1178.1321370 116.45554 1.23148 2s(2).2p(6).3p_2P.3d_3F
17 3 2 - -1178.0860896 117.70856 1.25302 2s(2).2p(6).3p_2P.3d_1D
18 1 4 - -1178.0797665 117.88061 0.17206 2s(2).2p(6).3p_2P.3d_3F
19 3 1 - -1177.9273160 122.02900 4.14839 2s(2).2p(6).3p_2P.3d_3D
20 4 2 - -1177.9244263 122.10764 0.07863 2s(2).2p(6).3p_2P.3d_3P
21 2 3 - -1177.8730161 123.50658 1.39894 2s(2).2p(6).3p_2P.3d_3D
22 2 0 - -1177.8671996 123.66486 0.15828 2s(2).2p(6).3p_2P.3d_3P
23 4 1 - -1177.8658739 123.70093 0.03607 2s(2).2p(6).3p_2P.3d_3P
24 5 2 - -1177.8645522 123.73689 0.03596 2s(2).2p(6).3p_2P.3d_3D
25 3 3 - -1177.5443213 132.45082 8.71393 2s(2).2p(6).3p_2P.3d_1F
26 5 1 - -1177.4837515 134.09901 1.64819 2s(2).2p(6).3p_2P.3d_1P
------------------------------------------------------------------------------------------
*******************************************************************************
* RUN RBIOTRANSFORM_MPI USING 4 PROCESSES *
* INPUT FILES: even4.c, even4.w, even4.cm *
* odd4.c, odd4.w, odd4.cm, isodata *
* OUPUT FILES: even4.bw, even4.cbm, odd4.bw, odd4.cbm *
*******************************************************************************
>>mpirun -np 4 rbiotransform_mpi
====================================================
RBIOTRANSFORM_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: per-vaio ID: 000
Host: per-vaio ID: 001
Host: per-vaio ID: 002
Host: per-vaio ID: 003
Date and Time:
per-vaio: Date: 20141120 Time: 002539.729 Zone: +0100
per-vaio: Date: 20141120 Time: 002539.729 Zone: +0100
per-vaio: Date: 20141120 Time: 002539.729 Zone: +0100
per-vaio: Date: 20141120 Time: 002539.729 Zone: +0100
Start Dir:
per-vaio: /home/per/graspruns/FeXIII
per-vaio: /home/per/graspruns/FeXIII
per-vaio: /home/per/graspruns/FeXIII
per-vaio: /home/per/graspruns/FeXIII
Serial I/O Dir (node-0 only):
per-vaio: /home/per/graspruns/FeXIII
Work Dir (Parallel I/O):
per-vaio: /home/per/tmp_mpi
per-vaio: /home/per/tmp_mpi
per-vaio: /home/per/tmp_mpi
per-vaio: /home/per/tmp_mpi
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>even4
Name of the Final state
>>odd4
Transformation of all J symmetries?
>>y
.....
mpi stopped by node- 0 from RBIOTRANSFORM_MPI: Execution complete.
mpi stopped by node- 1 from RBIOTRANSFORM_MPI: Execution complete.
mpi stopped by node- 2 from RBIOTRANSFORM_MPI: Execution complete.
mpi stopped by node- 3 from RBIOTRANSFORM_MPI: Execution complete.
*******************************************************************************
* RUN RTRANSITION_MPI USING 4 PROCESSES *
* INPUT FILES: even4.c, even4.bw, even4.cbm *
* odd4.c, odd4.bw, odd4.cbm, isodata *
* OUPUT FILES: even4.odd4.ct *
*******************************************************************************
>>mpirun -np 4 rtransition_mpi
====================================================
RTRANSITION_MPI: Execution Begins ...
====================================================
Participating nodes:
Host: per-vaio ID: 000
Host: per-vaio ID: 001
Host: per-vaio ID: 002
Host: per-vaio ID: 003
Date and Time:
per-vaio: Date: 20141120 Time: 003050.621 Zone: +0100
per-vaio: Date: 20141120 Time: 003050.621 Zone: +0100
per-vaio: Date: 20141120 Time: 003050.621 Zone: +0100
per-vaio: Date: 20141120 Time: 003050.621 Zone: +0100
Start Dir:
per-vaio: /home/per/graspruns/FeXIII
per-vaio: /home/per/graspruns/FeXIII
per-vaio: /home/per/graspruns/FeXIII
per-vaio: /home/per/graspruns/FeXIII
Serial I/O Dir (node-0 only):
per-vaio: /home/per/graspruns/FeXIII
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>even4
Name of the Final state
>>odd4
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>E1,M2
.....
mpi stopped by node- 0 from RTRANSITION_MPI: Execution complete.
mpi stopped by node- 3 from RTRANSITION_MPI: Execution complete.
mpi stopped by node- 1 from RTRANSITION_MPI: Execution complete.
mpi stopped by node- 2 from RTRANSITION_MPI: Execution complete.
Comment: it does not matter in which order the files even4 and odd4 are specified.
6.5. Fifth Example: The Study of Energy Spectra for Ni XIV, Obtaining Unique Labels
A wave function or a corresponding energy level is often designated by the label of the CSF with the largest expansion coefficient. This example presents a study of energy spectra for Ni XIV in which a few levels have the same identification. To get the energy spectra with unique labels, we use the unique option in the jj2lsj program. The program uses the algorithm described in [26,40,41]: for a given set of wave functions for the same J and parity, the CSF with the largest expansion coefficient is used as the label for the function containing this largest component. Once a label is assigned, the corresponding CSF is removed from consideration in the determination of the next label. The last remaining label for a wave function may be based on a contribution that is tiny.
- Overview
- Define nuclear data.
- Obtain common spectroscopic orbitals for the MR set.
- (a)
- Generate list of CSFs describing the even states belonging to the , configurations and the odd states belonging to the configuration.
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of all states belonging to , , and .
- (e)
- Save output to Ni_mr.
- Improve even states
- (a)
- Generate CSF list from SD-excitations from and to .
- (b)
- Run rcsfinteract to extract CSFs that interact with CSFs belonging to and .
- (c)
- Perform angular integration.
- (d)
- Generate initial estimates of radial orbitals.
- (e)
- Perform SCF calculation on the weighted average of all states belonging to and .
- (f)
- Save output to Ni_even_n4.
- (g)
- Perform rci calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Transform from - to -coupling
- Improve odd states
- (a)
- Generate CSF list from SD-excitations from to .
- (b)
- Run rcsfinteract to extract CSFs that interact with CSFs belonging to .
- (c)
- Perform angular integration.
- (d)
- Generate initial estimates of radial orbitals.
- (e)
- Perform SCF calculation on the weighted average of all states belonging to .
- (f)
- Save output to Ni_odd_n4.
- (g)
- Perform rci calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Transform from - to -coupling using the unique label option.
- Run rlevels to view energy separations (several states have the same label).
- Copy files so that rlevels will display unique labels.
- Run rlevels to view energy separations for levels now with unique labels.
- Compute transition rates from the rci wave functions. Computation in two steps: biorthonormal transformation and then evaluation of transition matrix elements using standard Racah algebra methods.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>28
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>61
The default root mean squared radius is 3.8224999904632568 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>58.6934
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST FOR ALL *
* STATES OF 3s3p(4), 3s(2)3p(2)3d and 3s(2)3p(3) *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(1,i)3p(4,i)
Give configuration 2
>>2s(2,i)2p(6,i)3s(2,i)3p(2,i)3d(1,i)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,9
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>y
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*).
Give configuration 1
>>2s(2,i)2p(6,i)3s(2,i)3p(3,i)
Give configuration 2
>>
Give set of active orbitals in a comma delimited list ordered by l-symmetry, e.g., 5s,4p,3d
>>3s,3p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,5
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
8 blocks were created
block J/P NCSF
1 1/2+ 8
2 1/2- 1
3 3/2+ 11
4 3/2- 3
5 5/2+ 10
6 5/2- 1
7 7/2+ 5
8 9/2+ 2
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log Ni_mr.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
Shell e p0 gamma <r> MTP SRC
1s 0.3531D+03 0.3348D+03 0.1000D+01 0.5348D-01 329 T-F
2s 0.7017D+02 0.1144D+03 0.1000D+01 0.2231D+00 346 T-F
2p- 0.6820D+02 0.1007D+01 0.1000D+01 0.1878D+00 346 T-F
2p 0.6732D+02 0.8291D+03 0.2000D+01 0.1905D+00 346 T-F
3s 0.2444D+02 0.5706D+02 0.1000D+01 0.5420D+00 358 T-F
3p- 0.2358D+02 0.5370D+00 0.1000D+01 0.5120D+00 359 T-F
3p 0.2336D+02 0.4440D+03 0.2000D+01 0.5164D+00 359 T-F
3d- 0.2191D+02 0.7313D+00 0.2000D+01 0.4446D+00 359 T-F
3d 0.2185D+02 0.7607D+03 0.3000D+01 0.4461D+00 359 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s,2s,2p,3s,3p,3d AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS FOR SPECIFYING ORBITALS *
* *
* NOTE: INSTEAD OF SAYING THAT WE SHOULD OPTIMIZE ON, FOR EXAMPLE, *
* THE STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
* *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 41 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 8 blocks (block J/Parity NCF):
1 1/2+ 8 2 1/2- 1 3 3/2+ 11 4 3/2- 3
5 5/2+ 10 6 5/2- 1 7 7/2+ 5 8 9/2+ 2
Enter ASF serial numbers for each block
Block 1 ncf = 8 id = 1/2+
>>1-8
Block 2 ncf = 1 id = 1/2-
>>1
Block 3 ncf = 11 id = 3/2+
>>1-11
Block 4 ncf = 3 id = 3/2-
>>1-3
Block 5 ncf = 10 id = 5/2+
>>1-10
Block 6 ncf = 1 id = 5/2-
>>1
Block 7 ncf = 5 id = 7/2+
>>1-5
Block 8 ncf = 2 id = 9/2+
>>1-2
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>999
..............
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave Ni_mr
Created Ni_mr.w, Ni_mr.c, Ni_mr.m, Ni_mr.sum, Ni_mr.alog and Ni_mr.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST FOR ALL *
* STATES OF 3s3p(4), 3s(2)3p(2)3d *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(1,i)3p(4,i)
Give configuration 2
>>2s(2,i)2p(6,i)3s(2,i)3p(2,i)3d(1,i)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,9
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
5 blocks were created
block J/P NCSF
1 1/2+ 8
2 3/2+ 11
3 5/2+ 10
4 7/2+ 5
5 9/2+ 2
*******************************************************************************
* COPY FILES *
* NOTE THAT WE COPY THE FILE TO RCSFMR.INP FOR USE *
* TOGETHER WITH RCSFINTERACT *
*******************************************************************************
>>cp rcsf.out rcsfmr.inp
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OBTAINED BY *
* SD-EXCITATIONS FROM 3s3p(4) and 3s(2)3p(2)3d TO n = 4 *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(1,*)3p(4,*)
Give configuration 2
>>2s(2,i)2p(6,i)3s(2,*)3p(2,*)3d(1,*)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,9
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
5 blocks were created
block J/P NCSF
1 1/2+ 1664
2 3/2+ 2837
3 5/2+ 3271
4 7/2+ 2972
5 9/2+ 2264
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RCSFINTERACT PROGRAM TO DETERMINE WHICH OF THE CSFs IN THE *
* rcsf.inp LIST INTERACTS WITH THE CSFs IN rcsfmr.inp *
* THE INTERACTING CSFs ARE WRITTEN TO rcsf.out *
* INPUT FILES: rcsfmr.inp, rcsf.inp *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
>>rcsfinteract
RCSFinteract: Determines all the CSFs (rcsf.inp) that interact
with the CSFs in the multireference (rcsfmr.inp)
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: rcsfmr.inp, rcsf.inp
Output file: rcsf.out
Reduction based on Dirac-Coulomb (1) or
Dirac-Coulomb-Breit (2) Hamiltonian?
>>2
....
There are 16 relativistic subshells;
Block MR NCSF Befor NCSF After NCSF
1 8 1664 1047
2 11 2837 1862
3 10 3271 2112
4 5 2972 1537
5 2 2264 801
RCSFINTERACT: Execution complete
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>Ni_mr.w
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
Shell e p0 gamma <r> MTP SRC
1s 0.3241D+03 0.3333D+03 0.1000D+01 0.5375D-01 357 Ni_
2s 0.5342D+02 0.1015D+03 0.1000D+01 0.2420D+00 359 Ni_
2p- 0.4833D+02 0.8507D+00 0.1000D+01 0.2110D+00 360 Ni_
2p 0.4768D+02 0.6996D+03 0.2000D+01 0.2140D+00 360 Ni_
3s 0.1702D+02 0.4580D+02 0.1000D+01 0.6442D+00 364 Ni_
3p- 0.1557D+02 0.3893D+00 0.1000D+01 0.6379D+00 364 Ni_
3p 0.1545D+02 0.3217D+03 0.2000D+01 0.6430D+00 364 Ni_
3d- 0.1320D+02 0.3700D+00 0.2000D+01 0.5968D+00 366 Ni_
3d 0.1319D+02 0.3854D+03 0.3000D+01 0.5980D+00 366 Ni_
4s 0.1130D+02 0.3354D+02 0.1000D+01 0.1050D+01 368 T-F
4p- 0.1090D+02 0.3205D+00 0.1000D+01 0.1031D+01 368 T-F
4p 0.1083D+02 0.2655D+03 0.2000D+01 0.1038D+01 368 T-F
4d- 0.1015D+02 0.4907D+00 0.2000D+01 0.9852D+00 369 T-F
4d 0.1013D+02 0.5108D+03 0.3000D+01 0.9872D+00 369 T-F
4f- 0.9324D+01 0.2669D+00 0.3000D+01 0.8778D+00 369 T-F
4f 0.9316D+01 0.3018D+03 0.4000D+01 0.8787D+00 369 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 4s, 4p, 4d, 4f. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* *
* NOTE: INSTEAD OF SAYING THAT WE SHOULD OPTIMIZE ON, FOR EXAMPLE, *
* THE STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
* *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Loading CSF File for ALL blocks
There are 7359 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 5 blocks (block J/Parity NCF):
1 1/2+ 1047 2 3/2+ 1862 3 5/2+ 2112 4 7/2+ 1537
5 9/2+ 801
Enter ASF serial numbers for each block
Block 1 ncf = 1047 id = 1/2+
>>1-8
Block 2 ncf = 1862 id = 3/2+
>>1-11
Block 3 ncf = 2112 id = 5/2+
>>1-10
Block 4 ncf = 1537 id = 7/2+
>>1-5
Block 5 ncf = 801 id = 9/2+
>>1-2
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Enter orbitals to be varied (Updating order)
>>4*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
..............
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave Ni_even_n4
Created Ni_even_n4.w, Ni_even_n4.c, Ni_even_n4.m, Ni_even_n4.sum, Ni_even_n4.alog
and Ni_even_n4.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, Ni_even_n4.c, Ni_even_n4.w *
* OUTPUT FILES: Ni_even_n4.cm, Ni_even_n4.csum, Ni_even_n4.clog, *
* rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
Default settings?
>>y
Name of state:
>>Ni_even_n4
Block 1 , ncf = 1047
Block 2 , ncf = 1862
Block 3 , ncf = 2112
Block 4 , ncf = 1537
Block 5 , ncf = 801
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>n
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>4
Loading Radial WaveFunction File ...
There are 5 blocks (block J/Parity NCF):
1 1/2+ 1047 2 3/2+ 1862 3 5/2+ 2112 4 7/2+ 1537
5 9/2+ 801
Enter ASF serial numbers for each block
Block 1 ncf = 1047 id = 1/2+
>>1-8
Block 2 ncf = 1862 id = 3/2+
>>1-11
Block 3 ncf = 2112 id = 5/2+
>>1-10
Block 4 ncf = 1537 id = 7/2+
>>1-5
Block 5 ncf = 801 id = 9/2+
>>1-2
....
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO GET THE LSJ-COMPOSITION *
* INPUT FILE: Ni_even_n4.c, Ni_even_n4.cm *
* OUTPUT FILE: Ni_even_n4.lsj.lbl, Ni_even_n4.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2017).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>Ni_even_n4
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 7359 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 15
ncftot = 7359
nw = 16
nblock = 5
block ncf nev 2j+1 parity
1 1047 8 2 1
2 1862 11 4 1
3 2112 10 6 1
4 1537 5 8 1
5 801 2 10 1
Default settings? (y/n)
>>y
...........
jj2lsj: Execution complete.
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST FOR ALL *
* STATES OF 3s(2)3p(3) *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(2,i)3p(3,i)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,5
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 1/2- 1
2 3/2- 3
3 5/2- 1
*******************************************************************************
* COPY FILES *
* NOTE THAT WE COPY THE FILE TO RCSFMR.INP FOR USE *
* TOGETHER WITH RCSFINTERACT *
*******************************************************************************
>>cp rcsf.out rcsfmr.inp
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OBTAINED BY *
* SD-EXCITATIONS FROM 3s(2)3p(3) TO n = 4 *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(2,*)3p(3,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,5
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 1/2- 481
2 3/2- 802
3 5/2- 868
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RCSFINTERACT PROGRAM TO DETERMINE WHICH OF THE CSFs IN THE *
* rcsf.inp LIST INTERACTS WITH THE CSFs IN rcsfmr.inp *
* THE INTERACTING CSFs ARE WRITTEN TO rcsf.out *
* INPUT FILES: rcsfmr.inp, rcsf.inp *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
>>rcsfinteract
RCSFinteract: Determines all the CSFs (rcsf.inp) that interact
with the CSFs in the multireference (rcsfmr.inp)
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: rcsfmr.inp, rcsf.inp
Output file: rcsf.out
Reduction based on Dirac-Coulomb (1) or
Dirac-Coulomb-Breit (2) Hamiltonian?
>>2
....
There are 16 relativistic subshells;
Block MR NCSF Befor NCSF After NCSF
1 1 481 237
2 3 802 577
3 1 868 480
RCSFINTERACT: Execution complete
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>Ni_mr.w
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3241D+03 0.3333D+03 0.1000D+01 0.5375D-01 357 Ni_
2s 0.5342D+02 0.1015D+03 0.1000D+01 0.2420D+00 359 Ni_
2p- 0.4833D+02 0.8507D+00 0.1000D+01 0.2110D+00 360 Ni_
2p 0.4768D+02 0.6996D+03 0.2000D+01 0.2140D+00 360 Ni_
3s 0.1702D+02 0.4580D+02 0.1000D+01 0.6442D+00 364 Ni_
3p- 0.1557D+02 0.3893D+00 0.1000D+01 0.6379D+00 364 Ni_
3p 0.1545D+02 0.3217D+03 0.2000D+01 0.6430D+00 364 Ni_
3d- 0.1320D+02 0.3700D+00 0.2000D+01 0.5968D+00 366 Ni_
3d 0.1319D+02 0.3854D+03 0.3000D+01 0.5980D+00 366 Ni_
4s 0.1130D+02 0.3354D+02 0.1000D+01 0.1050D+01 368 T-F
4p- 0.1090D+02 0.3205D+00 0.1000D+01 0.1031D+01 368 T-F
4p 0.1083D+02 0.2655D+03 0.2000D+01 0.1038D+01 368 T-F
4d- 0.1015D+02 0.4907D+00 0.2000D+01 0.9852D+00 369 T-F
4d 0.1013D+02 0.5108D+03 0.3000D+01 0.9872D+00 369 T-F
4f- 0.9324D+01 0.2669D+00 0.3000D+01 0.8778D+00 369 T-F
4f 0.9316D+01 0.3018D+03 0.4000D+01 0.8787D+00 369 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 4s, 4p, 4d, 4f. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* *
* NOTE: INSTEAD OF SAYING THAT WE SHOULD OPTIMIZE ON, FOR EXAMPLE, *
* THE STATES 1,2,3,4 WE CAN WRITE 1-4 MEANING THE SAME THING *
* *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Loading CSF File for ALL blocks
There are 1294 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 1/2- 237 2 3/2- 577 3 5/2- 480
Enter ASF serial numbers for each block
Block 1 ncf = 237 id = 1/2-
>>1
Block 2 ncf = 577 id = 3/2-
>>1-3
Block 3 ncf = 480 id = 5/2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Enter orbitals to be varied (Updating order)
>>4*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
..............
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.log *
*******************************************************************************
>>rsave Ni_odd_n4
Created Ni_odd_n4.w, Ni_odd_n4.c, Ni_odd_n4.m, Ni_odd_n4.sum and Ni_odd_n4.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, Ni_odd_n4.c, Ni_odd_n4.w *
* OUTPUT FILES: Ni_odd_n4.cm, Ni_odd_n4.csum, Ni_odd_n4.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
Default settings?
>>y
Name of state:
>>Ni_odd_n
Block 1 , ncf = 237
Block 2 , ncf = 577
Block 3 , ncf = 480
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>n
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>4
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 1/2- 237 2 3/2- 577 3 5/2- 480
Enter ASF serial numbers for each block
Block 1 ncf = 237 id = 1/2-
>>1
Block 2 ncf = 577 id = 3/2-
>>1-3
Block 3 ncf = 480 id = 5/2-
>>1
....
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO GET THE LSJ-COMPOSITION *
* INPUT FILE: Ni_odd_n4.c, Ni_odd_n4.cm *
* OUTPUT FILE: Ni_odd_n4.lsj.lbl, Ni_odd_n4.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2017).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>Ni_odd_n4
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 1294 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 15
ncftot = 1294
nw = 16
nblock = 3
block ncf nev 2j+1 parity
1 237 1 2 -1
2 577 3 4 -1
3 480 1 6 -1
Default settings? (y/n)
>>y
...........
jj2lsj: Execution complete.
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS. *
* IF DESIRED WE CAN INSTEAD RUN RLEVELSEV TO GET THE SEPARATION IN EV *
*******************************************************************************
>> rlevels Ni_even_n4.cm Ni_odd_n4.cm
nblock = 5 ncftot = 7359 nw = 16 nelec = 15
nblock = 3 ncftot = 1294 nw = 16 nelec = 15
Energy levels for ...
Rydberg constant is 109737.31534
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -1443.2224318 0.00 0.00 2s(2).2p(6).3s(2).3p(3)4S3_4S
2 2 3/2 - -1443.0055953 47590.12 47590.12 2s(2).2p(6).3s(2).3p(3)2D3_2D
3 1 5/2 - -1442.9699841 55405.86 7815.74 2s(2).2p(6).3s(2).3p(3)2D3_2D
4 1 1/2 - -1442.8231291 87636.81 32230.95 2s(2).2p(6).3s(2).3p(3)2P1_2P
5 3 3/2 - -1442.7718374 98894.05 11257.25 2s(2).2p(6).3s(2).3p(3)2P1_2P
6 1 5/2 + -1441.7819193 316155.95 217261.89 2s(2).2p(6).3s_2S.3p(4)3P2_4P
7 1 3/2 + -1441.7163490 330546.97 14391.02 2s(2).2p(6).3s_2S.3p(4)3P2_4P
8 1 1/2 + -1441.6893375 336475.31 5928.35 2s(2).2p(6).3s_2S.3p(4)3P2_4P
9 2 3/2 + -1441.4303647 393313.26 56837.95 2s(2).2p(6).3s_2S.3p(4)1D2_2D
10 2 5/2 + -1441.4141226 396877.99 3564.73 2s(2).2p(6).3s_2S.3p(4)1D2_2D
11 3 3/2 + -1441.1719219 450034.90 53156.91 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
12 2 1/2 + -1441.1457552 455777.83 5742.94 2s(2).2p(6).3s_2S.3p(4)1S0_2S
13 3 1/2 + -1441.0407477 478824.32 23046.48 2s(2).2p(6).3s_2S.3p(4)1S0_2S
14 4 3/2 + -1441.0025311 487211.88 8387.57 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
15 3 5/2 + -1440.9762734 492974.79 5762.91 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
16 1 7/2 + -1440.9366782 501664.93 8690.14 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
17 4 5/2 + -1440.9108204 507340.07 5675.14 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2F
18 1 9/2 + -1440.8905994 511778.07 4437.99 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
19 2 7/2 + -1440.8808794 513911.35 2133.28 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
20 4 1/2 + -1440.8807431 513941.26 29.92 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
21 5 3/2 + -1440.8744144 515330.27 1389.01 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
22 5 5/2 + -1440.8441958 521962.48 6632.21 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
23 3 7/2 + -1440.7788694 536299.97 14337.49 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
24 4 7/2 + -1440.6229634 570517.38 34217.41 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
25 2 9/2 + -1440.5997042 575622.19 5104.81 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
26 6 3/2 + -1440.5811088 579703.40 4081.21 2s(2).2p(6).3s_2S.3p(4)3P2_2P
27 6 5/2 + -1440.5348164 589863.39 10159.99 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
28 7 3/2 + -1440.5083509 595671.90 5808.50 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
29 5 1/2 + -1440.5059857 596191.02 519.12 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
30 6 1/2 + -1440.4811030 601652.14 5461.12 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
31 8 3/2 + -1440.4611905 606022.41 4370.27 2s(2).2p(6).3s(2).3p(2)1S0_1S.3d_2D
32 7 5/2 + -1440.3895597 621743.56 15721.15 2s(2).2p(6).3s(2).3p(2)1S0_1S.3d_2D
33 9 3/2 + -1440.3040979 640500.26 18756.70 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2D
34 8 5/2 + -1440.2991882 641577.81 1077.56 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2D
35 7 1/2 + -1440.2296306 656843.93 15266.12 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
36 9 5/2 + -1440.1955930 664314.33 7470.39 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2F
37 10 3/2 + -1440.1738626 669083.62 4769.29 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
38 8 1/2 + -1440.1603320 672053.23 2969.61 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
39 5 7/2 + -1440.1590801 672328.00 274.77 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2F
40 10 5/2 + -1440.0334583 699898.79 27570.79 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2D
41 11 3/2 + -1440.0284354 701001.19 1102.41 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2D
------------------------------------------------------------------------------------------
The rlevels program reads the name.cm files along with the name.lsj.lbl files, which display the composition as generated by jj2lsj. From the energy spectra we see that some even levels have the same identification. These pairs of levels are 12 and 13; 19 and 23; 29 and 30. If a unique label was required, jj2lsj also outputs files name.uni.lsj.lb in which unique labels are determined according to the prescription given in [26,40,41]. To display the energies with unique labels, we should copy name.cm to name.uni.cm and rerun rlevels with name.uni.cm as the input file.
*******************************************************************************
* COPY FILES TO HAVE EVEN PARITY LEVELS WITH UNIQUE LABELS *
* THAT SHOULD BE USED IN FURTHER CALCULATIONS *
*******************************************************************************
>>cp Ni_even_n4.cm Ni_even_n4.uni.cm
*******************************************************************************
* RUN RLEVELS TO VIEW ENERGIES AND ENERGY SEPARATIONS. *
* ENERGY LEVELS HAVE UNIQUE LABELS *
*******************************************************************************
>> rlevels Ni_even_n4.uni.cm Ni_odd_n4.cm
nblock = 5 ncftot = 7359 nw = 16 nelec = 15
nblock = 3 ncftot = 1294 nw = 16 nelec = 15
Energy levels for ...
Rydberg constant is 109737.31534
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 3/2 - -1443.2223116 0.00 0.00 2s(2).2p(6).3s(2).3p(3)4S3_4S
2 2 3/2 - -1443.0054751 47590.12 47590.12 2s(2).2p(6).3s(2).3p(3)2D3_2D
3 1 5/2 - -1442.9698639 55405.86 7815.74 2s(2).2p(6).3s(2).3p(3)2D3_2D
4 1 1/2 - -1442.8230089 87636.81 32230.95 2s(2).2p(6).3s(2).3p(3)2P1_2P
5 3 3/2 - -1442.7717172 98894.05 11257.24 2s(2).2p(6).3s(2).3p(3)2P1_2P
6 1 5/2 + -1441.7818000 316155.75 217261.70 2s(2).2p(6).3s_2S.3p(4)3P2_4P
7 1 3/2 + -1441.7162297 330546.77 14391.02 2s(2).2p(6).3s_2S.3p(4)3P2_4P
8 1 1/2 + -1441.6892182 336475.11 5928.35 2s(2).2p(6).3s_2S.3p(4)3P2_4P
9 2 3/2 + -1441.4302453 393313.09 56837.98 2s(2).2p(6).3s_2S.3p(4)1D2_2D
10 2 5/2 + -1441.4140033 396877.81 3564.72 2s(2).2p(6).3s_2S.3p(4)1D2_2D
11 3 3/2 + -1441.1718022 450034.79 53156.98 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
12 2 1/2 + -1441.1456357 455777.69 5742.90 2s(2).2p(6).3s_2S.3p(4)3P2_2P
13 3 1/2 + -1441.0406282 478824.17 23046.48 2s(2).2p(6).3s_2S.3p(4)1S0_2S
14 4 3/2 + -1441.0024109 487211.89 8387.72 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
15 3 5/2 + -1440.9761532 492974.79 5762.91 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
16 1 7/2 + -1440.9365580 501664.94 8690.14 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
17 4 5/2 + -1440.9107001 507340.08 5675.14 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2F
18 1 9/2 + -1440.8904792 511778.07 4437.99 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
19 2 7/2 + -1440.8807592 513911.35 2133.28 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2F
20 4 1/2 + -1440.8806230 513941.26 29.91 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
21 5 3/2 + -1440.8742942 515330.26 1389.01 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
22 5 5/2 + -1440.8440756 521962.48 6632.21 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
23 3 7/2 + -1440.7787492 536299.97 14337.49 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
24 4 7/2 + -1440.6228432 570517.38 34217.42 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
25 2 9/2 + -1440.5995839 575622.19 5104.81 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
26 6 3/2 + -1440.5809891 579703.29 4081.10 2s(2).2p(6).3s_2S.3p(4)3P2_2P
27 6 5/2 + -1440.5346963 589863.37 10160.08 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
28 7 3/2 + -1440.5082308 595671.88 5808.50 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
29 5 1/2 + -1440.5058658 596190.95 519.07 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
30 6 1/2 + -1440.4809830 601652.08 5461.13 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
31 8 3/2 + -1440.4610704 606022.40 4370.32 2s(2).2p(6).3s(2).3p(2)1S0_1S.3d_2D
32 7 5/2 + -1440.3894396 621743.54 15721.14 2s(2).2p(6).3s(2).3p(2)1S0_1S.3d_2D
33 9 3/2 + -1440.3039779 640500.22 18756.68 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2D
34 8 5/2 + -1440.2990681 641577.79 1077.57 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2D
35 7 1/2 + -1440.2295105 656843.92 15266.12 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
36 9 5/2 + -1440.1954728 664314.33 7470.41 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2F
37 10 3/2 + -1440.1737424 669083.60 4769.27 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
38 8 1/2 + -1440.1602120 672053.18 2969.58 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
39 5 7/2 + -1440.1589598 672328.00 274.82 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2F
40 10 5/2 + -1440.0333381 699898.78 27570.78 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2D
41 11 3/2 + -1440.0283152 701001.19 1102.41 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2D
------------------------------------------------------------------------------------------
Comment: we now see that all states have different labels that allow for unambiguous identifications.
*******************************************************************************
* COPY FILES TO HAVE LEVELS WITH UNIQUE LABELS *
* THAT SHOULD BE USED IN FURTHER CALCULATIONS *
*******************************************************************************
>>cp Ni_even_n4.c Ni_even_n4.uni.c
>>cp Ni_even_n4.w Ni_even_n4.uni.w
Now we can use these files with unique labels in further calculations, e.g., transition properties.
*******************************************************************************
* RUN RBIOTRANSFORM FOR Ni_odd_n4 AND Ni_even_n4.uni *
* TO TRANSFORM WAVE FUNCTIONS *
* INPUT FILES: isodata, Ni_odd_n4.c, Ni_odd_n4.w, Ni_odd_n4.cm, *
* Ni_even_n4.uni.c, Ni_even_n4.uni.w, Ni_even_n4.uni.cm *
* OUTPUT FILES: Ni_odd_n4.cbm, Ni_odd_n4.bw, *
* Ni_even_n4.uni.cbm, Ni_even_n4.uni.bw *
* Ni_odd_n4.TB, Ni_even_n4.uni.TB (angular files) *
*******************************************************************************
>>rbiotransform
RBIOTRANSFORM
This program transforms the initial and final wave
functions so that standard tensor albegra can be
used in evaluation of the transition parameters
Input files: isodata, name1.c, name1.w, name1.(c)m
name2.c, name2.w, name2.(c)m
name1.TB, name2.TB (optional angular files)
Output files: name1.bw, name1.(c)bm,
name2.bw, name2.(c)bm
name1.TB, name2.TB (angular files)
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>Ni_odd_n4
Name of the Final state
>>Ni_even_n4.uni
Transformation of all J symmetries?
>>y
....
BIOTRANSFORM: Execution complete.
*******************************************************************************
* RUN RTRANSITION FOR Ni_odd_n4 AND Ni_even_n4.uni *
* TO COMPUTE TRANSITION PARAMETERS *
* INPUT FILES: isodata, Ni_odd_n4.c, Ni_odd_n4.bw, Ni_odd_n4.cbm, *
* Ni_even_n4.uni.c, Ni_even_n4.uni.bw, Ni_even_n4.uni.cbm*
* OUTPUT FILES: Ni_odd_n4.Ni_even_n4.uni.ct *
* Ni_odd_n4.Ni_even_n4.uni.-1T (angular files) *
*******************************************************************************
>>rtransition
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>Ni_odd_n4
Name of the Final state
>>Ni_even_n4.uni
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 1294 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 7359 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
4 s
4 p-
4 p
4 d-
4 d
4 f-
4 f
3
237 814 1294
5
1047 2909 5021 6558 7359
Loading Configuration Symmetry List File ...
there are 16 relativistic subshells;
there are 8653 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>E1
.....
RTRANSITION: Execution complete.
Transition data are in Ni_odd_n4.Ni_even_n4.uni.ct.lsj file in which all levels have the unique labels.
An alternative way to get unique labels than the one described above is to denote the states by the composition. This can be done with the PERL script lscomp.pl and it is described in more detail in Section 7.10.
6.6. Sixth Example: The Study of Energy Spectra for Ni XIV, Extended MR Using rcsfmr
To obtain good transition energies, it is often necessary to extend the MR. This is facilitated by the program rcsfmr. The rcsfmr program reads the name.lsj.lbl file produced by jj2lsj and extracts the configurations that give rise to -coupled CSFs with weights exceeding a user defined cut-off. Below is part of the Ni_even_n4.lsj.lbl file from the fifth example.
Pos J Parity Energy Total Comp. of ASF
1 1/2 + -1441.689593921 99.941%
-0.92754342 0.86033679 2s(2).2p(6).3s_2S.3p(4)3P2_4P
-0.31644623 0.10013822 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
-0.13107223 0.01717993 2s(2).2p(6).3s_2S.3p(4)1S0_2S
-0.06808224 0.00463519 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)1S0_4P
-0.06306024 0.00397659 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)1D2_4P
-0.06139607 0.00376948 2s(2).2p(6).3p(4)3P2_3P.3d_4P
-0.04384478 0.00192236 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3P2_4P
0.04315453 0.00186231 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
0.04160917 0.00173132 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_4P
2 1/2 + -1441.146026942 99.870%
0.55236001 0.30510158 2s(2).2p(6).3s_2S.3p(4)1S0_2S
0.54901778 0.30142053 2s(2).2p(6).3s_2S.3p(4)3P2_2P
-0.51850029 0.26884256 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
-0.25241177 0.06371170 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
0.14974129 0.02242245 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
0.08843416 0.00782060 2s(2).2p(6).3p(4)1D2_1D.3d_2P
-0.07913818 0.00626285 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
0.06957348 0.00484047 2s(2).2p(6).3s_2S.3p(2)1S0_2S.3d(2)1S0_2S
-0.06792804 0.00461422 2s(2).2p(6).3s_2S.3p(4)3P2_4P
-0.04635416 0.00214871 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2P
-0.04439733 0.00197112 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2P
0.03795472 0.00144056 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3P2_2P
-0.03450153 0.00119036 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2S
-0.03371402 0.00113663 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
-0.03274764 0.00107241 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2S
0.03171981 0.00100615 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3F2_2P
3 1/2 + -1441.041027919 99.883%
0.69856599 0.48799445 2s(2).2p(6).3s_2S.3p(4)1S0_2S
0.44943909 0.20199550 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
-0.37641525 0.14168844 2s(2).2p(6).3s_2S.3p(4)3P2_2P
-0.31029154 0.09628084 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
-0.14516094 0.02107170 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
0.11017096 0.01213764 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
-0.10592606 0.01122033 2s(2).2p(6).3s_2S.3p(4)3P2_4P
0.08894930 0.00791198 2s(2).2p(6).3s_2S.3p(2)1S0_2S.3d(2)1S0_2S
-0.06646514 0.00441762 2s(2).2p(6).3p(4)1D2_1D.3d_2P
-0.04537257 0.00205867 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
-0.04336944 0.00188091 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2S
-0.04274245 0.00182692 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2S
0.04115897 0.00169406 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2P
0.03553871 0.00126300 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2P
.....................
1 9/2 + -1440.890865311 99.130%
0.96823013 0.93746959 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
-0.18911784 0.03576556 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
0.09063449 0.00821461 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3F2_4F
0.04435216 0.00196711 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)1G2_4F
-0.04085208 0.00166889 2s(2).2p(6).3s_2S.3p(2)3P2_2P.3d(2)3F2_4F
-0.03263660 0.00106515 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)1D2_4F
2 9/2 + -1440.599976411 99.058%
0.96757720 0.93620564 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
0.18856813 0.03555794 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
-0.08465547 0.00716655 2s(2).2p(6).3s_2S.3p(2)3P2_2P.3d(2)1G2_2G
-0.06715953 0.00451040 2s(2).2p(6).3s_2S.3p(2)3P2_2P.3d(2)3F2_2G
-0.04376060 0.00191499 2s(2).2p(6).3s(2).3d(3)2G3_2G
-0.04015861 0.00161271 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2G
We see that the states are strongly mixed and that it is desirable to extend the MR. The size of the extended MR is a compromise between available computational resources and the desired accuracy of computed properties. Often an exploratory approach is needed. In this example, we will somewhat ad hoc determine an MR from the -coupled CSFs with weights larger than 0.03.
-
Overview
-
Run rcsfmr for Ni_even_n4.lsj.lbl with a cut-off 0.03.
-
Use the output from rcsfmr as an input to rcsfgenerate with no excitations. Copy to rcsfmr.inp
-
Use the output from rcsfmr as an input to rcsfgenerate and allow SD excitations from the extended MR. Copy to rcsf.inp
-
Run rcsfinteract
-
Program Input
*******************************************************************************
* RUN RCSFMR FOR Ni_even_n4 *
*******************************************************************************
>>rcsfmr
RCSFMR
This program reads the name.lsj.lbl file and extracts a
set of MR configuartions that give rise to LSJ coupled
CSFs with absolute weights larger than a specified cut-off
Input file: namel.lsj.lbl
Ouput is written to screen
Name of state
>>Ni_even_n4
Give cut-off for weight
>>0.03
Configurations in the MR
2s(2,*)2p(6,*)3s(1,*)3p(4,*)
2s(2,*)2p(6,*)3s(2,*)3p(2,*)3d(1,*)
2s(2,*)2p(6,*)3s(1,*)3p(2,*)3d(2,*)
2s(2,*)2p(6,*)3p(4,*)3d(1,*)
2s(2,*)2p(6,*)3s(2,*)3d(3,*)
2s(2,*)2p(6,*)3s(2,*)3p(1,*)3d(1,*)4f(1,*)
2s(2,*)2p(6,*)3s(1,*)3p(3,*)4f(1,*)
*******************************************************************************
* RUN RCSFGENERATE USING THE OBTAINED CONFIGURATIONS FROM RCSFMR *
* BY REQUESTING ZERO EXCITATIONS WE WILL GET THE CSFs OF THE MR *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(1,*)3p(4,*)
Give configuration 2
>>2s(2,i)2p(6,i)3s(2,*)3p(2,*)3d(1,*)
Give configuration 3
>>2s(2,i)2p(6,i)3s(1,*)3p(2,*)3d(2,*)
Give configuration 4
>>2s(2,i)2p(6,i)3p(4,*)3d(1,*)
Give configuration 5
>>2s(2,i)2p(6,i)3s(2,*)3d(3,*)
Give configuration 6
>>2s(2,i)2p(6,i)3s(2,*)3p(1,*)3d(1,*)4f(1,*)
Give configuration 7
>>2s(2,i)2p(6,i)3s(1,*)3p(3,*)4f(1,*)
Give configuration 8
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,9
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
..................
Group CSFs into symmetry blocks
5 blocks were created
block J/P NCSF
1 1/2+ 61
2 3/2+ 104
3 5/2+ 116
4 7/2+ 96
5 9/2+ 67
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsfmr.inp
It is very important to realize that the orbital order in rcsfmr.inp needs to be the same as in the larger list rcsf.inp to be reduced. For this reason, we need a user defined orbital ordering that starts with the orbitals in the MR and then adds the correlation orbitals. The clist.ref file is, thus
1s 2s 2p 3s 3p 3d 4f 4s 4p 4d
We are now in the position to run rcsfgenerate.
*******************************************************************************
* RUN RCSFGENERATE USING THE OBTAINED CONFIGURATIONS FROM RCSFMR *
* REQUEST TWO EXCITATIONS. USER DEFINED ORBITAL ORDERING *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>u
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(1,*)3p(4,*)
Give configuration 2
>>2s(2,i)2p(6,i)3s(2,*)3p(2,*)3d(1,*)
Give configuration 3
>>2s(2,i)2p(6,i)3s(1,*)3p(2,*)3d(2,*)
Give configuration 4
>>2s(2,i)2p(6,i)3p(4,*)3d(1,*)
Give configuration 5
>>2s(2,i)2p(6,i)3s(2,*)3d(3,*)
Give configuration 6
>>2s(2,i)2p(6,i)3s(2,*)3p(1,*)3d(1,*)4f(1,*)
Give configuration 7
>>2s(2,i)2p(6,i)3s(1,*)3p(3,*)4f(1,*)
Give configuration 8
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,9
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
..................
Group CSFs into symmetry blocks
5 blocks were created
block J/P NCSF
1 1/2+ 5061
2 3/2+ 8907
3 5/2+ 10810
4 7/2+ 10604
5 9/2+ 8889
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RCSFINTERACT *
*******************************************************************************
RCSFinteract: Determines all the CSFs (rcsf.inp) that interact
with the CSFs in the multireference (rcsfmr.inp)
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: rcsfmr.inp, rcsf.inp
Output file: rcsf.out
Reduction based on Dirac-Coulomb (1) or
Dirac-Coulomb-Breit (2) Hamiltonian?
>>2
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
Block MR NCSF Before NCSF After NCSF
1 61 5061 3551
2 104 8907 6489
3 116 10810 7824
4 96 10604 7398
5 67 8889 5936
Wall time:
5 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/05/17
Time (Hr/Min/Sec): 00/54/36.490
Zone: +0200
RCSFinteract: Execution complete.
The same procedure can be applied to Ni_even_n4.lsj.lbl.
6.7. Seventh Example: Restarting rci
Follow the fifth example up to the rci calculation for Ni_even_n4. During the rci calculation the Hamiltonian matrix elements, in sparse representation, are successively written to the file rci.res. If the calculation stalls at some point, the rci program can be restarted. During a restart, all radial integrals are recomputed, and then the computation starts with computing the matrix elements following the last matrix element that was saved to rci.res. In this example, we assume that the rci calculation for Ni_even_n4 stalled in the middle of block 3, and we show how to make a restart.
- Overview
- Run rci for Ni_even_n4 (run assumed to stall in the middle of block 3)
- Use the restart file rci.res to restart the rci run.
- Program Input
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, Ni_even_n4.c, Ni_even_n4.w, rci.res *
* OUTPUT FILES: Ni_even_n4.cm, Ni_even_n4.csum, Ni_even_n4.clog, *
* rci.res *
* This is a restart that reads the rci.res file *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog
rci.res (can be used for restart)
Default settings?
>>n
Name of state:
>>Ni_even_n4
Block 1 , ncf = 1047
Block 2 , ncf = 1862
Block 3 , ncf = 2112
Block 4 , ncf = 1537
Block 5 , ncf = 801
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Restarting RCI90 ?
>>y
Calling lodres ...
Estimate contributions from the self-energy?
>>y
There are 5 blocks (block J/Parity NCF):
1 1/2+ 1047 2 3/2+ 1862 3 5/2+ 2112 4 7/2+ 1537
5 9/2+ 801
Enter ASF serial numbers for each block
Block 1 ncf = 1047 id = 1/2+
>>1-8
Block 2 ncf = 1862 id = 3/2+
>>1-11
Block 3 ncf = 2112 id = 5/2+
>>1-10
Block 4 ncf = 1537 id = 7/2+
>>1-5
Block 5 ncf = 801 id = 9/2+
>>1-2
Calling STRSUM...
Calling FACTT...
Calling GENINTRK...
Allocating space for 6071 Rk integrals
Calling GENINTBREIT1...
Computing 53106 Breit integrals of type 1
Calling GENINTBREIT2...
Computing 26494 Breit integrals of type 2
Calling MATRIX...
Loading CSF File for block 1
There are 1047 relativistic CSFs... load complete;
Entering QED ...
1047 (total 1047 ) rows read from .res
LAPACK routine DSPEVX selected for eigenvalue problem.
RCI92 MIXing coefficients File generated.
Loading CSF File for block 2
There are 1862 relativistic CSFs... load complete;
Entering QED ...
1862 (total 1862 ) rows read from .res
LAPACK routine DSPEVX selected for eigenvalue problem.
RCI92 MIXing coefficients File generated.
Loading CSF File for block 3
There are 2112 relativistic CSFs... load complete;
Entering QED ...
739 (total 2112 ) rows read from .res
Calling setham ...
Row 800 : 283 nonzero elements; block = 3
Row 900 : 258 nonzero elements; block = 3
Row 1000 : 393 nonzero elements; block = 3
Row 1100 : 224 nonzero elements; block = 3
Row 1200 : 250 nonzero elements; block = 3
Row 1300 : 104 nonzero elements; block = 3
Row 1400 : 297 nonzero elements; block = 3
Row 1500 : 375 nonzero elements; block = 3
Row 1600 : 224 nonzero elements; block = 3
Row 1700 : 106 nonzero elements; block = 3
Row 1800 : 141 nonzero elements; block = 3
Row 1900 : 128 nonzero elements; block = 3
Row 2000 : 208 nonzero elements; block = 3
Row 2100 : 111 nonzero elements; block = 3
Row 2111 : 74 nonzero elements; block = 3
Row 2112 : 113 nonzero elements; block = 3
nelmnt = 436242
Sparse - Memory, iniest2
RCI92 MIXing coefficients File generated.
Loading CSF File for block 4
There are 1537 relativistic CSFs... load complete;
Entering QED ...
0 (total 1537 ) rows read from .res
Calling setham ...
Row 1 : 1 nonzero elements; block = 4
Row 100 : 67 nonzero elements; block = 4
Row 200 : 62 nonzero elements; block = 4
Row 300 : 100 nonzero elements; block = 4
Row 400 : 83 nonzero elements; block = 4
Row 500 : 139 nonzero elements; block = 4
Row 600 : 223 nonzero elements; block = 4
Row 700 : 234 nonzero elements; block = 4
Row 800 : 321 nonzero elements; block = 4
Row 900 : 341 nonzero elements; block = 4
Row 1000 : 289 nonzero elements; block = 4
Row 1100 : 337 nonzero elements; block = 4
Row 1200 : 311 nonzero elements; block = 4
Row 1300 : 192 nonzero elements; block = 4
Row 1400 : 191 nonzero elements; block = 4
Row 1500 : 282 nonzero elements; block = 4
Row 1536 : 150 nonzero elements; block = 4
Row 1537 : 176 nonzero elements; block = 4
LAPACK routine DSPEVX selected for eigenvalue problem.
RCI92 MIXing coefficients File generated.
Loading CSF File for block 5
There are 801 relativistic CSFs... load complete;
Entering QED ...
0 (total 801 ) rows read from .res
Calling setham ...
Row 1 : 1 nonzero elements; block = 5
Row 100 : 13 nonzero elements; block = 5
Row 200 : 81 nonzero elements; block = 5
Row 300 : 48 nonzero elements; block = 5
Row 400 : 183 nonzero elements; block = 5
Row 500 : 207 nonzero elements; block = 5
Row 600 : 118 nonzero elements; block = 5
Row 700 : 162 nonzero elements; block = 5
Row 800 : 163 nonzero elements; block = 5
Row 801 : 184 nonzero elements; block = 5
LAPACK routine DSPEVX selected for eigenvalue problem.
RCI92 MIXing coefficients File generated.
Finish time, Statistics
Wall time:
54 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/07/20
Time (Hr/Min/Sec): 23/40/40.589
Zone: +0200
RCI: Execution complete.
During the restart, all matrix elements for blocks 1 and 2 were read from rci.res. For block 3 matrix elements up to row 739 were read and the restarted computation carries on from this point. Transforming from to coupling and displaying energies with rlevels shows that all the energies from the restarted rci calculation are identical to the ones in the fifth example. The restart option works the same for rci_mpi with the difference that the rci.res are read from the files defined in the disks file.
6.8. Eighth Example: in Be I, Transforming to Natural Orbitals, Using Option 4 in rwfnestimate
The eighth example is for in Be I. The example shows the computation of rmcdhf and rci wave functions, and the subsequent transformation to natural orbitals TP Section 3.4. The rci calculation is redone in the natural orbitals basis, and we see how the expansion coefficients are concentrated to relatively fewer CSFs, potentially leading to smaller MR sets. In addition, we plot the radial density function , see TP Section 3.4.
- Overview
- Define nuclear data.
- Obtain spectroscopic orbitals for the MR set.
- (a)
- Generate configuration state list containing three CSFs generated from the configurations.
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation
- (e)
- Save output to DF.
- Improve the wave function
- (a)
- Generate valence correlation expansion.
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation.
- (e)
- Save output to n3.
- (f)
- Generate valence correlation expansion.
- (g)
- Perform angular integration.
- (h)
- Generate initial estimates of radial orbitals, use option 4.
- (i)
- Perform SCF calculation.
- (j)
- Save output to n4.
- (k)
- Perform rci calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- (l)
- Display the expansion coefficients for the rci wave function
- Transform to natural orbitals
- Perform rci calculation in the natural orbital basis in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Display the expansion coefficients for the rci wave functions in the natural orbital basis.
- Plot the radial density distribution.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
Enter the atomic number:
>>4
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>9
The default root mean squared radius is 2.5190000534057617 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>9
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs FOR 1s(2)2s(2) 1S J = 0. *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
OUTPUT FILES: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)
Give configuration 2
>>2p(2,i)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>2s,2p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
1 blocks were created
block J/P NCSF
1 0+ 3
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log DF.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* * MEANS ALL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.4307D+01 0.1434D+02 0.1000D+01 0.4246D+00 332 T-F
2s 0.4126D+00 0.3424D+01 0.1000D+01 0.2336D+01 357 T-F
2p- 0.2827D+00 0.3699D-03 0.1000D+01 0.2430D+01 361 T-F
2p 0.2827D+00 0.2310D+01 0.2000D+01 0.2431D+01 361 T-F
RWFNESTIMATE: Execution complete.
Comment: <r> is the mean orbital radius in a.u. MTP is the extension of the orbitals on the grid, for which the upper limit in the default installation is 590 points. SRC is the source of the estimate, in this case T-F (Thomas-Fermi).
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* * MEANS ALL ORBITALS *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
Loading CSF File for ALL blocks
There are 3 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 3
Enter ASF serial numbers for each block
Block 1 ncf = 3 id = 0+
>>1
Radial functions
1s 2s 2p- 2p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave DF
Created DF.w, DF.c, DF.m, DF.sum DF.alog and DF.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 3 VV CORRELATION LIST *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfile: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
1 blocks were created
block J/P NCSF
1 1/2+ 11
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log n3.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
...........
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.4712D+01 0.1475D+02 0.1000D+01 0.4128D+00 357 rwf
2s 0.3498D+00 0.2557D+01 0.1000D+01 0.2582D+01 360 rwf
2p- 0.4927D+00 0.2396D-03 0.1000D+01 0.2498D+01 358 rwf
2p 0.4927D+00 0.1497D+01 0.2000D+01 0.2498D+01 358 rwf
3s 0.1104D+00 0.1312D+01 0.1000D+01 0.7134D+01 372 T-F
3p- 0.8539D-01 0.1497D-03 0.1000D+01 0.8182D+01 375 T-F
3p 0.8538D-01 0.9348D+00 0.2000D+01 0.8183D+01 375 T-F
3d- 0.6409D-01 0.6710D-05 0.2000D+01 0.8778D+01 378 T-F
3d 0.6409D-01 0.5036D-01 0.3000D+01 0.8778D+01 378 T-F
RWFNESTIMATE: Execution complete.
Comment: please note how we used the wild card * twice. We start by reading the orbitals from a grasp file (previous run rwfn.out). Using the wild card * the program reads as many orbitals as possible, i.e., , , -, . The orbitals , -, , -, then remain to be estimated, and we use Thomas-Fermi estimates. By again using the wild card * all the remaining orbitals will be Thomas-Fermi estimates.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 3s,3p, 3d. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 3* MEANS 3s, 3p-, 3p, 3d-, 3d *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-consistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 11 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 1/2+ 11
Enter ASF serial numbers for each block
Block 1 ncf = 11 id = 1/2+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>3*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave n3
Created n3.w, n3.c, n3.m, n3.sum n3.alog and n3.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 4 VV CORRELATION LIST *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfile: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
1 blocks were created
block J/P NCSF
1 1/2+ 26
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log n4.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
...........
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP92 File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>4
Enter the list of relativistic subshells:
>>*
Enter increase in Z for correlation orbitals
>>5
Orbital Z_eff for hydrogenic orbitals
4s 7.00
4p- 7.00
4p 7.00
4d- 7.00
4d 7.00
4f- 7.00
4f 7.00
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.4712D+01 0.1475D+02 0.1000D+01 0.4128D+00 357 n3.
2s 0.3498D+00 0.2557D+01 0.1000D+01 0.2582D+01 360 n3.
2p- 0.4927D+00 0.2396D-03 0.1000D+01 0.2498D+01 358 n3.
2p 0.4927D+00 0.1497D+01 0.2000D+01 0.2498D+01 358 n3.
3s 0.8407D+00 0.4206D+01 0.1000D+01 0.3214D+01 361 n3.
3p- 0.1383D+01 0.3979D-03 0.1000D+01 0.3091D+01 358 n3.
3p 0.1382D+01 0.2507D+01 0.2000D+01 0.3093D+01 358 n3.
3d- 0.1001D+01 0.1148D-04 0.2000D+01 0.2655D+01 357 n3.
3d 0.1001D+01 0.8634D-01 0.3000D+01 0.2655D+01 357 n3.
4s 0.1532D+01 0.4624D+01 0.1000D+01 0.3427D+01 350 Hyd
4p- 0.1532D+01 0.2924D-02 0.1000D+01 0.3284D+01 350 Hyd
4p 0.1532D+01 0.1046D+02 0.2000D+01 0.3285D+01 350 Hyd
4d- 0.1532D+01 0.1478D-02 0.2000D+01 0.2999D+01 350 Hyd
4d 0.1531D+01 0.6343D+01 0.3000D+01 0.3000D+01 350 Hyd
4f- 0.1531D+01 0.3041D-03 0.3000D+01 0.2571D+01 349 Hyd
4f 0.1531D+01 0.1399D+01 0.4000D+01 0.2571D+01 349 Hyd
RWFNESTIMATE: Execution complete.
Please note how we use option 4. We have tested an increase in Z, in this case 5, so that the mean radii <r> of the new orbitals overlap approximately the region in space where we expect them. Since they describe valence correlation, they should have about the same radii as the orbitals.
*******************************************************************************
* RUN RMCDHF_MEM TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 4s,4p,4d,4f. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 4* MEANS 4s, 4p-, 4p, 4d-, 4d, 4f-, 4f *
*******************************************************************************
>>rmcdhf_mem
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-consistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Loading CSF File for ALL blocks
There are 26 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 26
Enter ASF serial numbers for each block
Block 1 ncf = 26 id = 0+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Enter orbitals to be varied (Updating order)
>>4*
Which of these are spectroscopic orbitals?
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave n4
Created n4.w, n4.c, n4.m, n4.sum n4.alog and n4.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, n4.c, n4.w *
* OUTPUT FILES: n4.cm, n4.csum, n4.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
Default settings?
>>y
Name of state:
>>n4
Block 1 , ncf = 26
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>n
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 26
Enter ASF serial numbers for each block
Block 1 ncf = 26 id = 0+
>>1
......
RCI: Execution complete.
*******************************************************************************
* RUN RMIXEXTRACT TO DISPLAY THE MIXING COEFFICIENTS *
*******************************************************************************
>>rmixextract
RMIXEXTRACT
Extract and prints mixing coefficient above a
cut-off. Corresponding CSFs written to screen and
to rcsf.out
Input files: name.c, name.(c)m
Output file: rcsf.out
Name of state
>>n4
Mixing coefficients from CI calc. ?
>>y
Enter the cut-off value for the coefficients [0--1]
>>0
Sort extracted CSFs according to mixingcoeffcients? (y/n)
>>n
nblock = 1 ncftot = 26 nw = 16 nelec = 4
===========================================================================
nb = 1 ncfblk = 26 nevblk = 1 2J+1 = 1 parity = 1
nb = 1 ncfblk = 26 nevblk = 1 2J+1 = 1 parity = 1
===========================================================================
Average Energy = -12.602608908837407 ncf_reduced = 26
Energy = -14.620897436670143 Coefficients and CSF :
1 0.953738
2s ( 2)
0+
2 -0.001117
2s ( 1) 3s ( 1)
1/2 1/2
0+
3 -0.001846
2s ( 1) 4s ( 1)
1/2 1/2
0+
4 0.242750
2p ( 2)
0
0+
5 0.171674
2p-( 2)
0+
6 0.000254
2p ( 1) 3p ( 1)
3/2 3/2
0+
7 0.000302
2p ( 1) 4p ( 1)
3/2 3/2
0+
8 0.000178
2p-( 1) 3p-( 1)
1/2 1/2
0+
9 0.000214
2p-( 1) 4p-( 1)
1/2 1/2
0+
10 -0.039770
3s ( 2)
0+
11 -0.001052
3s ( 1) 4s ( 1)
1/2 1/2
0+
12 0.004905
3p ( 2)
0
0+
13 0.003467
3p-( 2)
0+
14 -0.000333
3p ( 1) 4p ( 1)
3/2 3/2
0+
15 -0.000237
3p-( 1) 4p-( 1)
1/2 1/2
0+
16 -0.013120
3d ( 2)
0
0+
17 -0.010712
3d-( 2)
0
0+
18 0.000530
3d ( 1) 4d ( 1)
5/2 5/2
0+
19 0.000432
3d-( 1) 4d-( 1)
3/2 3/2
0+
20 -0.004103
4s ( 2)
0+
21 0.001628
4p ( 2)
0
0+
22 0.001150
4p-( 2)
0+
23 -0.002808
4d ( 2)
0
0+
24 -0.002291
4d-( 2)
0
0+
25 0.004766
4f ( 2)
0
0+
26 0.004127
4f-( 2)
0
0+
RMIXEXTRACT: Execution complete.
*******************************************************************************
* RUN RDENSITY TO COMPUTE THE RADIAL DENSITY FUNCTION AND TRANSFORM *
* TO NATURAL ORBITALS. *
* INPUT FILES: isodata, n4.c, n4.w, n4.cm *
* OUTPUT FILE: n4.cd (density), n4.nw (natural orbitals) *
*******************************************************************************
>>redensity
RDENSITY: Execution begins ...
Default settings?
>>y
Name of state
>>n4
Mixing coefficients from a CI calc.?
>>y
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 26 relativistic CSFs;
... load complete;
Loading Radial WaveFunction File ...
nelec = 4
ncftot = 26
nw = 16
nblock = 1
block ncf nev 2j+1 parity
1 26 1 1 1
How do you want to order your egvc ?
1) By looking at the dominant component
2) Following the decreasing order of the egvl
>>2
......
RDENSITY: Execution complete.
*******************************************************************************
* COPY FILES TO PERFORM RCI CALCULATION IN THE NATURAL ORBITAL BASIS. *
*******************************************************************************
>>cp n4.c n4NO.c
>>cp n4.nw n4NO.w
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, n4NO.c, n4NO.w *
* OUTPUT FILES: n4NO.cm, n4NO.csum, n4NO.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
Default settings?
>>y
Name of state:
>>n4NO
Block 1 , ncf = 26
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>n
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 26
Enter ASF serial numbers for each block
Block 1 ncf = 26 id = 0+
>>1
......
RCI: Execution complete.
*******************************************************************************
* RUN RMIXEXTRACT TO DISPLAY THE MIXING COEFFICIENTS *
*******************************************************************************
>>rmixextract
RMIXEXTRACT
Extract and prints mixing coefficient above a
cut-off. Corresponding CSFs written to screen and
to rcsf.out
Input files: name.c, name.(c)m
Output file: rcsf.out
Name of state
>>n4NO
Mixing coefficients from CI calc. ?
>>y
Enter the cut-off value for the coefficients [0--1]
>>0
Sort extracted CSFs according to mixingcoeffcients? (y/n)
>>n
nblock = 1 ncftot = 26 nw = 16 nelec = 4
===========================================================================
nb = 1 ncfblk = 26 nevblk = 1 2J+1 = 1 parity = 1
nb = 1 ncfblk = 26 nevblk = 1 2J+1 = 1 parity = 1
===========================================================================
Average Energy = -12.602609084238223 ncf_reduced = 26
Energy = -14.620897382271725 Coefficients and CSF :
1 0.953740
2s ( 2)
0+
2 -0.000000
2s ( 1) 3s ( 1)
1/2 1/2
0+
3 -0.000000
2s ( 1) 4s ( 1)
1/2 1/2
0+
4 0.242750
2p ( 2)
0
0+
5 0.171674
2p-( 2)
0+
6 0.000000
2p ( 1) 3p ( 1)
3/2 3/2
0+
7 0.000000
2p ( 1) 4p ( 1)
3/2 3/2
0+
8 0.000000
2p-( 1) 3p-( 1)
1/2 1/2
0+
9 0.000000
2p-( 1) 4p-( 1)
1/2 1/2
0+
10 -0.039787
3s ( 2)
0+
11 -0.000000
3s ( 1) 4s ( 1)
1/2 1/2
0+
12 0.004922
3p ( 2)
0
0+
13 0.003479
3p-( 2)
0+
14 -0.000000
3p ( 1) 4p ( 1)
3/2 3/2
0+
15 -0.000000
3p-( 1) 4p-( 1)
1/2 1/2
0+
16 -0.013134
3d ( 2)
0
0+
17 -0.010723
3d-( 2)
0
0+
18 -0.000000
3d ( 1) 4d ( 1)
5/2 5/2
0+
19 -0.000000
3d-( 1) 4d-( 1)
3/2 3/2
0+
20 -0.004089
4s ( 2)
0+
21 0.001611
4p ( 2)
0
0+
22 0.001138
4p-( 2)
0+
23 -0.002794
4d ( 2)
0
0+
24 -0.002280
4d-( 2)
0
0+
25 0.004766
4f ( 2)
0
0+
26 0.004127
4f-( 2)
0
0+
RMIXEXTRACT: Execution complete.
We see that the energy is invariant, but the weights have been concentrated to relatively fewer CSFs. The weights for many CSFs are now zero.
The rdensity program also outputs the file n4.cd file that contains the radial density distribution for each grid point, see Section 8.4 for a discussion of the file structure. In Figure 3 we have plotted as a function of r in a.u.
Figure 3.
Radial density function for in Be I.
6.9. Ninth Example: Magnetic-Field- and Hyperfine-Induced Transitions in Ni XXV
The ninth example is for the unexpected transition in Ni XXV, see [42]. The example shows the computation of Zeeman and hyperfine interaction matrix using the hfszeeman95 program, with given rci wave functions, and the use of Matlab program mithit to compute the transition rates between magnetic fine-structure substates in the presence of an external magnetic field and the rates of hyperfine induced transitions in the field-free limit.
- Overview
- Define nuclear data.
- Obtain common spectroscopic orbitals for the MR set.
- (a)
- Generate configuration state list for MR set {, , and }.
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of all states belonging to and .
- (e)
- Save output to mr.
- Improve even states
- (a)
- Generate n = 3 valence–valence CSF expansions.
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of the even state.
- (e)
- Save output to even_n3.
- (f)
- Perform rci calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Transform from - to -coupling
- Improve odd states
- (a)
- Generate n = 3 valence–valence CSF expansions.
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of the odd states.
- (e)
- Save output to odd_n3.
- (f)
- Perform rci calculation in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
- Transform from - to -coupling
- Calculate properties
- (a)
- Calculate Zeeman and hyperfine interaction matrix using the rci wave functions.
- (b)
- Compute the transition rates from the rci wave functions. Calculation in two steps: biorthonormal transformation and evaluation of transition matrix elements using standard Racah algebra methods. The latter procedure is done using rtransition_phase.
- (c)
- Compute the magnetic-field-induced transition rate at B = 3 tesla.
- (d)
- Compute the hyperfine-induced transition rate in the field-free limit.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
Enter the atomic number:
>>28
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>61
The default root mean squared radius is 3.8224999904632568 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>58.6934
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1.5
Enter the nuclear dipole moment (in nuclear magnetons):
>>-0.75002
Enter the nuclear quadrupole moment (in barns):
>>0.162
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs FOR *
* CONFIGURATIONS 2s(2), 2p(2), 2s2p *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(2,i)
Give configuration 2
>>1s(2,i)2p(2,i)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>2s,2p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>y
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(1,i)2p(1,i)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>2s,2p
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
4 blocks were created
block J/P NCSF
1 0+ 3
2 0- 1
3 1- 2
4 2- 1
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* * MEANS ALL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3902D+03 0.3381D+03 0.1000D+01 0.5289D-01 328 T-F
2s 0.9484D+02 0.1211D+03 0.1000D+01 0.2123D+00 344 T-F
2p- 0.9460D+02 0.1104D+01 0.1000D+01 0.1766D+00 344 T-F
2p 0.9357D+02 0.9101D+03 0.2000D+01 0.1791D+00 344 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p AND THEY ARE ALL *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* * MEANS ALL ORBITALS *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 4 relativistic subshells;
Loading CSF File for ALL blocks
There are 7 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 4 blocks (block J/Parity NCF):
1 0+ 3 2 0- 1 3 1- 2 4 2- 1
Enter ASF serial numbers for each block
Block 1 ncf = 3 id = 0+
>>1
Block 2 ncf = 1 id = 0-
>>1
Block 3 ncf = 2 id = 1-
>>1,2
Block 4 ncf = 1 id = 2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave mr
Created mr.w, mr.c, mr.m, mr.sum mr.alog and mr.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 3 VALENCE-VALENCE *
* CORRELATION LIST FOR EVEN STATE *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(2,*)
Give configuration 2
>>1s(2,i)2p(2,*)
Give configuration 3
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
1 blocks were created
block J/P NCSF
1 0+ 11
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
...........
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>mr.w
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3671D+03 0.3339D+03 0.1000D+01 0.5367D-01 341 mr.
2s 0.8431D+02 0.1134D+03 0.1000D+01 0.2235D+00 347 mr.
2p- 0.8236D+02 0.9734D+00 0.1000D+01 0.1894D+00 347 mr.
2p 0.8154D+02 0.8034D+03 0.2000D+01 0.1919D+00 347 mr.
3s 0.4070D+02 0.6530D+02 0.1000D+01 0.4835D+00 355 T-F
3p- 0.4058D+02 0.6470D+00 0.1000D+01 0.4481D+00 354 T-F
3p 0.4028D+02 0.5359D+03 0.2000D+01 0.4517D+00 355 T-F
3d- 0.4007D+02 0.1028D+01 0.2000D+01 0.3798D+00 354 T-F
3d 0.3997D+02 0.1070D+04 0.3000D+01 0.3812D+00 354 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 3s,3p, 3d. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 3* MEANS 3s, 3p-, 3p, 3d-, 3d *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 11 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 11
Enter ASF serial numbers for each block
Block 1 ncf = 11 id = 0+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>3*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave even_n3
Created even_n3.w, even_n3.c, even_n3.m, even_n3.sum even_n3.alog and even_n3.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, even_n3.c, even_n3.w *
* OUTPUT FILES: even_n3.cm, even_n3.csum, even_n3.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog
rci.res (can be used for restart)
Default settings?
>>y
Name of state:
>>even_n3
Block 1 , ncf = 11
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 11
Enter ASF serial numbers for each block
Block 1 ncf = 11 id = 0+
>>1
......
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO TRANSFORM FROM JJ- TO LSJ-COUPLING *
* INPUT FILES: even_n3.c, even_n3.cm *
* OUTPUT FILE: even_n3.lsj.lbl, even_n3.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2021).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>even_n3
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 11 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 4
ncftot = 11
nw = 9
nblock = 1
block ncf nev 2j+1 parity
1 11 1 1 1
Default settings? (y/n)
>>y
....
jj2lsj: Execution Complete
********************************************************************************
* RUN RCSFGENERATE TO GENERATE n = 3 VALENCE-VALENCE *
* CORRELATION LIST FOR ODD STATE *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
********************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,i)2s(1,*)2p(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 0- 6
2 1- 14
3 2- 12
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.log, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
...........
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>mr.w
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3671D+03 0.3339D+03 0.1000D+01 0.5367D-01 341 mr.
2s 0.8431D+02 0.1134D+03 0.1000D+01 0.2235D+00 347 mr.
2p- 0.8236D+02 0.9734D+00 0.1000D+01 0.1894D+00 347 mr.
2p 0.8154D+02 0.8034D+03 0.2000D+01 0.1919D+00 347 mr.
3s 0.4070D+02 0.6530D+02 0.1000D+01 0.4835D+00 355 T-F
3p- 0.4058D+02 0.6470D+00 0.1000D+01 0.4481D+00 354 T-F
3p 0.4028D+02 0.5359D+03 0.2000D+01 0.4517D+00 355 T-F
3d- 0.4007D+02 0.1028D+01 0.2000D+01 0.3798D+00 354 T-F
3d 0.3997D+02 0.1070D+04 0.3000D+01 0.3812D+00 354 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: FOR CORRELATION ORBITALS THERE ARE NO RESTRICTIONS ON THE *
* NUMBER OF NODES, I.E. THEY ARE NOT SPECTROSCOPIC. IN THIS RUN WE *
* VARY THE CORRELATION ORBITALS 3s,3p, 3d. NONE OF THESE ARE *
* SPECTROSCOPIC. WE CAN USE WILD CARDS * FOR SPECIFYING ORBITALS *
* 3* MEANS 3s, 3p-, 3p, 3d-, 3d *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 32 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0- 6 2 1- 14 3 2- 12
Enter ASF serial numbers for each block
Block 1 ncf = 6 id = 0-
>>1
Block 2 ncf = 14 id = 1-
>>1,2
Block 3 ncf = 12 id = 2-
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>3*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
..........
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave odd_n3
Created odd_n3.w, odd_n3.c, odd_n3.m, odd_n3.sum odd_n3.alog and odd_n3.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* INPUT FILES : isodata, odd_n3.c, odd_n3.w *
* OUTPUT FILES: odd_n3.cm, odd_n3.csum, odd_n3.clog, rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog
rci.res (can be used for restart)
Default settings?
>>y
Name of state:
>>odd_n3
Block 1 , ncf = 6
Block 2 , ncf = 14
Block 3 , ncf = 12
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>y
Enter the scale factor:
>>1.d-6
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0- 6 2 1- 14 3 2- 12
Enter ASF serial numbers for each block
Block 1 ncf = 6 id = 0-
>>1
Block 2 ncf = 14 id = 1-
>>1,2
Block 3 ncf = 12 id = 2-
>>1
......
RCI: Execution complete.
*******************************************************************************
* RUN JJ2LSJ TO TRANSFORM FROM JJ- TO LSJ-COUPLING *
* INPUT FILES: odd_n3.c, odd_n3.cm *
* OUTPUT FILE: odd_n3.lsj.lbl, odd_n3.uni.lsj.lbl *
*******************************************************************************
>>jj2lsj
jj2lsj: Transformation of ASFs from a jj-coupled CSF basis
into an LSJ-coupled CSF basis (Fortran 95 version)
(C) Copyright by G. Gaigalas and Ch. F. Fischer,
(2021).
Input files: name.c, name.(c)m
Output files: name.lsj.lbl
(optional) name.lsj.c, name.lsj.j,
name.uni.lsj.lbl, name.uni.lsj.sum
Name of state
>>odd_n3
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 11 relativistic CSFs;
... load complete;
Mixing coefficients from a CI calc.?
>>y
Do you need a unique labeling? (y/n)
>>y
nelec = 4
ncftot = 32
nw = 9
nblock = 3
block ncf nev 2j+1 parity
1 6 1 1 -1
2 14 2 3 -1
3 12 1 5 -1
Default settings? (y/n)
>>y
....
jj2lsj: Execution Complete
********************************************************************************
* RUN HFSZEEMAN95 FOR even_n3 *
* INPUT FILES: isodata, even_n3 .c, even_n3 .w, even_n3 .cm *
* OUTPUT FILE: even_n3 .ch, even_n3 .cgjhfs *
********************************************************************************
>>hfszeeman95
HFSZEEMAN95
This is the magnetic interaction program
Input files: isodata, name.c, name.(c)m, name.w
Output files: name.(c)h, name.(c)gjhfs
HFSZEEMAN95: Execution begins ...
Default settings?
>>y
Name of state
>>even_n3
Mixing coefficients from a CI calc.?
>>y
Calculate off-diagonal matrix elements?
>>y
....
HFSZEEMAN95: Execution complete.
********************************************************************************
* RUN HFSZEEMAN95 FOR odd_n3 *
* INPUT FILES: isodata, odd_n3 .c, odd_n3 .w, odd_n3 .cm *
* OUTPUT FILE: odd_n3 .ch, odd_n3 .cgjhfs *
********************************************************************************
>>hfszeeman95
HFSZEEMAN95
This is the magnetic interaction program
Input files: isodata, name.c, name.(c)m, name.w
Output files: name.(c)h, name.(c)gjhfs
HFSZEEMAN95: Execution begins ...
Default settings?
>>y
Name of state
>>odd_n3
Mixing coefficients from a CI calc.?
>>y
Calculate off-diagonal matrix elements?
>>y
....
HFSZEEMAN95: Execution complete.
********************************************************************************
* VIEW ZEEMAN AND HYPERFINE INTERACTION MATRX FOR ODD STATES *
********************************************************************************
>>more odd_n3.cgjhfs
Number of relativistic eigenvalues
4
Lev J Parity E
1 2.0 - -944.099340681
1 1.0 - -944.694737339
2 1.0 - -942.723168239
1 0.0 - -944.876941705
Zeeman interaction matrix
0.18322E+01 -0.34691E+00 0.68227E-01 0.00000E+00
0.44786E+00 0.10439E+01 -0.67174E-01 0.40125E+00
-0.88081E-01 -0.67174E-01 0.71718E+00 -0.78350E-01
0.00000E+00 -0.69499E+00 0.13571E+00 0.00000E+00
HFI-matrix for the magnetic dipole operator
0.36367E+02 -0.10508E+02 0.27000E+02 0.00000E+00
0.13566E+02 0.36112E+02 0.22640E+02 0.15292E+02
-0.34857E+02 0.22640E+02 -0.18141E+01 0.81431E+01
0.00000E+00 -0.26486E+02 -0.14104E+02 0.00000E+00
HFI-matrix for the electric quadrupole operator
0.28620E+03 0.32475E+03 -0.59600E+02 -0.22196E+03
-0.41925E+03 -0.22145E+03 0.14396E+03 0.00000E+00
0.76944E+02 0.14396E+03 0.46833E+03 0.00000E+00
-0.49632E+03 -0.00000E+00 -0.00000E+00 0.00000E+00
********************************************************************************
* RUN RBIOTRANSFORM FOR even_n3 AND odd_n3 TO TRANSFORM WAVE FUNCTIONS *
* INPUT FILES: isodata, even_n3.c, even_n3.w, even_n3.cm, *
* odd_n3.c, odd_n3.w, odd_n3.cm *
* OUTPUT FILES: even_n3 .cbm, even_n3 .bw, odd_n3.cbm, odd_n3.bw *
* even_n3.TB, odd_n3.TB (angular files) *
* NOTE THAT THE ORDER OF INITIAL AND FINAL STATE DOES NOT MATTER *
********************************************************************************
>>rbiotransform
RBIOTRANSFORM
This program transforms the initial and final wave
functions so that standard tensor albegra can be
used in evaluation of the transition parameters
Input files: isodata, name1.c, name1.w, name1.(c)m
name2.c, name2.w, name2.(c)m
name1.TB, name2.TB (optional angular files)
Output files: name1.bw, name1.(c)bm,
name2.bw, name2.(c)bm
name1.TB, name2.TB (angular files)
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>even_n3
Name of the Final state
>>odd_n3
Transformation of all J symmetries?
>>y
....
BIOTRANSFORM: Execution complete.
*****************************************************************************************
* RUN RTRANSITION_PHASE FOR even_n3 and odd_n3 TO COMPUTE TRANSITION PARAMETERS *
* INPUT FILES: isodata, even_n3.c, even_n3.bw, even_n3.cbm *
* odd_n3.c, odd_n3.bw, odd_n3.cbm *
* OUTPUT FILES: even_n3.odd_n3.ct *
* odd_n3.odd_n3.-1T (angular file) *
* NOTE THAT THE ORDER OF INITIAL AND FINAL STATE DOES NOT MATTER *
*****************************************************************************************
>>rtransition_phase
RTRANSITION
This program computes transition parameters from
transformed wave functions
Input files: isodata, name1.c, name1.bw, name1.(c)bm
name2.c, name2.bw, name2.(c)bm
optional, name1.lsj.lbl, name2.lsj.lbl
name1.name2.KT (optional angular files)
Output files: name1.name2.(c)t
optional, name1.name2.(c)t.lsj
name1.name2.KT (angular files)
Here K is parity and rank of transition: -1,+1 etc
Default settings?
>>y
Input from a CI calculation?
>>y
Name of the Initial state
>>even_n3
Name of the Final state
>>odd_n3
MRGCSL: Execution begins ...
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 11 relativistic CSFs;
... load complete;
Loading Configuration Symmetry List File ...
There are 9 relativistic subshells;
There are 32 relativistic CSFs;
... load complete;
1 s
2 s
2 p-
2 p
3 s
3 p-
3 p
3 d-
3 d
1
11
3
6 20 32
Loading Configuration Symmetry List File ...
there are 9 relativistic subshells;
there are 43 relativistic CSFs;
... load complete;
Enter the list of transition specifications
e.g., E1,M2 or E1 M2 or E1;M2 :
>>E1,M2
.....
RTRANSITION: Execution complete.
*******************************************************************************
* VIEW COMPUTED TRANSITION PARAMETERS *
*******************************************************************************
>>more even_n3.odd_n3.ct
Transition between files:
f1 = even_n3
f2 = odd_n3
Electric 2**( 1)-pole transitions
=================================
Upper Lower
Lev J P Lev J P E (Kays) A (s-1) gf S M
f2 1 1 - f1 1 0 + 419612.86 C 1.04269D+08 2.66340D-03 2.08960D-03 -4.57121D-02
B 8.48871D+07 2.16832D-03 1.70118D-03 -4.12454D-02
f2 2 1 - f1 1 0 + 852322.26 C 2.56686D+10 1.58918D-01 6.13827D-02 -2.47755D-01
B 2.38815D+10 1.47854D-01 5.71090D-02 -2.38975D-01
Magnetic 2**( 2)-pole transitions
=================================
Upper Lower
Lev J P Lev J P E (Kays) A (s-1) gf S M
f2 1 2 - f1 1 0 + 550287.32 M 1.40086D+01 3.46773D-10 9.30999D-01 -9.64883D-01
Comment: The reduced transition matrix elements M given in the even_n3.odd_n3.ct are need by the Matlab program mithit for the computation of magnetic-field- and hyperfine-induced transitions.
*******************************************************************************
* RUN MATLAB PROGRAM MITHIT FOR MAGNETIC-FIELD-INDUCED TRANSITION AT *
* MAGNETIC FIELD STRENGTH B = 3 TESLA *
* INPUT FILES: even_n3.cgjhfs, odd_n3.cgjhfs, even_n3.odd_n3.ct *
* OUTPUT FILES: even_n3.czm, odd_n3.czm, even_n3.odd_n3.fs.mit.mtrans *
*******************************************************************************
>>mithit
Name of the Initial state:
>>even_n3
Name of the Final state:
>>odd_n3
Are the calculations based on a relativistic CI calculation? (Y/N)
>>y
MIT-fs(0), HIT(1) or MIT-hfs(2):
>>0
B-field in Tesla (0) or Gauss (1):
>>0
Give the upper limit for the B-field:
>>3
Energies in a.u. (0), cm-1 (1) or MHz (2) ?
>>1
Start Computation of Energies and Mixing Coefficients
of the Magnetic Sublevels of Initial States
level E_fs (a.u.) J
-----------------------------------------------
1 -946.606634183 0
Would you like a plot of Zeeman splitting with B field? (Y/N)
>>n
Finished even_n3
Start Computation of Energies and Mixing Coefficients
of the Magnetic Sublevels of Final States
level E_fs (a.u.) J
-----------------------------------------------
1 -944.099340681 2
2 -944.694737339 1
3 -942.723168239 1
4 -944.876941705 0
Would you like a plot of Zeeman splitting with B field? (Y/N)
>> n
Finished odd_n3
Would you like to compute the transition rates? (Y/N)
>>y
level E_BP (a.u.) J
-------------------------------
Initial levels:
1 -946.606634183 0
Final levels:
1 -944.099340681 2
2 -944.694737339 1
3 -942.723168239 1
4 -944.876941705 0
Give an index vector of the initial levels(lower level):
>>1
Give an index vector of the final levels(upper level):
>>4
Would you like a plot of synthetic spectra? (Y/N)
>>n
MITHIT finished
********************************************************************************
* VIEW COMPUTED MAGNETIC-FIELD-INDUCED TRANSITION RATE *
********************************************************************************
>>more even_n3.odd_n3.fs.mit.mtrans
Magnetic field
B = 3.0000000 Tesla
Fine structure energies in a.u.
even_n3
level J E_BP (a.u.)
1 0.0 -946.606634
odd_n3
level J E_BP (a.u.)
1 2.0 -944.099341
2 1.0 -944.694737
3 1.0 -942.723168
4 0.0 -944.876942
Transition rates and wavenumbers in Kays
Upper Lower
level J M_J E_hfs (a.u.) FS-LEV level J M_J E_hfs (a.u.) FS-LEV A (s-1) E (Kays)
4 0.0 0.0 -944.876941705 4 1 0.0 0.0 -946.606634183 1 4.0607E-02 379623.6178
********************************************************************************
* RUN MATLAB PROGRAM MITHIT FOR HYPERFINE-INDUCED TRANSITION *
* INPUT FILES: even_n3.cgjhfs, odd_n3.cgjhfs, even_n3.odd_n3.ct *
* OUTPUT FILES: even_n3.czm, odd_n3.czm, even_n3.odd_n3.hfs.hit.trans *
********************************************************************************
>>mithit
Name of the Initial state:
>>even_n3
Name of the Final state:
>>odd_n3
Are the calculations based on a relativistic CI calculation? (Y/N)
>>y
MIT-fs(0), HIT(1) or MIT-hfs(2):
>>1
Nuclear spin I:
>>1.5
Nuclear magnetic dipole moment mu:
>> -0.75002
Nuclear electric quadrupole moment Q:
>>0.162
Start Computation of Energies and Mixing Coefficients
of the Magnetic Sublevels of Initial States
level E_hfs (a.u.) FS-LEV J F
-----------------------------------------------
1 -946.606634183 1 0 3/2
Finished even_n3
Start Computation of Energies and Mixing Coefficients
of the Magnetic Sublevels of Final States
level E_hfs (a.u.) FS-LEV J F
-----------------------------------------------
1 -944.099384680 1 2 7/2
2 -944.694775514 2 1 5/2
3 -944.099333945 1 2 5/2
4 -942.723166078 3 1 5/2
5 -944.876941710 4 0 3/2
6 -944.694711495 2 1 3/2
7 -944.099296427 1 2 3/2
8 -942.723170502 3 1 3/2
9 -944.694674496 2 1 1/2
10 -944.099273405 1 2 1/2
11 -942.723170188 3 1 1/2
Finished odd_n3
Would you like to compute the transition rates? (Y/N)
>>y
level E_hfs (a.u.) FS-LEV J F
------------------------------------------------------------
Initial levels:
1 -946.606634183 1 0 3/2
Final levels:
1 -944.099384680 1 2 7/2
2 -944.099333945 1 2 5/2
3 -944.099296427 1 2 3/2
4 -944.099273405 1 2 1/2
5 -944.694775514 2 1 5/2
6 -944.694711495 2 1 3/2
7 -944.694674496 2 1 1/2
8 -942.723166078 3 1 5/2
9 -942.723170502 3 1 3/2
10 -942.723170188 3 1 1/2
11 -944.876941710 4 0 3/2
Give an index vector of the initial levels(lower level):
>>1
Give an index vector of the final levels(upper level):
>>11
Would you like a plot of synthetic spectra? (Y/N)
>>n
MITHIT finished
********************************************************************************
* VIEW COMPUTED HYPERFINE-INDUCED TRANSITION RATE *
********************************************************************************
>>more even_n3.odd_n3.hfs.hit.trans
Nuclear data
Nuclear spin 1.500000 au
Nuclear magnetic dipole moment -0.750020 n.m.
Nuclear electric quadrupole moment 0.162000 barns
Hyperfine structure energies in a.u.
even_n3
level J F E_hfs (a.u.) FS-LEV
1 0.0 1.5 -946.606634 1
odd_n3
level J F E_hfs (a.u.) FS-LEV
1 2.0 3.5 -944.099385 1
2 2.0 2.5 -944.099334 1
3 2.0 1.5 -944.099296 1
4 2.0 0.5 -944.099273 1
5 1.0 2.5 -944.694776 2
6 1.0 1.5 -944.694711 2
7 1.0 0.5 -944.694674 2
8 1.0 2.5 -942.723166 3
9 1.0 1.5 -942.723171 3
10 1.0 0.5 -942.723170 3
11 0.0 1.5 -944.876942 4
Transition rates and wavenumbers in Kays
Upper Lower
level J F E_hfs (a.u.) FS-LEV level J F E_hfs (a.u.) FS-LEV A (s-1) E (Kays)
11 0.0 1.5 -944.876941710 4 1 0.0 1.5 -946.606634183 1 2.6057E+00 379623.6167
7. Running the Tools
7.1. Splitting a List of CSFs
When using scripts, see case studies in Section 9, Section 10 and Section 11, it is often convenient to generate a list of CSFs based on a large active set of orbitals and then split this list into a number of lists with CSFs that can be formed from different subsets of active orbitals.
- Overview
- Generate a list of CSFs for by allowing SDT excitations (CAS expansion) to the active set .
- Split into three lists with CSFs that can be formed by the active sets , , and .
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST FOR 1s(2)2p *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>0
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>1s(2,*)2p(1,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>1,3
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>3
Generate more lists ? (y/n)
>>n
...
2 blocks were created
block J/P NCSF
1 1/2- 1454
2 3/2- 2478
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out odd.c
*******************************************************************************
* RUN RCSFSPLIT AND SPLIT INTO LISTS CORRESPONDING TO ACTIVE SETS *
* n = 3, n = 4, n = 5 *
* INPUT FILE : odd.c *
* OUTPUT FILE: odd3.c, odd4.c, odd5.c *
*******************************************************************************
>>rcsfsplit
RCSFSPLIT
Splits a list name.c of CSFs into a number of lists with CSFs that
can be formed from different sets of active orbitals.
Orbital sets are specified by giving the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
Input file: name.c
Output files: namelabel1.c, namelabel2.c, ...
Name of state
>>odd
Number of orbital sets
>>3
Orbital set 1
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Give file label
>>3
Orbital set 2
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Give file label
>>4
Orbital set 3
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>5s,5p,5d,5f,5g
Give file label
>>5
List odd3.c based on orbital set 1
contains 186 CSFs
List odd4.c based on orbital set 2
contains 1048 CSFs
List odd5.c based on orbital set 3
contains 3932 CSFs
7.2. Extracting and Condensing
The program rmixextract extracts and displays, for each state in a calculation, the CSFs with absolute values of the mixing coefficients larger than a certain cut-off. The program rmixaccumulate works somewhat differently, it accumulates the CSFs that account for a given percentage of the wave functions in a calculation. The algorithm is described as follows:
- Start from a calculation targeting one or more states, thus start from a number of ASFs
- For i from 1 to N compute
- Sort in descending order.
- Accumulate the sorted s values until a specified fraction of the total squared weightis attained. The corresponding CSFs gives a condensed list.
- Overview
- Extract and display CSFs from the rci wave functions 2p_3 in the first example, see Section 6.1.
- Accumulate CSFs from the rci wave functions 2p_3 in the first example, accounting for 99.99 % of the total wave function content.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FIRST *
* EXAMPLE ARE *
*******************************************************************************
*******************************************************************************
* RUN RMIXEXTRACT TO EXTRACT AND PRINT MIXING COEFFICIENTS FOR 2p_3 *
* CORRESPONDING CSFs WRITTEN to rcsf.out *
* INPUT FILES: 2p_3.c, 2p_3.cm *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
>>rmixextract
RMIXEXTRACT
Extract and prints mixing coefficient above a
cut-off. Corresponding CSFs written to screen and
to rcsf.out
Input files: name.c, name.(c)m
Output file: rcsf.out
Name of state
>>2p_3
Mixing coefficients from CI calc. ?
>>y
Enter the cut-off value for the coefficients [0--1]
>>0.01
Sort extracted CSFs according to mixingcoeffcients? (y/n)
>>y
nblock = 2 ncftot = 186 nw = 9 nelec = 3
===========================================================================
nb = 1 ncfblk = 76 nevblk = 1 2J+1 = 2 parity = -1
nb = 1 ncfblk = 76 nevblk = 1 2J+1 = 2 parity = -1
===========================================================================
Average Energy = 8.4326211886741014 ncf_reduced = 5
Energy = -7.4042609950173972 Coefficients and CSF :
1 0.998449
1s ( 2) 2p-( 1)
1/2
1/2-
2 -0.034328
2p-( 1) 3s ( 2)
1/2
1/2-
3 0.032596
2p-( 1) 3p ( 2)
1/2 0
1/2-
4 0.023063
2p-( 1) 3p-( 2)
1/2
1/2-
5 0.010751
2s ( 1) 2p-( 1) 3s ( 1)
1/2 1/2 1/2
1 1/2-
===========================================================================
nb = 2 ncfblk = 110 nevblk = 1 2J+1 = 4 parity = -1
nb = 2 ncfblk = 110 nevblk = 1 2J+1 = 4 parity = -1
===========================================================================
Average Energy = 9.6081889296591605 ncf_reduced = 4
Energy = -7.4042596826542209 Coefficients and CSF :
1 0.998449
1s ( 2) 2p ( 1)
3/2
3/2-
2 -0.034328
2p ( 1) 3s ( 2)
3/2
3/2-
3 0.032590
2p ( 1) 3p ( 2)
3/2 0
3/2-
4 0.023072
2p ( 1) 3p-( 2)
3/2
3/2-
RMIXEXTRACT: Execution complete.
*******************************************************************************
* RUN RMIXACCUMULATE TO ACCUMULATE CSFs CONTRIBUTING TO 99.99\% *
* OF THE TOTAL WAVE FUNCTION CONTENT. CORRESPONDING CSFs WRITTEN TO *
* rcsf.out *
* INPUT FILES: 2p_3.c, 2p_3.cm *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
>>rmixaccumulate
***************************************************************************
Welcome to program rmixaccumulate
The program accumulates dominating CSFs by mixing coefficients up to
a user defined fraction of the total wave function.
The CSFs in the output list can be sorted by mixing coefficents
to provide better initial estimates for the subsequent diagonalisation.
of CI matrices.
Input files: <state>.(c)m, <state>.c
Output file: rcsf.out
J. Ekman & P. Jonsson Feb 2016
***************************************************************************
Give name of the state:
>>2p_3
Expansion coefficients resulting from CI calculation (y/n)?
>>y
Fraction of total wave function [0-1] to be included in reduced list:
>>0.9999
CSFs in output file sorted by mixing coefficients (y/n)?
>>y
Block data read from mixing file
block ncf nev 2j+1 parity
1 76 1 2 -1
2 110 1 4 -1
Number of CSF:s written to rcsf.out
block ncf
1 7
2 7
WARNING! Not all peel subshells are occupied in the output CSF list:
Remove the following peel subshells:
3d-
For each symmetry block, only 7 CSFs are needed to account for 99.99% of the total wave function content. The extracted list of CSFs is shown below.
Core subshells:
Peel subshells:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
CSF(s):
1s ( 2) 2p-( 1)
1/2
1/2-
2p-( 1) 3s ( 2)
1/2
1/2-
2p-( 1) 3p ( 2)
1/2 0
1/2-
2p-( 1) 3p-( 2)
1/2
1/2-
2s ( 1) 2p-( 1) 3s ( 1)
1/2 1/2 1/2
1 1/2-
2p-( 1) 3d ( 2)
1/2 0
1/2-
2s ( 1) 2p-( 1) 3s ( 1)
1/2 1/2 1/2
0 1/2-
*
1s ( 2) 2p ( 1)
3/2
3/2-
2p ( 1) 3s ( 2)
3/2
3/2-
2p ( 1) 3p ( 2)
3/2 0
3/2-
2p ( 1) 3p-( 2)
3/2
3/2-
2s ( 1) 2p ( 1) 3s ( 1)
1/2 3/2 1/2
2 3/2-
2s ( 1) 2p ( 1) 3s ( 1)
1/2 3/2 1/2
1 3/2-
2p ( 1) 3d ( 2)
3/2 0
3/2-
Indeed, we see that the - orbital is not present in any of the extracted CSFs. If we are going to use the list of extracted CSFs for some other purposes, we should remove - from the list of peel subshells. In Section 14.2 we discuss the use of rmixaccumulate for handling large CSF expansions.
7.3. Extracting Radial Orbitals for Plotting
The program rwfnplot extracts specified orbitals from a binary radial orbital file name.w and generates a Matlab/GNU Octave M-file (and also an Xmgrace file for convenience) that plots the large components of the radial orbitals as functions of r or . The Matlab/GNU Octave M-file is easy to edit to modify the appearances of the plots. By editing the Matlab/GNU Octave M-file, also the small component of the radial orbitals can be plotted. In this example, we extract the , and orbitals from 2s_2p_DF.w generated in the example 1, see Section 6.1.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FIRST *
* EXAMPLE ARE *
*******************************************************************************
*******************************************************************************
* RUN RWFNPLOT TO PLOT THE 1s, 2s, 2p ORBITALS *
* INPUT FILE: 2s_2p_DF.w *
* OUTPUT FILE: octave_2s_2p_DF.m (Matlab/GNU Octave M-file) *
*******************************************************************************
>>rwfnplot
RWFNPLOT
Program to generate Matlab/GNU Octave and
Xmgrace files that plot radial orbitals
Input file: name.w
Output files: octave_name.m, xmgrace_name.agr
To plot orbital: press enter
To remove orbital: type "d" or "D" and press enter
Jorgen Ekman Jun 2015
Name of state:
>>2s_2p_DF
To have r on x-axis: type "y" otherwise "n" for sqrt(r)
>>n
1s =
>>
2s =
>>
2p- =
>>d
2p =
>>
FINISHED .....
*******************************************************************************
* START GNU OCTAVE BY TYPING octave *
*******************************************************************************
>>octave
*******************************************************************************
* AT THE GNU OCTAVE COMMAND LINE octave:1> INVOKE THE M-FILE *
* NOTE THAT ONLY THE FILE NAME AND NOT THE EXTENSION SHOULD BE GIVEN *
*******************************************************************************
octave:1> octave_2s_2p_DF
Executed in Matlab or GNU Octave, the octave_2s_2p_DF.m M-file gives the radial orbitals to the left in Figure 4. To the right, we have plotted converted MCHF orbitals. In Figure 5 we have, for comparison, plotted the Thomas-Fermi and the screened hydrogenic initial estimates of the radial orbitals. (To save an Octave figure to file click on File and Save As in the upper left corner of the graphical window. By saving the figures in pdf format, they can easily be imported in a LaTeX document.) By comparing Figure 4 and Figure 5 one sees that Thomas-Fermi gives better initial estimates of the radial orbitals than do the screened hydrogenic estimates. Best initial estimates, however, are obtained from converted HF or MCHF orbitals.
Figure 4.
Left: plot of the large components of the , and orbitals in Li I as functions of , where r is in units of the Bohr radius . Right: large components from converted MCHF orbitals.
Figure 5.
Left: plot of the large components of the , and orbitals in Li I as functions of , where r is in units of the Bohr radius , from Thomas-Fermi estimates: Right: large components from screened hydrogenic estimates.
7.4. Output from rhfs with LSJ Labels
The program rhfs_lsj reads data from name.(c)h. Using data available from name.lsj.lbl output is produced with -labels. We will use the program on the files from example 1, see Section 6.1.
- Program Input
In the test-runs, prompt marked by >> or >>3, for example, indicates that the user should input 3 and then strike the return key. When >> is followed by blanks, just strike the return key.
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FIRST *
* EXAMPLE ARE *
*******************************************************************************
*******************************************************************************
* RUN RHFS_LSJ TO OBTAIN OUTPUT WITH LSJ LABELS *
* INPUT FILES: 2p_3.ch, 2p_3.lsj.lbl *
* OUTPUT FILE: 2p_3.chlsj *
*******************************************************************************
>>rhfs_lsj
RHFS_LSJ
This program prints output from the rhfs program
using LSJ lables. Output can be energy sorted
Input files: name.(c)h, name.lsj.lbl
Output file: name.(c)hlsj
Name of the state
>>2p_3
Hfs data from a CI calc?
>>y
Energy sorted output?
>>y
The produced file 2p_3.chlsj is shown below.
Nuclear spin 1.500000000000000D+00 au
Nuclear magnetic dipole moment 3.256426800000000D+00 n.m.
Nuclear electric quadrupole moment -4.000000000000000D-02 barns
Energy State J P A(MHz) B(MHz) gJ
-7.4042610 1s(2).2p_2P 1/2 - 4.482D+01 -0.000D+00 6.666573D-01
-7.4042597 1s(2).2p_2P 3/2 - -3.538D+00 -1.773D-01 1.333325D+00
7.5. Producing HFS Tables in LaTeX
The program rtabhfs produces LaTeX files from output files from rhfs_lsj. Before running rtabhfs, run rhfs_lsj on 2s_3 so that 2s_3.chlsj is available. Now we will invoke rtabhfs to make a LaTeX file with hyperfine interaction constants and Landé -factors for all states in the above files.
*******************************************************************************
* RUN RTABHFS TO PRODUCE LATEX TABLE *
* INPUT FILES: 2s_3.chlsj 2p_3.chlsj *
* OUTPUT FILE: hfs.tex *
*******************************************************************************
>>rtabhfs
RTABHFS
This program reads the output from rhfs_lsj and
produces LaTeX tables of hfs data
Input files: name.(c)hlsj produced by rhfs_lsj
Output file: hfs.tex
How many HFS files ?
>>2
Full name of HFS file 1
>>2s_3.chlsj
Full name of HFS file 2
>>2p_3.chlsj
Inspect the name.(c)hlsj files and
determine how many positions should be skipped in
the string that determines the label. For example
if the string is 1s(2).2s_2S.2p(2)3P2_4P and 1s(2)
is a core then you want to skip 1s(2). i.e., 6
positions
How many positions should be skipped?
>>0
The produced LaTeX file hfs.tex is shown below
\documentclass[10pt]{article}
\usepackage{longtable}
\begin{document}
\begin{longtable}{lrrrr} \midrule
State & $E$(a.u.) & $A$(MHz) & $B$(MHz) &
$g_J$ \\ \midrule
$1s^2 \,2s~^2\!S_{ 1/2}$ & -7.4719740 & 3.885D+02 & -0.000D+00 & 1.999985D+00 \\
$1s^2 \,2p~^2\!P_{ 1/2}^o$ & -7.4042610 & 4.482D+01 & -0.000D+00 & 6.666573D-01 \\
$1s^2 \,2p~^2\!P_{ 3/2}^o$ & -7.4042597 & -3.538D+00 & -1.773D--01 & 1.333325D+00 \\
\midrule\\
\caption{Hyperfine interaction constants}
\end{longtable}
\end{document}
The above LaTeX file generates Table 2.
Table 2.
Hyperfine interaction constants.
7.6. Producing Energy Tables in LaTeX
The program rtablevels produces LaTeX and ASCII files from output files from rlevels. As a first simple example, we make a table of the energies from the calculations in example 1, see Section 6.1. It is possible to read many files from rlevels and make, for example, tables that show convergence of energy levels with respect to the increasing active set, see Section 9.4.
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FIRST *
* EXAMPLE ARE *
*******************************************************************************
*******************************************************************************
* RUN RLEVELS TO OBTAIN AN ENERGY FILE WITH LSJ LABELS *
*******************************************************************************
>>rlevels 2s_3.cm 2p_3.cm > energy3
*******************************************************************************
* RUN RTABLEVELS TO PRODUCE LATEX AND ASCII TABLES *
* INPUT FILE: energy3 *
* OUTPUT FILES: energytablelatex.tex, energytableascii.txt *
*******************************************************************************
>>rtablevels
RTABLEVELS
Makes LaTeX and ASCII tables of energy files produced by
rlevels (in ljs format)
Multiple energy files can be used as input
Energies from file 1 fills column 1, energies from file 2
fills column 2 etc. Checks are done to see if the labels
if the labels in the files are consistent
Input file: name1, name2, ...
Output files: energylabellatex.tex, energylabelascii.txt
Inspect energy files and determine how many positions
should be skipped in the string that determines the label
e.g., if the string is 1s(2).2s_2S.2p(2)3P2_4P and 1s(2) is a core
then you would like to skip 1s(2). i.e., 6 positions and determine
the label from 2s_2S.2p(2)3P2_4P
How many positions should be skipped?
>>0
Give the number of energy files from rlevels
>>1
Name of file 1
>>energy3
The produced file energytablelatex.tex is shown below
\documentclass[10pt]{article}
\usepackage{longtable}
\begin{document}
\begin{longtable}{lr} \midrule
$1s^2 \,2s~^2\!S_{ 1/2}$ & 0 \\
$1s^2 \,2p~^2\!P_{ 1/2}^o$ & 14861 \\
$1s^2 \,2p~^2\!P_{ 3/2}^o$ & 14861 \\
\midrule\\
\caption{Energies from the files energy3,}
\end{longtable}
\end{document}
7.7. Producing E1 Transition Tables in LaTeX
The program rtabtransE1 produces LaTeX and ASCII files from the nam1.name2.(c)t.lsj output file from rtransition (E1 transitions only). As an example, we make a table of the transition data from the 2s_3.2p_3.ct.lsj file in example 1, see Section 6.1. For additional use of rtabtrans1E1, see Section 9.5
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FIRST *
* EXAMPLE ARE *
*******************************************************************************
*******************************************************************************
* RUN RTABTRANSE1 TO PRODUCE LATEX AND ASCII TABLES *
* INPUT FILE: 2s_3.2p_3.ct.lsj *
* OUTPUT FILES: transitiontable.tex, transitiontableascii.txt *
*******************************************************************************
>>rtabtransE1
RTABTRANSE1
Makes LaTeX tables of transition data from transition files
name1.name2.ct.lsj
Input file: name1.name2.ct.lsj
Output file: transitiontable.tex
Specify table format
(1). Lower & Upper & Energy diff. & wavelength & S & gf & A & dT
(2). Lower & Upper & Energy diff. & wavelength & gf & A & dT
(3). Lower & Upper & Energy diff. & wavelength & gf & A
(4). Lower & Upper & Energy diff. & S & gf & A & dT
(5). Lower & Upper & Energy diff. & gf & A & dT
(6). Lower & Upper & Energy diff. & gf & A
>>5
Inspect the name1.name2.ct.lsj file and determine how many positions
should be skipped in the string that determines the label
e.g., if the string is 1s(2).2s_2S.2p(2)3P2_4P and 1s(2) is a core
then you would like to skip 1s(2). i.e., 6 positions and determine
the label from 2s_2S.2p(2)3P2_4P
How many positions should be skipped?
>>0
Name of file
>>2s_3.2p_3.ct.lsj
The produced file transitiontable.tex is shown below
\documentclass[10pt]{article}
\usepackage{longtable}
\begin{document}
\begin{longtable}{llrrrr}
Lower state & Upper state & $\Delta E$ (cm$^{-1}$) & $gf$ & $A$ (s$^{-1}$) & $dT$ \\ \midrule
$1s^2 \,2s~^2\!S_{1/2}$ & $1s^2 \,2p~^2\!P_{1/2}$ & 14861 & 5.087D-01 & 3.747D+07 & 0.017\\
$1s^2 \,2s~^2\!S_{1/2}$ & $1s^2 \,2p~^2\!P_{3/2}$ & 14861 & 1.017D+00 & 3.747D+07 & 0.017\\
\midrule\\
\caption{Transition data from the file 2s_3.2p_3.ct.lsj}
\end{longtable}
\end{document}
The above LaTeX file generates Table 3.
Table 3.
Transition data from the file 2s_3.2p_3.ct.lsj.
7.8. Handling Levels with the Same Quantum Labels
For more complex systems, it sometimes happens that two levels have the same dominating term. The two levels will then get the same quantum labels in the output from rlevels and rtransition. The user of the program thus needs to pay attention to this and make sure that the labels are unique. If two or more levels have the same quantum labels, open the name.lsj.lbl file and edit it so that all levels have unique quantum labels. After having done these changes in the label file, rerun rlevels and rtransition and the changes will be reflected in the output files. Subsequent runs of rtablevels and rtabtransE1 will use the new quantum labels. Alternatively, to avoid problems with quantum states having the same label, use the unique label option of jj2lsj as described in Section 6.5. If the user does not want to edit the name.lsj.lbl file manually to get unique quantum labels or use the unique label option of jj2lsj he or she can still run rtablevels and rtabtrans1 (to be discussed in the next section). These two programs identify all cases with labels that are not unique and resolve them by adding indices a, b, c etc. at the end of the quantum labels so that the labels are unique.
7.9. Producing Transition and Lifetime Tables in LaTeX
The programs rtabtrans1 and rtabtrans2 produce a LaTeX transition table file and a lifetime file from the *.(c)t output file from rtransition. In case of several runs for different multipoles with rtransition all the different *.(c)t output files can be concatenated before processing. For example: if we have one file name1.name2.ct with transition data from a run for E1 transitions between states in the two files name1 and name2 and one file name1.name1.ct from a run for M1 transitions between states in the file name1 the transition files can be concatenated (any name can be used for the concatenated file)
cat name1.name2.ct name1.name1.ct > E1M1.ct
By processing the concatenated file E1M1.ct a LaTeX transition table is produced for all E1 and M1 transitions.
As an example, we make a table of the transition data from the even4.odd4.ct file in the fourth example, see Section 6.4. In addition, we produce a lifetime table. More accurate values of the lifetime would require that we also include M1, E2 transitions between states of the same parity. We neglect this for simplicity. First, we create energy label data for all the levels involved in the transitions. These data are obtained by processing the even4.cm and odd4.ct files.
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FOURTH *
* EXAMPLE ARE *
*******************************************************************************
*******************************************************************************
* RUN RTABTRANS1 TO PRODUCE AN ENERGY LABEL FILE NEEDED FOR *
* FURTHER PROCESSING WITH RTABTRANS2 *
* INPUT FILE: even4.cm, odd4.cm *
* OUTPUT FILES: energylabel.latex *
*******************************************************************************
>>rtabtrans1
RTABTRANS1
This program creates a file energylabel that is
used by RTABTRANS2 to produce LaTeX tables of
transition data
Input files: mixing coefficient files
name1.(c)m, name2.(c)m,.... for the wave-
functions that are used to compute the
transition data
Output file: energylabel.latex(ascii)
Type the full input file name, one for each line (NULL to terminate)
File name ?
>>even4.cm
File name ?
>>odd4.cm
File name ?
>>
Inspect the labels of the states and
determine how many positions should be skipped in
the string that determines the label. For example
if all the states have a common core 1s(2) in the
label then 6 positions should be skipped
How many positions should be skipped?
>>12
Output labels in LaTeX or ASCII format (0/1)?
>>0
Energy label data written to file
energylabel.latex(ascii)
The produced file energylabel.latex is shown below
nblock = 4 ncftot = 5712 nw = 16 nelec = 12
nblock = 5 ncftot = 7100 nw = 16 nelec = 12
Energy levels for ...
Rydberg constant is 109737.31534
-----------------------------------------------------------------------------------------
No - Serial number of the state; Pos - Position of the state within the
J/P block;
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels File Configuration
(a.u.) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 + -1182.4117992 0.00 even4 $3s^2 ~^1\!S_{ 0 }$
2 1 0 - -1181.3459632 233923.97 odd4 $3s~^2\!S\,3p~^3\!P_{ 0 }^o$
3 1 1 - -1181.3193175 239772.02 odd4 $3s~^2\!S\,3p~^3\!P_{ 1 }^o$
4 1 2 - -1181.2548318 253925.01 odd4 $3s~^2\!S\,3p~^3\!P_{ 2 }^o$
5 2 1 - -1180.8025239 353195.12 odd4 $3s~^2\!S\,3p~^1\!P_{ 1 }^o$
6 2 0 + -1179.8828042 555050.24 even4 $3p^2 (^3_2P)~^3\!P_{ 0 }$
7 1 2 + -1179.8592139 560227.72 even4 $3p^2 (^1\!_2D)~^1\!D_{ 2 }$
8 1 1 + -1179.8374539 565003.49 even4 $3p^2 (^3_2P)~^3\!P_{ 1 }$
9 2 2 + -1179.7587696 582272.71 even4 $3p^2 (^3_2P)~^3\!P_{ 2 }$
10 3 0 + -1179.3935747 662423.72 even4 $3p^2 (^1\!_0S)~^1\!S_{ 0 }$
11 2 1 + -1179.3158027 679492.71 even4 $3s~^2\!S\,3d~^3\!D_{ 1 }$
12 3 2 + -1179.3111395 680516.16 even4 $3s~^2\!S\,3d~^3\!D_{ 2 }$
13 1 3 + -1179.3038352 682119.26 even4 $3s~^2\!S\,3d~^3\!D_{ 3 }$
14 4 2 + -1178.9201602 766326.18 even4 $3s~^2\!S\,3d~^1\!D_{ 2 }$
15 2 2 - -1178.1773931 929344.72 odd4 $3p~^2\!P\,3d~^3\!F_{ 2 }^o$
16 1 3 - -1178.1321370 939277.28 odd4 $3p~^2\!P\,3d~^3\!F_{ 3 }^o$
17 3 2 - -1178.0860896 949383.53 odd4 $3p~^2\!P\,3d~^1\!D_{ 2 }^o$
18 1 4 - -1178.0797665 950771.28 odd4 $3p~^2\!P\,3d~{^3\!F_{ 4 }^o$
19 3 1 - -1177.9273160 984230.30 odd4 $3p~^2\!P\,3d~^3\!D_{ 1 }^o$
20 4 2 - -1177.9244263 984864.51 odd4 $3p~^2\!P\,3d~^3\!P_{ 2 }^o$
21 2 3 - -1177.8730161 996147.75 odd4 $3p~^2\!P\,3d~^3\!D_{ 3 }^o$
22 2 0 - -1177.8671996 997424.33 odd4 $3p~^2\!P\,3d~^3\!P_{ 0 }^o$
23 4 1 - -1177.8658739 997715.29 odd4 $3p~^2\!P\,3d~^3\!P_{ 1 }^o$
24 5 2 - -1177.8645522 998005.36 odd4 $3p~^2\!P\,3d~^3\!D_{ 2 }^o$
25 3 3 - -1177.5443213 1068287.93 odd4 $3p~^2\!P\,3d~^1\!F_{ 3 }^o$
26 5 1 - -1177.4837515 1081581.45 odd4 $3p~^2\!P\,3d~^1\!P_{ 1 }^o$
The LaTeX strings in the column to the right will be used as labels in the transition table and in the lifetime table. The user might want to edit the strings by, for example, removing unnecessary quantum labels. In the case above, we do the global substitutions: 3s~^2\!S\, → 3s and 3p~^2\!P\, → 3p.
*******************************************************************************
* RUN RTABTRANS2 TO PRODUCE THE LATEX TRANSITION FILE AND *
* THE LIFETIME FILE AS WELL AS A SCATTER PLOT *
* INPUT FILES: even4.odd4.ct, energylabel.latex *
* OUTPUT FILES: transitiontable.tex, lifetimetable.tex *
* scatterplot.m *
*******************************************************************************
>>rtabtrans2
RTABTRANS2
This program reads energy label data and transition
data and creates transition and lifetime tables in
LaTeX or ASCII format. An Octave file with a
scatterplot of dT and 10log(A) is also produced
Energy label data are given in the file energylabel
created by the rtabtrans1 program
Transition data file can be concatenated *.t or *.ct
files.
Input files: energylabel.latex(ascii),
transitiondatafile
Output files: transitiontable.tex(txt),
lifetimetable.tex(txt),
scatterplot.m
Give the name of the transition data file
>>even4.odd4.ct
Energy label file in LaTeX or ASCII format (0/1)?
>>0
Give cut-off for printing A values
>>1e4
Give fraction of accumulated A value for upper level
for printing A value of a transition
>>1e-4
Transition data wavelength sorted?
>>y
Give number of decimals for wavelength (1,...6)
>>3
Mean dT 5.5603015391651460E-002
Program finished. The transition tables in latex
have been written to file
Observe that there are two available criteria for selecting transitions to be printed: one criterion that is based on the value of A itself and one criterion that is related to the accumulated A value for the upper level. If a transition satisfies one of the two criteria, the A value is printed. The second criterion makes it possible to select important decay channels from metastable states without having to print weak transitions from all states. A value greater than 1 for the second criterion means that printing will be based only on the first criterion, i.e., transitions will be printed if they have A values larger than the cut-off. When processing the file transitiontable.tex we get Table 4 below. Please note that we edited the file energylabel.latex before running rtabtrans2. Transition rates and values are given in length gauge for electric transitions. is a measure of the uncertainty of the electric transitions given by , see TP Section 3.5.
Table 4.
Transition data.
When processing the file lifetimetable.tex we get Table 5. Please note that we edited the file energylabel before running rtabtrans2. Transition rates for electric transitions that enter the calculation of the lifetimes are in Babushkin (length) and Coulomb (velocity) gauges. The rtabtrans2 produces also an M-file scatterplot.m that, when executed under GNU Octave or Matlab, produces a and A scatter plot. The scatter plot is shown in Figure 6 and indicates that is smaller, on the average, for the stronger transitions than for the weaker ones.
Table 5.
Lifetimes in s.
Figure 6.
Scatterplot of and s).
7.10. Producing Energy Tables with -Composition in LaTeX
The PERL script lscomp.pl creates a LaTeX file lscomp.tex which contains level information with the dominating -component and up to two extra -components if their contributions to the total wave function exceed 0.02 along with energies and, optionally, Landé -factors. In addition, a file energylabel is created, which may be used together with rtabtrans2 for the creation of a LaTeX file with transition data.
To be able to run the script, PERL has to be installed, see https://www.perl.org/get.html (accessed on 4 November 2022).
To run the script copy lscomp.pl to the working directory and type:
>>perl lscomp.pl
However, assuming that the script lscomp.pl is located in the $HOME/GRASP2018/bin directory, the following line may be added to the .profile or .bashrc file:
alias perl_lscomp=’perl $HOME/GRASP2018/bin/lscomp.pl’
In this case, to run the script from any working directory simply type:
>>perl_lscomp
As an example we make a table of the LS-compositions, energies and Landé -factors in the fourth example, see Section 6.4. The table is obtained by processing the even4 and odd4 files.
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE FOURTH *
* EXAMPLE ARE. *
* *
* BEGIN WITH RUNNING RHFS FOR EVEN4 AND ODD4 To GET THE *
* HFS AND LANDE FACTORS *
*******************************************************************************
! For even 4
>>rhfs
RHFS
This is the hyperfine structure program
Input files: isodata, name.c, name.(c)m, name.w
Output files: name.(c)h, name.(c)hoffd
Default settings?
>>y
Name of state
>>even4
Mixing coefficients from a CI calc.?
>>y
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 5712 relativistic CSFs;
... load complete;
Loading Radial WaveFunction File ...
nelec = 12
ncftot = 5712
nw = 16
nblock = 4
block ncf nev 2j+1 parity
1 556 3 1 1
2 1448 2 3 1
3 1898 4 5 1
4 1810 1 7 1
Column 100 complete;
Column 200 complete;
Column 300 complete;
....................
Column 5600 complete;
Column 5700 complete;
RHFS: Execution complete.
! For odd4
>>rhfs
RHFS
This is the hyperfine structure program
Input files: isodata, name.c, name.(c)m, name.w
Output files: name.(c)h, name.(c)hoffd
Default settings?
>>y
Name of state
>>odd4
Mixing coefficients from a CI calc.?
>>y
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
There are 7100 relativistic CSFs;
... load complete;
Loading Radial WaveFunction File ...
nelec = 12
ncftot = 7100
nw = 16
nblock = 5
block ncf nev 2j+1 parity
1 546 2 1 -1
2 1456 5 3 -1
3 1891 5 5 -1
4 1814 3 7 -1
5 1393 1 9 -1
Column 100 complete;
Column 200 complete;
Column 300 complete;
.......................
Column 7000 complete;
Column 7100 complete;
RHFS: Execution complete.
*******************************************************************************
* RUN LSCOMP.PL TO PRODUCE A LATEX FILE lscomp.tex WITH ENERGY LEVEL *
* INFORMATION WITH DOMINATING LS-COMPONENT AND UP TO TWO EXTRA *
* LS-COMPONENTS. IN ADDITION THE FILE energylabel.latex IS PRODUCED *
* WHICH CAN BE USED FOR FURTHER PROCESSING WITH RTABTRANS2 *
* INPUT FILES: even4.lsj.lbl, even4.ch *
* odd4.lsj.lbl, odd4.ch *
* OUTPUT FILES: lscomp.tex, energylabel.latex *
*******************************************************************************
>>perl_lscomp
LSCOMP.PL
This PERL script creates files lscomp.tex and energylabel.latex
File lscomp.tex contains energy level data with up to
three LS components with a contribution > 0.02 of the
total wave function.
File energylabel.latex may be used by RTABTRANS2 to produce
LaTeX tables of transition data.
Input files : state1.lsj.lbl and state2.lsj.lbl
state1.ch and state2.ch (optional for gJ-factors)
Output files: lscomp.tex and energylabel.latex
Jorgen Ekman Sep. 2015
State 1?
>>even4
State 2?
>>odd4
Necessary input file(s) exist!
Do you want to include Lande g_J factors in the energy table? (y/n)
>>y
Lande g_J factors from a CI calculation? (y/n)
>>y
File(s) with g_J factors exist!
Do you want an extra empty column for e_obs in the energy table? (y/n)
>>y
Inspect the labels of the states and
determine how many positions should be skipped in
the string that determines the label. For example
if all the states have a common core 1s(2) in the
label then 6 positions should be skipped
How many positions should be skipped?
>>12
Files lscomp.tex and energylabel.latex written to disc.
The produced file lscomp.tex, slightly edited, is shown below.
\documentclass[12pt]{article}
\usepackage{longtable}
\usepackage[cm]{fullpage}
\thispagestyle{empty}
\begin{document}
{\scriptsize
\begin{longtable}{@{}rllrrr}
\caption{Energies.....}\\
\midrule
No. & State & $LS$-composition & $E(CI) $ & $E(OBS) $ & $g_J $ \\
\midrule
\endfirsthead
\caption{Continued.}\\
\midrule
No. & State & $LS$-composition & $E(CI) $ & $E(OBS) $ & $g_J $ \\
\midrule
\endhead
\midrule
\endfoot
1 & $3s^{2}~^{1}\!S_{0}$ & 0.97 + 0.02~$3p^{2}(^{1}_{0}S)~^{1}S$ & 0 & & \\
2 & $3s~^{2}S\,3p~^{3}P_{0}^{o}$ & 1.00 & 233~924 & & \\
3 & $3s~^{2}S\,3p~^{3}P_{1}^{o}$ & 0.99 & 239~772 & & 1.49513 \\
4 & $3s~^{2}S\,3p~^{3}P_{2}^{o}$ & 1.00 & 253~925 & & 1.49886 \\
5 & $3s~^{2}S\,3p~^{1}P_{1}^{o}$ & 0.97 + 0.02~$3p~^{2}P\,3d~^{1}P^{o}$ & 353~195 & & 1.00254 \\
.....................
23 & $3p~^{2}P\,3d~^{3}P_{1}^{o}$ & 0.75 + 0.24~$3p~^{2}P\,3d~^{3}D^{o}$ & 997~715 & & 1.25688 \\
24 & $3p~^{2}P\,3d~^{3}D_{2}^{o}$ & 0.54 + 0.45~$3p~^{2}P\,3d~^{3}P^{o}$ & 998~005 & & 1.31616 \\
25 & $3p~^{2}P\,3d~^{1}F_{3}^{o}$ & 0.99 & 1~068~288 & & 1.00120 \\
26 & $3p~^{2}P\,3d~^{1}P_{1}^{o}$ & 0.96 + 0.02~$3s~^{2}S\,3p~^{1}P^{o}$ & 1~081~581 & & 0.9972 \\
\midrule
\end{longtable}
}
\end{document}
After manually including observed energies from the NIST tables and editing the caption, we obtain Table 6.
Table 6.
Energies in cm and Landé -factors for states in Mg-like iron.
Some states are strongly mixed in -coupling. For example, the states 20 and 24 are an almost equal mix of and . The mixing is also reflected in the Landé -factors which for these states are far from their pure values. If desired, one can apply global substitutions in the LaTeX file to get the quantum labels in the desired form.
7.11. Using rasfsplit to Split Files Defining ASFs in Symmetry Blocks
The program rasfsplit splits the files defining a number of ASFs of different blocks (J and parity) into groups of files, one for each symmetry block. Such a splitting would make it possible to distribute computation (of transition properties, for instance) on different computer systems. Calculations of transition rates for one combination of J and parity may be performed on one computer system (perhaps using MPI codes), while calculations of transition rates for another combination of J and parity may be performed on another computer system.
- Overview
- Split the ASFs defined by the files 2s22p3_2p5_3.c, 2s22p3_2p5_3.w, 2s22p3_2p5_3.m, 2s22p3_2p5_3.cm of the third example, see Section 6.3
- Display the energies with .
- Program Input
*******************************************************************************
* MAKE SURE YOU ARE IN THE DIRECTORY WHERE THE FILES FROM THE THIRD *
* EXAMPLE ARE. *
* *
* RUN RASFSPLIT TO SPLIT THE 2s22p3_2p5_3.c, 2s22p3_2p5_3.w, *
* 2s22p3_2p5_3.m, 2s22p3_2p5_3.cm FILES INTO FILES WHERE THE *
* EXTENSION IS odd1, odd2, odd3 ETC FOR THE DIFFERENT J BLOCKS OF *
* ODD PARITY *
*******************************************************************************
>>rasfsplit
RASFSPLIT
Splits an Atomic State Function made up by the files name.c,
name.(c)m, name.w into the corresponding files for each
parity and J block. If only the name.c file is available this
file will be split
Input files: name.c,name.(c)m, name.w
Output files: name_even1.c, name_even1.(c)m. name_even1.w
name_odd1.c, name_odd1.(c)m. name_odd1.w ...
Name of the state
>>2s22p3_2p5_3
Each of the blocks must be built from the same orbital set
This may not be true for MR expansions, but is normally true
for SD-MR expansions
Is the above condition fullfilled? (y,n)
>>y
nblock 3
nblockodd 3
nblockeven 0
File 2s22p3_2p5_3.m available
nelec = 7
ncftot = 1165
nw = 9
nvectot = 7
nvecsize = 3212
nblock = 3
Block data read from mixing file
block ncf nev 2j+1 parity
1 274 2 2 1
2 591 4 4 1
3 300 1 6 1
File 2s22p3_2p5_3.cm available
nelec = 7
ncftot = 1165
nw = 9
nvectot = 7
nvecsize = 3212
nblock = 3
Block data read from mixing file
block ncf nev 2j+1 parity
1 274 2 2 -1
2 591 4 4 -1
3 300 1 6 -1
Exit status of the name.w file copying for block 1 was 0
Exit status of the name.w file copying for block 2 was 0
Exit status of the name.w file copying for block 3 was 0
There are three blocks of odd parity and program has produced the files:
2s22p3_2p5_3_odd1.c, 2s22p3_2p5_3_odd1.w, 2s22p3_2p5_3_odd1.m, 2s22p3_2p5_3_odd1.cm
2s22p3_2p5_3_odd2.c, 2s22p3_2p5_3_odd2.w, 2s22p3_2p5_3_odd2.m, 2s22p3_2p5_3_odd2.cm
2s22p3_2p5_3_odd3.c, 2s22p3_2p5_3_odd3.w, 2s22p3_2p5_3_odd3.m, 2s22p3_2p5_3_odd3.cm
The files with the extension odd1 define the ASFs with and the files with the extension odd2 define the ASFs with etc. To see the energies of the ASFs produced by the rci program with odd parity we give the command
rlevels 2s22p3_2p5_3_odd2.cm
and get the result
nblock = 1 ncftot = 591 nw = 9 nelec = 7
Energy levels for ...
Rydberg constant is 109737.31569
No - Serial number of the state; Pos - Position of the state within the
J/P block; Splitting is the energy difference with the lower neighbor
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 3/2 - -263.2797841
2 2 3/2 - -262.9550555 71269.67 71269.67
3 3 3/2 - -262.7882742 107873.94 36604.27
4 4 3/2 - -259.5241179 824273.45 716399.51
-------------------------------------------------------------------------
8. Interpreting the Output Files
In this section, we describe in detail what information can be found in the different output files and how this information should be interpreted
8.1. Output Files from the First Example
- The Isodata File
Below is the isodata file for the Li example, Section 6.1.
Atomic number: 3.0000000000000000 Mass number (integer) : 7.0000000000000000 Fermi distribution parameter a: 0.52338755531043146 Fermi distribution parameter c: 1.2520789669753825 Mass of nucleus (in amu): 6.9393542602910001 Nuclear spin (I) (in units of h / 2 pi): 1.5000000000000000 Nuclear dipole moment (in nuclear magnetons): 3.2564267999999998 Nuclear quadrupole moment (in barns): -4.0000000000000001E-002
The calculation was for Li with and . The nuclear charge distribution was modelled as an extended Fermi distribution with
The parameters a and c are computed from the root mean squared radius and the skin thickness. The root mean squared radius is taken from the tables of Angeli and Marinova [Atomic Data and Nuclear Data Tables Volume 99, Issue 1, 69-95, (2013)]. This gives fm and fm. On the lines following these quantities, the nuclear mass and nuclear spin I are given, along with the nuclear magnetic dipole moment in nuclear magnetons and the nuclear quadrupole moment Q in barns.
-
The rcsfgenerate Log-File
After each rcsfgenerate run, there is a log-file displaying the response to the different questions. Below is the rcsfgenerate.log file from the complete active space expansion for .
* ! Orbital order
0 ! Selected core
1s(2,*)2p(1,*)
*
3s,3p,3d
1 3 ! Lower and higher 2*J
3 ! Number of excitations
n
The log-file is a copy of the input data. By executing the command
rcsfgenerate < rcsfgenerate.log
the rcsf.out file will be reproduced. The rcsfgenerate.log file can easily be edited to give a new list of CSFs. For example
* ! Orbital order
0 ! Selected core
1s(2,*)2p(1,*)
*
4s,4p,4d,4f
1 3 ! Lower and higher 2*J
3 ! Number of excitations
n
will give a file rcsf.out with CSFs corresponding to an active set .
-
The CSF File
The rcsfgenerate program produces an rcsf.out file. The file has a header with information about the radial orbitals and the closed shells (core shells). After this information, there is a list of CSFs. The CSFs are ordered in blocks with specified value of J. Each block is separated by a line with an asterisk. Below is the file 2p_3.c.
Core subshells:
Peel subshells:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
CSF(s):
1s ( 2) 2p-( 1)
1/2
1/2-
1s ( 2) 3p-( 1)
1/2
1/2-
1s ( 1) 2s ( 1) 2p ( 1)
1/2 1/2 3/2
1 1/2-
..............
3p-( 1) 3d-( 1) 3d ( 1)
1/2 3/2 5/2
2 1/2-
3p-( 1) 3d-( 2)
1/2 0
1/2-
*
1s ( 2) 2p ( 1)
3/2
3/2-
1s ( 2) 3p ( 1)
3/2
3/2-
1s ( 1) 2s ( 1) 2p ( 1)
1/2 1/2 3/2
0 3/2-
............
3p-( 1) 3d-( 1) 3d ( 1)
1/2 3/2 5/2
2 3/2-
3p-( 1) 3d-( 2)
1/2 2
3/2-
The line with core subshells is empty, and in this case we have no closed core. The radial orbitals are , , -, , , -, , -, . After the radial orbitals, there are lists of CSFs arranged in blocks. The first block of CSFs has . The second block has . An asterisk is separating the blocks. In the file, each CSF occupies three lines. On the first line the subshells and their occupations are listed in a linear form where, for example, becomes 1s ( 2). The second line shows the coupling of each subshell to a J quantum number, and the third line shows how the J quantum numbers of each subshell are coupled from left to right to a final J, see TP Section 2.4.
-
The rangular Log-File
The program rangular produces a log-file displaying the response to the different questions. After running rsave this file is saved in name.alog. Below is the log-file 2p_3.alog
y ! Full interaction
The log-file is a copy of the input data. We see that angular data were computed for all interactions. The log-file is more useful in cases where we do not have full interaction, see Section 14.1. In these cases, the file contains information about the zero-order space.
-
The rmcdhf Log-File
The SCF program rmcdhf produces a log-file displaying the response to the different questions. After running rsave this file is saved in name.log. Below is the log-file 2p_3.log from the run on weighted average of the states.
y ! Default settings
1
1
5 ! level weights
3*
100 ! Number of SCF cycles
The log-file is a copy of the input data. We see that the run was with default settings (there will be no log-file for non-default settings). It was a calculation targeting the first levels of the two blocks (ASF serial numbers 1 for each of the two blocks). The level weight is 5 (default option), meaning that the levels, in the energy functional, are weighted according to the statistical weight , see TP Section 2.7, e.g., (44). On the line that follows, 3* means that orbitals with principal quantum numbers 3 are optimized. The blank line indicates that none of the optimized orbitals are spectroscopic. 100 SCF cycles were requested. By executing the command
rmcdhf < rmcdhf.log (or rmcdhf < name.log)
the rmcdhf run will be executed again with the settings in rmcdhf.log. The log-file can easily be edited and used as an input also to other runs.
-
The rmcdhf Summary File
The SCF program rmcdhf produces a summary file. After running rsave this file is saved in name.sum. Below is the summary file 2p_3.sum from the run on weighted average of the states.
There are 3 electrons in the cloud
in 186 relativistic CSFs
based on 9 relativistic subshells.
The atomic number is 3.0000000000;
the mass of the nucleus is 1.264966898269D+04 electron masses;
Fermi nucleus:
c = 3.612753059646D-05 Bohr radii,
a = 9.890591370096D-06 Bohr radii;
there are 82 tabulation points in the nucleus.
Speed of light = 137.0359991390D+00 atomic units.
Radial grid: R(I) = RNT*(exp((I-1)*H)-1), I = 1, ..., N;
RNT = 6.666666666667D-07 Bohr radii;
H = 5.000000000000D-02 Bohr radii;
N = 590;
R(1) = 0.000000000000D+00 Bohr radii;
R(2) = 3.418073091735D-08 Bohr radii;
R(N) = 4.110372988964D+06 Bohr radii.
EOL calculation.
2 levels will be optimised;
their indices are: 1, 1.
Each is assigned its statistical weight;
Radial wavefunction summary:
Self
Subshell e p0 gamma P(2) Q(2) Consistency MTP
1s 2.5177395314D+00 9.280D+00 1.00 3.172D-07 -3.513D-12 0.000D+00 355
2s 1.9634308400D-01 1.452D+00 1.00 4.965D-08 -5.499D-13 0.000D+00 361
2p- 1.2867248397D-01 5.116D-05 1.00 2.518D-15 1.598D-10 0.000D+00 366
2p 1.2866992757D-01 4.265D-01 2.00 4.983D-16 -5.519D-21 0.000D+00 366
3s 8.0600844816D+00 1.181D+01 1.00 5.027D-07 -7.981D-13 8.965D-08 360
3p- 8.7786093395D+00 2.853D-03 1.00 1.994D-13 8.921D-09 8.940D-07 364
3p 8.7823537644D+00 2.381D+01 2.00 2.786D-14 -1.173D-18 1.303D-06 364
3d- 1.6298092328D+01 8.146D-03 2.00 2.740D-20 1.739D-15 6.785D-06 358
3d 1.6306599649D+01 8.169D+01 3.00 3.262D-21 -3.617D-26 8.697D-06 358
-3 -1 2 4 Generalised
Subshell < r > < r > < r > < r > < r > occupation
1s 0.00000D+00 2.68556D+00 5.73199D-01 4.47081D-01 5.33751D-01 1.99386D+00
2s 0.00000D+00 3.45596D-01 3.87317D+00 1.77347D+01 5.65669D+02 2.01584D-04
2p- 0.00000D+00 2.65023D-01 4.79564D+00 2.78265D+01 1.47509D+03 3.33335D-01
2p 5.85643D-02 2.65011D-01 4.79578D+00 2.78280D+01 1.47522D+03 6.66669D-01
3s 0.00000D+00 3.09463D+00 8.79428D-01 1.76019D+00 3.83411D+01 2.52035D-03
3p- 0.00000D+00 1.94750D+00 6.74894D-01 8.40900D-01 2.20221D+01 1.08534D-03
3p 1.72790D+01 1.94712D+00 6.74750D-01 8.40046D-01 2.19775D+01 2.17087D-03
3d- 1.01792D+01 1.82956D+00 6.31485D-01 4.57970D-01 4.14736D-01 6.48046D-05
3d 1.01575D+01 1.82935D+00 6.31441D-01 4.57852D-01 4.14179D-01 9.72851D-05
Eigenenergies:
Level J Parity Hartrees Kaysers eV
1 1/2 - -7.404576963163D+00 -1.625116799442D+06 -2.014888020446D+02
1 3/2 - -7.404574103806D+00 -1.625116171886D+06 -2.014887242376D+02
Weights of major contributors to ASF:
Block Level J Parity CSF contributions
1 1 1/2 - 0.9985 -0.0343 0.0326 0.0230 0.0107
1 56 58 60 30
2 1 3/2 - 0.9985 -0.0343 0.0326 0.0230 0.0099
1 62 67 71 32
The first lines of the file tell us that the calculation was for a three electron system and that there were in total 186 CSFs built on 9 relativistic radial orbitals. After this, there is information about the nucleus. In this case, the nucleus has and a mass of electron masses. The nuclear charge distribution is modelled by a Fermi distribution with Bohr radii, and Bohr radii. There is information about the radial grid used in the calculation. The grid is given by
with Bohr radii and Bohr radii. In the current implementation of grasp, with , see TP Section 2.2, Equation (8). There are grid points.
We see that it is an EOL calculation and that the calculation was on the lowest state (first eigenvalue) of each block ( and ). In the optimization, each state is weighted according to the statistical weight , see TP Section 2.7, Equation (44). The information on optimization is followed by a radial orbital summary. Important characteristics of a radial orbital are the orbital energy eigenvalue and parameters that determine the behavior near . The radial amplitudes
can be expanded in power series
near the origin where the index , , and are constants that depend on the nuclear potential model. In the radial orbital summary e is orbital energy eigenvalue, p0 is a parameter related to the leading expansion coefficients of the radial amplitudes and gamma is the exponent , for details see I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules, Springer 2007, p 272–273 and also the subroutine start in lib92. P(2) and Q(2) are the values of the radial amplitudes at the first grid point R(2) away from zero. Then the self-consistency (weighted change of an orbital during an iteration) is given for each orbital. In this case, the orbitals , , -, were kept frozen, and they thus have a self-consistency of zero. The orbitals , -, , -, were optimized and the self-consistency is between for and for . Finally, the value MTP gives the number of the outermost grid point used for representing the radial amplitudes of the orbital. At the remaining grid points, the radial amplitudes of the orbital are set to zero. Around 360 of the available 590 grid points are utilized.
Different radial expectation values
of the orbitals are given along with the generalized occupation numbers. The generalized occupation number of an orbital is defined as
where is the number of electrons in subshell in CSF r and is the generalized weight
In the expression for the generalized weight the sum is over all levels in the EOL calculation. are the mixing coefficients of level i in the basis of the CSFs. An orbital with a small generalized occupation number is associated with CSFs that have small expansion coefficients.
At the end of the summary file, the eigenenergies for the states are displayed in different energy units, where Kayser is the synonym of cm. The weights of the major CSF contributors are also given. Please note that the CSFs in this case are counted block wise.
-
The rci Log-File
The relativistic configuration interaction program rci produces a log-file displaying the response to the different questions. This file is saved in name.clog. Below is the log-file 2p_3.clog from the run of the states.
y ! Default settings
2p_3
y ! Contribution of H Transverse?
y ! Modify photon frequencies?
9.9999999999999995E-007 ! Scale factor
y ! Vacuum polarization?
n ! Normal mass shift?
n ! Specific mass shift?
y ! Self energy?
3 ! Max n for including self energy
1
1
The log-file is a copy of the input data. The name of the state is 2p_3 and full interaction was included. Contributions from the transverse interaction (Breit) were added, where the photon frequencies were multiplied with a factor , see TP Section 2.3, Equation (11). Vacuum polarization as well as self-energy corrections were added. The self-energy corrections are based on estimations for the orbitals. For correlation orbitals with high principal quantum numbers, these estimations may fail. In this case, self-energy corrections were based on orbitals with principal quantum numbers smaller than 3. Finally, we see that the calculation determined the first levels of the two blocks (ASF serial numbers 1 for each of the two blocks). By executing the command
rci < 2p_3.clog
the rci run will be executed again with the settings in 2p_3.clog. The log-file can easily be edited and used as an input also to other runs.
-
The rci Summary File
The rci program produces a summary file name.csum. Below is the summary file 2p_3.csum from the run on weighted average of the states
There are 3 electrons in the cloud in 186 relativistic CSFs based on 9 relativistic subshells. The atomic number is 3.0000000000; the mass of the nucleus is 1.264966898269D+04 electron masses; Fermi nucleus: c = 3.612753059646D-05 Bohr radii, a = 9.890591370096D-06 Bohr radii; there are 82 tabulation points in the nucleus. Speed of light = 1.370359991390D+02 atomic units. To H (Dirac Coulomb) is added H (Transverse) --- factor multiplying the photon frequency: 1.00000000D-06; H (Vacuum Polarisation); the total will be diagonalised. Diagonal contributions from H (Self Energy) will be estimated from a screened hydrogenic approximation. Radial grid: R(I) = RNT*(exp((I-1)*H)-1), I = 1, ..., N; RNT = 6.666666666667D-07 Bohr radii; H = 5.000000000000D-02 Bohr radii; N = 590; R(1) = 0.000000000000D+00 Bohr radii; R(2) = 3.418073091735D-08 Bohr radii; R(N) = 4.110372988964D+06 Bohr radii. Subshell radial wavefunction summary: Subshell e p0 gamma P(2) Q(2) MTP 1s 2.5177395314D+00 9.280D+00 1.00 3.172D-07 -3.513D-12 355 2s 1.9634308400D-01 1.452D+00 1.00 4.965D-08 -5.499D-13 361 2p- 1.2867248397D-01 5.116D-05 1.00 2.518D-15 1.598D-10 366 2p 1.2866992757D-01 4.265D-01 2.00 4.983D-16 -5.519D-21 366 3s 8.0600844816D+00 1.181D+01 1.00 5.027D-07 -7.981D-13 360 3p- 8.7786093395D+00 2.853D-03 1.00 1.994D-13 8.921D-09 364 3p 8.7823537644D+00 2.381D+01 2.00 2.786D-14 -1.173D-18 364 3d- 1.6298092328D+01 8.146D-03 2.00 2.740D-20 1.739D-15 358 3d 1.6306599649D+01 8.169D+01 3.00 3.262D-21 -3.617D-26 358 ........... Information about number of radial integrals, density of the Hamiltonian matrix etc, the energies and the leading CSFs for each level etc.
From the summary file, we again see what operators were included in the Hamiltonian. Information about the grid and the orbitals, same as in the name.sum file is also available.
-
The Hyperfine Structure Files
The rhfs program computes hyperfine structure data. In addition, the Landé -factor is computed. Below is the output file 2p_3.ch, edited to fit the page, from the rhfs run for the rci wave function, given in the 2p_3.c, 2p_3.w and 2p_3.cm files, of the states.
Nuclear spin 1.500000000000000D+00 au Nuclear magnetic dipole moment 3.256426800000000D+00 n.m. Nuclear electric quadrupole moment -4.000000000000000D-02 barns Interaction constants: Level1 J Parity A (MHz) B (MHz) total g_J 1 1/2 - 4.4821853986D+01 -0.0000000000D+00 6.6588395646D-01 1 3/2 - -3.5378452915D+00 -1.7729096327D-01 1.3340987050D+00
At the top, the nuclear spin and moments are displayed. Then, for each level, the A and B hyperfine interaction constants, see TP Section 3.1 Equations (59)–(60) are given in MHz. In addition, the Landé -factors, TP Section 3.2 Equation (66), are given.
The rhfs program gives another file 2p_3.choffd, which contains off-diagonal hyperfine data
Nuclear spin 1.500000000000000D+00 au Nuclear magnetic dipole moment 3.256426800000000D+00 n.m. Nuclear electric quadrupole moment -4.000000000000000D-02 barns Interaction constants: Level1 J Parity Level2 J Parity A (MHz) B (MHz) 1 1/2 - 1 1/2 - 4.4822178831D+01 -0.0000000000D+00 1 3/2 - 1 1/2 - 1.1768857887D+01 -3.8388220012D-02 1 3/2 - 1 3/2 - -3.5381700218D+00 -1.7729096288D-01 Matrix elements: Level1 J Parity Level2 J Parity F Matrix element (a.u.) 1 1/2 - 1 1/2 - 1 -8.5152606438D-09 1 1/2 - 1 1/2 - 2 5.1091563863D-09 Matrix elements: Level1 J Parity Level2 J Parity F Matrix element (a.u.) 1 3/2 - 1 1/2 - 1 4.0297075799D-09 1 3/2 - 1 1/2 - 2 5.3525245724D-09 Matrix elements: Level1 J Parity Level2 J Parity F Matrix element (a.u.) 1 3/2 - 1 3/2 - 0 1.9828496377D-09 1 3/2 - 1 3/2 - 1 1.4720532074D-09 1 3/2 - 1 3/2 - 2 4.2351513722D-10 1 3/2 - 1 3/2 - 3 -1.2166549923D-09
Given are diagonal and off-diagonal hyperfine interaction constants A and B in MHz and the F dependent hyperfine matrix elements in atomic units. The above quantities are defined in [8], Equations (13)–(17) and Equations (7)–(8).
-
The Isotope Shift Files
The ris4 program computes mass- and field shift isotope data. Below is the output file 2p_3.ci, edited to fit the page, from the ris4 run for the rci wave function, given in the 2p_3.c, 2p_3.w and 2p_3.cm files, of the states.
Number of eigenvalues: 2
Level J Parity Energy
1 1/2 - -0.7404260995D+01 (a.u.)
1 3/2 - -0.7404259683D+01 (a.u.)
Level J Parity Normal mass shift parameter
<K^1 > <K^2+K^3> <K^1+K^2+K^3>
1 1/2 - 0.7409611828D+01 -0.6671237484D-02 0.7402940590D+01 (a.u.)
0.2674486353D+05 -0.2407971433D+02 0.2672078382D+05 (GHz u)
<K^1 > <K^2+K^3> <K^1+K^2+K^3>
1 3/2 - 0.7409602908D+01 -0.6657064450D-02 0.7402945843D+01 (a.u.)
0.2674483134D+05 -0.2402855701D+02 0.2672080278D+05 (GHz u)
Level J Parity Specific mass shift parameter
<K^1 > <K^2+K^3> <K^1+K^2+K^3>
1 1/2 - 0.2425644688D+00 -0.1746264308D-03 0.2423898424D+00 (a.u.)
0.8755321826D+03 -0.6303110296D+00 0.8749018716D+03 (GHz u)
<K^1 > <K^2+K^3> <K^1+K^2+K^3>
1 3/2 - 0.2425741100D+00 -0.1915018511D-03 0.2423826081D+00 (a.u.)
0.8755669823D+03 -0.6912225626D+00 0.8748757597D+03 (GHz u)
Level J Parity Electron density in atomic units
Dens. (a.u.)
1 1/2 - 0.1372240739D+02
1 3/2 - 0.1372240990D+02
Level J Parity Field shift electronic factors and average point discrepancy in fit
F0 (GHz/fm^2) F2 (GHz/fm^4) F4 (GHz/fm^6)
1 1/2 - 0.2025876387D+00 -0.3303847114D-05 0.5227748000D-07
1 3/2 - 0.2025876757D+00 -0.3303847831D-05 0.5227749057D-07
F6 (GHz/fm^8) Disc. (per mille)
1 1/2 - -0.6985943239D-09 0.0000
1 3/2 - -0.6985944586D-09 0.0000
Level J Parity Field shift electronic factors (corrected for varying density inside nucleus)
F0VED0 (GHz/fm^2) F0VED1 (GHz/fm^4)
1 1/2 - 0.2025433326D+00 -0.2805899138D-05
1 3/2 - 0.2025433696D+00 -0.2805899756D-05
We see that there are two eigenvalues for which the energies are printed. After that, for each level, the normal mass shift parameters, decomposed in three parts, see [12] Section 3.2, Equation (41) and TP Section 3.3, Equation (73), are given in (a.u.) and (GHz u). After the normal mass shift parameters, the specific mass shift parameters, decomposed in three parts, see [12] Section 3.2, Equation (41) and TP Section 3.3, Equation (74), are given in (a.u.) and (GHz u). Next, the electron density at the origin, , is given in a.u. After that follow the field shift electronic factors, , as defined in [12], Section 3.3, Equation (18), see also TP Section 3.3, Equation (79). To estimate the effect on the field shift from the varying electronic density (ved) inside the nuclear volume, the quantity is introduced, see [12] Section 4, Equation (39). The latter can be expressed in terms of and , see [12] Section 4, Equations (47) and (48). These parameters are displayed at the end of the output file.
-
The Transition File
The rtransition program computes transition data. Below is the output file 2s_3.2p_3.ct from the rtransition electric dipole E1 run for rci wave functions given in the 2s_3.c, 2s_3.w, 2s_3.cm and 2p_3.c, 2p_3.w and 2p_3.cm files.
Transition between files:
f1 = 2s_3
f2 = 2p_3
Electric 2**( 1)-pole transitions
=================================
Upper Lower
File Lev J P File Lev J P E (Kays) A (s-1) gf S
f2 1 1/2 - f1 1 1/2 + 14861.28 C 3.81311D+07 5.17671D-01 1.14676D+01
B 3.74756D+07 5.08773D-01 1.12705D+01
f2 1 3/2 - f1 1 1/2 + 14861.57 C 3.81334D+07 1.03537D+00 2.29353D+01
B 3.74782D+07 1.01758D+00 2.25413D+01
The first lines of the file give the name of the files defining the wave functions. Then data are given for the electric dipole transition E1. The first transition is from the upper level 1 with and negative parity in file f2, i.e., to the lower level 1 with and positive parity in file f1, i.e., . The second transition is from the upper level 1 with and negative parity in file f2, i.e., to the lower level 1 with and positive parity in file f1, i.e., . For each transition the transition energy E is given in Kaysers (cm). Additionally, the transition rate A in emission (Einstein A-coefficient), the weighted oscillator strength and the line strength S are given in Coulomb (velocity) and Babushkin (length) gauge.
If the 2s_3.lsj.lbl and 2p_3.lsj.lbl files produced by jj2lsj are available at the run of rtransition an additional output file 2s_3.2p_3.ct.lsj is produced. This file is shown below
Transition between files:
2s_3
2p_3
1 -7.47197402 1s(2).2s_2S
1 -7.40426103 1s(2).2p_2P
14861.28 CM-1 6728.89 ANGS(VAC) 6728.20 ANGS(AIR)
E1 S = 1.12705D+01 GF = 5.08773D-01 AKI = 3.74756D+07 dT = 0.01719
1.14676D+01 5.17671D-01 3.81311D+07
1 -7.47197402 1s(2).2s_2S
3 -7.40425972 1s(2).2p_2P
14861.57 CM-1 6728.76 ANGS(VAC) 6728.06 ANGS(AIR)
E1 S = 2.25413D+01 GF = 1.01758D+00 AKI = 3.74782D+07 dT = 0.01718
2.29353D+01 1.03537D+00 3.81334D+07
The 2s_3.2p_3.ct.lsj file has a different format. Here, the labels of the upper and lower states in the transition are in -notation. The J quantum number (multiplied by 2) is written to the left. The transition energy is given in cm and the wavelengths (vacuum and air) in angstrom (ANGS) where 1 ANGS m. The line strength S, the weighted oscillator strength and the transition rates in emission A (AKI) are given on two lines, where the upper line corresponds to the Babushkin (length) gauge and the lower line to the Coulomb (velocity) gauge. Finally,
is a parameter that can be related to the estimated uncertainty of the transition rates [43].
8.2. Output Files from the Third Example
The third example case, see Section 6.3, was calculations of the states belonging to the and configurations in Si VIII.
- The jj2lsj File
The jj2lsj program transforms from to coupling and gives the composition of the states. Below is the output file 2s22p3_2p5_3.lsj.lbl from the jj2lsj run of the rci wave functions given in the 2s22p3_2p5_3.c, 2s22p3_2p5_3.w, 2s22p3_2p5_3.cm files. For each case, the first line gives the position (number) of the eigenstate in the interaction matrix, parity, total energy and the percentage of the ASF that has been transformed. Thus, 99.907 % implies that 0.093 % has not been transformed.
Pos J Parity Energy Total Comp. of ASF
1 1/2 - -262.790633876 99.907%
0.98656029 0.97330122 1s(2).2s(2).2p(3)2P1_2P
0.15010905 0.02253273 1s(2).2p(5)_2P
-0.03364614 0.00113206 1s(2).2s_2S.2p(3)2P1_1P.3d_2P
2 1/2 - -259.497939898 99.123%
0.98251140 0.96532866 1s(2).2p(5)_2P
-0.14989835 0.02246951 1s(2).2s(2).2p(3)2P1_2P
-0.03674439 0.00135015 1s(2).2s_2S.2p(3)2D3_1D.3d_2P
0.03527443 0.00124429 1s(2).2s_2S.2p(3)2P1_3P.3d_2P
1 3/2 - -263.279784072 99.550%
0.99652486 0.99306180 1s(2).2s(2).2p(3)4S3_4S
0.03703202 0.00137137 1s(2).2s(2).2p(3)2P1_2P
2 3/2 - -262.955055547 99.670%
0.98954100 0.97919139 1s(2).2s(2).2p(3)2D3_2D
-0.12139907 0.01473773 1s(2).2s(2).2p(3)2P1_2P
-0.03690740 0.00136216 1s(2).2s_2S.2p(3)4S3_3S.3d_2D
3 3/2 - -262.788274233 99.912%
0.97818840 0.95685254 1s(2).2s(2).2p(3)2P1_2P
0.15010551 0.02253166 1s(2).2p(5)_2P
0.12276473 0.01507118 1s(2).2s(2).2p(3)2D3_2D
-0.03672205 0.00134851 1s(2).2s(2).2p(3)4S3_4S
-0.03335975 0.00111287 1s(2).2s_2S.2p(3)2P1_1P.3d_2P
4 3/2 - -259.524117905 99.004%
0.98234136 0.96499455 1s(2).2p(5)_2P
-0.15102023 0.02280711 1s(2).2s(2).2p(3)2P1_2P
0.03537700 0.00125153 1s(2).2s_2S.2p(3)2P1_3P.3d_2P
1 5/2 - -262.953820595 99.429%
0.99713868 0.99428554 1s(2).2s(2).2p(3)2D3_2D
There is a total of seven states. For each state, the file gives the -expansion. The lowest state (pos 1) with negative parity and energy a.u. has the -expansion
0.98656029 0.97330122 1s(2).2s(2).2p(3)2P1_2P
0.15010905 0.02253273 1s(2).2p(5)_2P
-0.03364614 0.00113206 1s(2).2s_2S.2p(3)2P1_1P.3d_2P
The second-lowest state (pos 2) with negative parity and energy a.u. has the -expansion
0.98251140 0.96532866 1s(2).2p(5)_2P
-0.14989835 0.02246951 1s(2).2s(2).2p(3)2P1_2P
-0.03674439 0.00135015 1s(2).2s_2S.2p(3)2D3_1D.3d_2P
0.03527443 0.00124429 1s(2).2s_2S.2p(3)2P1_3P.3d_2P
We see that the states are close to pure -coupling and the file provides meaningful labels that match labels given in, for example, the NIST data tables. The second column in the table gives the -composition, i.e., the squared expansion coefficients.
Finally, a few words about how to interpret the notation in the composition of the ASF.
Each subshell in the configuration is given with occupation, term designation and seniority. When the subshell is singly or fully occupied, the term designation and seniority are not written out. The term for each subshell is the coupled from left to right. Intermediate couplings are given after the underscore sign _.
In Table 7 below, there is a list of possible terms and their seniority for commonly occurring subshells.
Table 7.
List of possible terms and their seniority for commonly occurring subshells.
As a specific example of how to interpret the notation, we look at
1s(2).2s_2S.2p(3)2P1_3P.3d_2P
The first subshell 1s(2) is fully occupied and have only one term 1S0 that is not written out explicitly. The second subshell 2s is singly occupied and has only one term 2S1 that is not written out explicitly. The third subshell 2p(3) is coupled to an term 2P1. The fourth subshell 3d is singly occupied and has only one term 2D1 that is not written out explicitly. Coupling 1S0 and 2S1 of subshells one and two leads to an intermediate term _2S. Coupling _2S with 2P1 of the third subshell leads to the intermediate term _3P. Finally, coupling _3P with 2D1 of the fourth subshells gives the final term 2P.
The programs rtablevels and rtabtransE1 implement a LaTeX translation of the ASCII notation. In the LaTeX translation, the term and seniority of a subshell are given in parenthesis just after the subshell. For the intermediate terms, the underscore of the ASCII notation has been replaced by a space. In the LaTeX translation, the user also has a choice to omit the closed core. Translating the above example to LaTeX and omitting the 1s(2) we get
Please note how the seniority enters as a subscript.
-
The Transition File in -Coupling
The rtransition program computes transition data. Below is the output file
2s22p3_2p5_3.2s22p3_2p5_3.ct from the rtransition magnetic dipole M1 run of the rci wave functions given in the 2s22p3_2p5_3.c, 2s22p3_2p5_3.w, 2s22p3_2p5_3.cm files giving the states belonging to the and configurations
Transition in file: f = 2s22p3_2p5_3 Magnetic 2**( 1)-pole transitions ================================= Upper Lower Lev J P Lev J P E (Kays) A (s-1) gf S f 2 1/2 - f 1 1/2 - 722662.80 M 6.00621D-05 3.44839D-16 1.18001D-11 f 3 3/2 - f 1 1/2 - 517.88 M 1.22716D-03 2.74383D-08 1.31018D+00 f 4 3/2 - f 1 1/2 - 716917.39 M 4.29992D+00 5.01695D-11 1.73052D-06 f 1 1/2 - f 1 3/2 - 107356.06 M 3.11300D+01 8.09867D-09 1.86549D-03 f 2 1/2 - f 1 3/2 - 830018.86 M 4.56677D+00 1.98756D-11 5.92158D-07 f 1 1/2 - f 2 3/2 - 36086.39 M 1.27613D+01 2.93830D-08 2.01353D-02 f 2 1/2 - f 2 3/2 - 758749.18 M 4.24418D+00 2.21047D-11 7.20430D-07 f 2 1/2 - f 3 3/2 - 722144.92 M 1.09837D+01 6.31521D-11 2.16256D-06 f 2 1/2 - f 4 3/2 - 5745.41 M 3.40764D+00 3.09528D-07 1.33224D+00 f 2 3/2 - f 1 3/2 - 71269.67 M 1.41118D+00 1.66606D-09 5.78084D-04 f 3 3/2 - f 1 3/2 - 107873.94 M 7.52312D+01 3.87688D-08 8.88733D-03 f 4 3/2 - f 1 3/2 - 824273.45 M 1.25260D+01 1.10557D-10 3.31682D-06 f 3 3/2 - f 2 3/2 - 36604.27 M 2.11594D+01 9.47019D-08 6.39782D-02 f 4 3/2 - f 2 3/2 - 753003.77 M 9.62931D+00 1.01840D-10 3.34446D-06 f 4 3/2 - f 3 3/2 - 716399.51 M 7.21346D-02 8.42851D-13 2.90938D-08 f 1 5/2 - f 1 3/2 - 71540.71 M 1.99970D-02 3.51453D-11 1.21484D-05 f 1 5/2 - f 2 3/2 - 271.04 M 2.11526D-04 2.59002D-08 2.36306D+00 f 3 3/2 - f 1 5/2 - 36333.23 M 1.17593D+01 5.34186D-08 3.63575D-02 f 4 3/2 - f 1 5/2 - 752732.73 M 5.41422D+00 5.73023D-11 1.88251D-06
If the information of -coupling is available from a jj2lsj run, rtransition also produces a file
2s22p3_2p5_3.2s22p3_2p5_3.ct.lsj
Transition between files:
2s22p3_2p5_3
2s22p3_2p5_3
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
1 -259.49793990 1s(2).2p(5)_2P
722662.80 CM-1 138.38 ANGS(VAC) 138.38 ANGS(AIR)
M1 S = 1.18001D-11 GF = 3.44839D-16 AKI = 6.00621D-05
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
517.88 CM-1 193094.26 ANGS(VAC) 193074.30 ANGS(AIR)
M1 S = 1.31018D+00 GF = 2.74383D-08 AKI = 1.22716D-03
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
3 -259.52411791 1s(2).2p(5)_2P
716917.39 CM-1 139.49 ANGS(VAC) 139.49 ANGS(AIR)
M1 S = 1.73052D-06 GF = 5.01695D-11 AKI = 4.29992D+00
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
107356.06 CM-1 931.48 ANGS(VAC) 931.48 ANGS(AIR)
M1 S = 1.86549D-03 GF = 8.09867D-09 AKI = 3.11300D+01
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
1 -259.49793990 1s(2).2p(5)_2P
830018.86 CM-1 120.48 ANGS(VAC) 120.48 ANGS(AIR)
M1 S = 5.92158D-07 GF = 1.98756D-11 AKI = 4.56677D+00
3 -262.95505555 1s(2).2s(2).2p(3)2D3_2D
1 -262.79063388 1s(2).2s(2).2p(3)2P1_2P
36086.39 CM-1 2771.13 ANGS(VAC) 2770.83 ANGS(AIR)
M1 S = 2.01353D-02 GF = 2.93830D-08 AKI = 1.27613D+01
3 -262.95505555 1s(2).2s(2).2p(3)2D3_2D
1 -259.49793990 1s(2).2p(5)_2P
758749.18 CM-1 131.80 ANGS(VAC) 131.80 ANGS(AIR)
M1 S = 7.20430D-07 GF = 2.21047D-11 AKI = 4.24418D+00
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
1 -259.49793990 1s(2).2p(5)_2P
722144.92 CM-1 138.48 ANGS(VAC) 138.48 ANGS(AIR)
M1 S = 2.16256D-06 GF = 6.31521D-11 AKI = 1.09837D+01
3 -259.52411791 1s(2).2p(5)_2P
1 -259.49793990 1s(2).2p(5)_2P
5745.41 CM-1 17405.20 ANGS(VAC) 17403.40 ANGS(AIR)
M1 S = 1.33224D+00 GF = 3.09528D-07 AKI = 3.40764D+00
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
3 -262.95505555 1s(2).2s(2).2p(3)2D3_2D
71269.67 CM-1 1403.12 ANGS(VAC) 1403.12 ANGS(AIR)
M1 S = 5.78084D-04 GF = 1.66606D-09 AKI = 1.41118D+00
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
107873.94 CM-1 927.01 ANGS(VAC) 927.01 ANGS(AIR)
M1 S = 8.88733D-03 GF = 3.87688D-08 AKI = 7.52312D+01
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
3 -259.52411791 1s(2).2p(5)_2P
824273.45 CM-1 121.32 ANGS(VAC) 121.32 ANGS(AIR)
M1 S = 3.31682D-06 GF = 1.10557D-10 AKI = 1.25260D+01
3 -262.95505555 1s(2).2s(2).2p(3)2D3_2D
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
36604.27 CM-1 2731.92 ANGS(VAC) 2731.63 ANGS(AIR)
M1 S = 6.39782D-02 GF = 9.47019D-08 AKI = 2.11594D+01
3 -262.95505555 1s(2).2s(2).2p(3)2D3_2D
3 -259.52411791 1s(2).2p(5)_2P
753003.77 CM-1 132.80 ANGS(VAC) 132.80 ANGS(AIR)
M1 S = 3.34446D-06 GF = 1.01840D-10 AKI = 9.62931D+00
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
3 -259.52411791 1s(2).2p(5)_2P
716399.51 CM-1 139.59 ANGS(VAC) 139.59 ANGS(AIR)
M1 S = 2.90938D-08 GF = 8.42851D-13 AKI = 7.21346D-02
3 -263.27978407 1s(2).2s(2).2p(3)4S3_4S
5 -262.95382060 1s(2).2s(2).2p(3)2D3_2D
71540.71 CM-1 1397.81 ANGS(VAC) 1397.81 ANGS(AIR)
M1 S = 1.21484D-05 GF = 3.51453D-11 AKI = 1.99970D-02
3 -262.95505555 1s(2).2s(2).2p(3)2D3_2D
5 -262.95382060 1s(2).2s(2).2p(3)2D3_2D
271.04 CM-1 368948.37 ANGS(VAC) 368910.23 ANGS(AIR)
M1 S = 2.36306D+00 GF = 2.59002D-08 AKI = 2.11526D-04
5 -262.95382060 1s(2).2s(2).2p(3)2D3_2D
3 -262.78827423 1s(2).2s(2).2p(3)2P1_2P
36333.23 CM-1 2752.30 ANGS(VAC) 2752.01 ANGS(AIR)
M1 S = 3.63575D-02 GF = 5.34186D-08 AKI = 1.17593D+01
5 -262.95382060 1s(2).2s(2).2p(3)2D3_2D
3 -259.52411791 1s(2).2p(5)_2P
752732.73 CM-1 132.85 ANGS(VAC) 132.85 ANGS(AIR)
M1 S = 1.88251D-06 GF = 5.73023D-11 AKI = 5.41422D+00
Here, labels of the upper and lower states in the transition are in -notation. In addition to transition energies in cm also the wavelengths (vacuum and air) are given in angstrom (ANGS). On the next line the line strength S, the weighted oscillator strength and the transition rate A (AKI) are given. The format is the same as the one produced by the transition program of ATSP2K [1]
-
The Coupling Files
In this section, we discuss contents of the files:
2s2p_DF.coup3.LK3.lbl
2s2p_DF.coup3.JK3.lbl
2s2p_DF.coup3.LS.lbl
2s2p_DF.coup3.LS3.lbl
2s2p_DF.coup3.LSJ3.lbl
2s2p_DF.coup3.jj.lbl
2s2p_DF.coup3.cLSJ3.lbl
These files are from the Coupling run of the rci/rmcdhf programs. The input files 2s2p_DF.lsj.c and 2s2p_DF.lsj.j were created by the program jj2lsj in non-default mode.
The 2s2p_DF.coup3.LK3.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
-1.00000000 1.00000000 1s2_ 2s_2p_(3P) P_3[1]<0>
1 1 -24.127040409 100.000%
0.99999995 0.99999990 1s2_ 2s_2p_(3P) P_3[1]<1>
0.00030652 0.00000009 1s2_ 2s_2p_(1P) P_1[1]<1>
2 1 -23.915406084 100.000%
0.99999995 0.99999990 1s2_ 2s_2p_(1P) P_1[1]<1>
-0.00030652 0.00000009 1s2_ 2s_2p_(3P) P_3[1]<1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s2_ 2s_2p_(3P) P_3[1]<2>
Let us explain how to interpret the notation of the following ASF
1s2_ 2s_2p_(3P) P_3[1]<0>
First, it should be noted that the spin multiplicity, , is used to represent the spin of individual and coupled shells in the output files. The first 1s(2) subshell is fully occupied, whereas the second 2s and the third 2p subshells are singly occupied. Therefore, they have only one term, , , and respectively, that are not written out explicitly. The result of the coupling of the second and third subshells, 2s and 2p, is written in parentheses, i.e., (ML) = (3P). Following the coupling scheme, the total orbital angular momentum L is obtained by coupling the 1s shell angular momentum, L=0, with L=1. This momentum appears as the first spectroscopic symbol, P, of the final term construction P_3[1]<0>. The number 3 preceding the "[1]" symbol represents M. Coupling L=1 with the spin S=0 leads to the term K=1 which is written in square brackets [ and ]. Coupling K=1 with the spin S=1 leads to the final J term, J=0, that is written in angle brackets < and >.
The <name>.coup3.JK3.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
-1.00000000 1.00000000 1s2_<0>2s_2p_(3P) 3[1]<0>
1 1 -24.127040409 100.000%
0.99999995 0.99999990 1s2_<0>2s_2p_(3P) 3[1]<1>
0.00030652 0.00000009 1s2_<0>2s_2p_(1P) 1[1]<1>
2 1 -23.915406084 100.000%
0.99999995 0.99999990 1s2_<0>2s_2p_(1P) 1[1]<1>
-0.00030652 0.00000009 1s2_<0>2s_2p_(3P) 3[1]<1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s2_<0>2s_2p_(3P) 3[1]<2>
The notation for the following ASF
1s2_<0>2s_2p_(3P) 3[1]<0>
can be understood as follows. The first subshell 1s(2) is fully occupied and has only one term . This part of the term () is not mentioned and only is written in the first angle brackets < and >. The second subshell 2s is singly occupied and has only one term, , that is not written out explicitly. The third subshell 2p is singly occupied and has the term , also omitted in the notation. The result of the coupling of the second and third subshells, 2s and 2p, is written in parentheses, i.e., (ML) = (3P). The first number, 3, appearing in the final term construction 3[1]<0> represents M. Coupling J=0 with the orbital angular momentum L=1 leads to the term K=1 that is written in square brackets [ and ]. Coupling K=1 with the spin S=1 leads to the final J term J=0 that is written in the final angle brackets < and >.
The <name>.coup3.LS.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
-1.00000000 1.00000000 1s2_.2s_2S.2p_ 3P<0>
1 1 -24.127040409 100.000%
0.99999995 0.99999990 1s2_.2s_2S.2p_ 3P<1>
0.00030652 0.00000009 1s2_.2s_2S.2p_ 1P<1>
2 1 -23.915406084 100.000%
0.99999995 0.99999990 1s2_.2s_2S.2p_ 1P<1>
-0.00030652 0.00000009 1s2_.2s_2S.2p_ 3P<1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s2_.2s_2S.2p_ 3P<2>
The following ASF notation
1s2_.2s_2S.2p_ 3P<0>
can be interpreted as follows.
The first subshell 1s(2) is fully occupied and has only one term, , that is not written out explicitly. The second and third subshells 2s and 2p are singly occupied and have only one terms, and respectively, not displayed in the notation. The result of the coupling of the first and second subshells, ML2S, is written without parentheses. Coupling the spins S and S leads to the total spin S. A similar coupling is done with the orbital angular momenta, leading to the total orbital angular momentum, L, that is written as P, adopting the spectroscopic notation. Coupling the orbital angular momentum L=1 with the spin S=1 leads to the final J term J=0 that is written in angle brackets < and > and presented in the final term 3P<0>.
The <name>.coup3.LS3.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
-1.00000000 1.00000000 1s2_ 2s_2p_(3P) 3P<0>
1 1 -24.127040409 100.000%
0.99999995 0.99999990 1s2_ 2s_2p_(3P) 3P<1>
0.00030652 0.00000009 1s2_ 2s_2p_(1P) 1P<1>
2 1 -23.915406084 100.000%
0.99999995 0.99999990 1s2_ 2s_2p_(1P) 1P<1>
-0.00030652 0.00000009 1s2_ 2s_2p_(3P) 3P<1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s2_ 2s_2p_(3P) 3P<2>
The following ASF
1s2_ 2s_2p_(3P) 3P<0>
should be read as follows. The first subshell 1s(2) is fully occupied and has only one term, , that is not written out explicitly. The second and third subshells 2s and 2p are singly occupied and have only one terms, and respectively, not shown in the notation. The result of the coupling of the second and third subshells, 2s and 2p, is written in parentheses, i.e., (ML) = (3P). Coupling the spin of the first shell 1s(2) S=0 with the spin S=1 leads to the total spin multiplicity M=3, which is the first number of the final term 3P<0>. P is the total orbital angular momentum, obtained by coupling L and L. Coupling the latter, L=1, with the total spin S=1 leads to the final J term J=0 that is written in angle brackets < and >.
The <name>.coup3.LSJ3.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
-1.00000000 1.00000000 1s2_ 2s_2p_(3P) (0,0)<0>
1 1 -24.127040409 100.000%
0.99999995 0.99999990 1s2_ 2s_2p_(3P) (0,1)<1>
0.00030652 0.00000009 1s2_ 2s_2p_(1P) (0,1)<1>
2 1 -23.915406084 100.000%
0.99999995 0.99999990 1s2_ 2s_2p_(1P) (0,1)<1>
-0.00030652 0.00000009 1s2_ 2s_2p_(3P) (0,1)<1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s2_ 2s_2p_(3P) (0,2)<2>
In this coupling scheme, the ASF
1s2_ 2s_2p_(3P) (0,0)<0>
is built as follows. The first subshell 1s(2) is fully occupied and has only one term that is not written out explicitly. The second and third subshells 2s and 2p are singly occupied and have only one terms, and respectively, not displayed in the notation. The result of the coupling of the second and third subshells, 2s and 2p, is written in parentheses, i.e., (ML) = (3P). Coupling S=1 with the angular momentum L=1 leads to angular momentum J=0. The J=0 of the first subshell 1s(2) and J=0 can be found in the round brackets (0,0) of the final term (0,0)<0>. Coupling the angular momentum J=0 with the angular momentum J=0 leads to the final J term J=0 that is written in angle brackets < and >.
The <name>.coup3.jj.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
1.00000000 1.00000000 1s+2_2s+_<1/2>.2p-_(1/2) <0>
1 1 -24.127040409 100.000%
0.81667351 0.66695562 1s+2_2s+_<1/2>.2p-_(1/2) <1>
-0.57709997 0.33304437 1s+2_2s+_<1/2>.2p+_(3/2) <1>
2 1 -23.915406084 100.000%
0.81667351 0.66695562 1s+2_2s+_<1/2>.2p+_(3/2) <1>
0.57709997 0.33304437 1s+2_2s+_<1/2>.2p-_(1/2) <1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s+2_2s+_<1/2>.2p+_ <2>
Let us illustrate the notation for the following ASF
1s+2_2s+_<1/2>.2p-_(1/2) <0>
The first subshell 1s+(2) is fully occupied and has only one term, , that is not written out explicitly. The second subshell 2s+ is singly occupied and has only one term, , not reported in the notation. Coupling the angular momenta J=0 and J=1/2 leads to the term J=1/2 that is written in angle brackets < and >. Coupling the latter, J=1/2, with the angular momentum J=1/2 (written in parentheses) leads to the final J term J=0 that is written in angle brackets < and >.
The <name>.coup3.cLSJ3.lbl file
The Coupling program transforms from to coupling and gives the composition of the states.
Pos J Parity Energy Total Comp. of ASF
1 0 -24.127087737 100.000%
-1.00000000 1.00000000 1s+2_ (0,0)<0> 2s_2p_(3P)<0> (0,0)<0>
1 1 -24.127040409 100.000%
0.99999995 0.99999990 1s+2_ (0,0)<0> 2s_2p_(3P)<1> (0,1)<1>
0.00030652 0.00000009 1s+2_ (0,0)<0> 2s_2p_(1P)<1> (0,1)<1>
2 1 -23.915406084 100.000%
0.99999995 0.99999990 1s+2_ (0,0)<0> 2s_2p_(1P)<1> (0,1)<1>
-0.00030652 0.00000009 1s+2_ (0,0)<0> 2s_2p_(3P)<1> (0,1)<1>
1 2 -24.126945696 100.000%
1.00000000 1.00000000 1s+2_ (0,0)<0> 2s_2p_(3P)<2> (0,2)<2>
Lastly, let us consider the following ASF
1s+2_ (0,0)<0> 2s_2p_(3P)<0> (0,0)<0>
that should be read as follows. In the three shells coupling scheme , the first non relativistic subshell, , is split into two relativistic subshells, and , with and , while the two others are expressed in coupling (see Equation (26) of [14]). In the corresponding notation of this first shell, the coupling is written as (J,J)<J>. In the present case, the first subshell is a closed subshell 1s for which is the only j-value allowed in the relativistic splitting . However, for coding commodity, the s subshells are treated as all the others , keeping an artificial coupling notation (0,J)<J>, with and . Reading the ASF from left to right, the two next shells, 2s and 2p, are singly occupied and have only one terms, and respectively, that are not displayed in the notation. The result of the coupling of the second and third subshells, 2s and 2p, is written in parentheses, i.e., (ML) = (3P). The following angle brackets <J> contain the result of the coupling between S and L. The angular momenta J and J are given in the round parentheses (0,0) of the final term (0,0)<0>. The very last angle brackets < and > contain the value of the total angular momentum, J, resulting from the coupling of J and J.
8.3. Output Files from the Fifth Example
The fifth example, see Section 6.5, was the study of energy spectra for Ni XIV, giving the unique labels.
The unique label summary file
Using the unique option of the jj2lsj program produces a summary name.uni.lsj.sum. Below is the summary file Ni_even_n4.uni.lsj.sum. In name.uni.lsj.sum information for the levels is given: Pos, composition of the level, serial number of composition, and the label of the level. From the Ni_even_n4.uni.lsj.sum file we see that the level with J = 1/2 and Pos = 2 has serial No of composition = 2 and the level with J = 1/2 and Pos = 5 has serial No of composition = 4. These levels were thus re-identified.
Composition Serial No. Coupling
of compos.
J = 1/2
--------------------------------------------------
Pos 4 0.941868580 1 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
Pos 1 0.860336790 1 2s(2).2p(6).3s_2S.3p(4)3P2_4P
Pos 8 0.664884270 1 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
Pos 7 0.554223930 1 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
Pos 6 0.550189830 1 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
Pos 3 0.487994450 1 2s(2).2p(6).3s_2S.3p(4)1S0_2S
Pos 2 0.301420530 2 2s(2).2p(6).3s_2S.3p(4)3P2_2P
Pos 5 0.112794340 4 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
--------------------------------------------------
...........
Composition Serial No. Coupling
of compos.
J = 9/2
--------------------------------------------------
Pos 1 0.937469590 1 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4F
Pos 2 0.936205640 1 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2G
The unique label composition file
The jj2lsj program also produces name.uni.lsj.lbl. Below is the output file Ni_even_n4.uni.lsj.lbl from jj2lsj with the unique option. This file has the same format as Ni_even_n4.lsj.lbl, except that the levels with the same labels were re-identified. As seen from the output file, for the level with J = 1/2 and Pos = 2 the largest expansion coefficient does not appear on the first line. This level was re-identified. The users should use name.lsj.uni.lbl file in further calculations (rtransition, rhfs, etc.) to obtain output with unique labels.
Pos J Parity Energy Total Comp. of ASF
1 1/2 + -1441.689593921 99.941%
-0.92754342 0.86033679 2s(2).2p(6).3s_2S.3p(4)3P2_4P
-0.31644623 0.10013822 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
-0.13107223 0.01717993 2s(2).2p(6).3s_2S.3p(4)1S0_2S
-0.06808224 0.00463519 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)1S0_4P
-0.06306024 0.00397659 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)1D2_4P
-0.06139607 0.00376948 2s(2).2p(6).3p(4)3P2_3P.3d_4P
-0.04384478 0.00192236 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3P2_4P
0.04315453 0.00186231 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
0.04160917 0.00173132 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_4P
2 1/2 + -1441.146026942 99.870%
0.54901778 0.30142053 2s(2).2p(6).3s_2S.3p(4)3P2_2P
0.55236001 0.30510158 2s(2).2p(6).3s_2S.3p(4)1S0_2S
-0.51850029 0.26884256 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
-0.25241177 0.06371170 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
0.14974129 0.02242245 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
0.08843416 0.00782060 2s(2).2p(6).3p(4)1D2_1D.3d_2P
-0.07913818 0.00626285 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
0.06957348 0.00484047 2s(2).2p(6).3s_2S.3p(2)1S0_2S.3d(2)1S0_2S
-0.06792804 0.00461422 2s(2).2p(6).3s_2S.3p(4)3P2_4P
-0.04635416 0.00214871 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2P
-0.04439733 0.00197112 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2P
0.03795472 0.00144056 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3P2_2P
-0.03450153 0.00119036 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2S
-0.03371402 0.00113663 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
-0.03274764 0.00107241 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2S
0.03171981 0.00100615 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)3F2_2P
3 1/2 + -1441.041027919 99.883%
0.69856599 0.48799445 2s(2).2p(6).3s_2S.3p(4)1S0_2S
0.44943909 0.20199550 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_2P
-0.37641525 0.14168844 2s(2).2p(6).3s_2S.3p(4)3P2_2P
-0.31029154 0.09628084 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2S
-0.14516094 0.02107170 2s(2).2p(6).3s(2).3p(2)1D2_1D.3d_2P
0.11017096 0.01213764 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4D
-0.10592606 0.01122033 2s(2).2p(6).3s_2S.3p(4)3P2_4P
0.08894930 0.00791198 2s(2).2p(6).3s_2S.3p(2)1S0_2S.3d(2)1S0_2S
-0.06646514 0.00441762 2s(2).2p(6).3p(4)1D2_1D.3d_2P
-0.04537257 0.00205867 2s(2).2p(6).3s(2).3p(2)3P2_3P.3d_4P
-0.04336944 0.00188091 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2S
-0.04274245 0.00182692 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2S
0.04115897 0.00169406 2s(2).2p(6).3s_2S.3p(2)1D2_2D.3d(2)1D2_2P
0.03553871 0.00126300 2s(2).2p(6).3s_2S.3p(2)3P2_4P.3d(2)3P2_2P
...........
8.4. Output Files from the Eighth Example
The eighth example, see Section 6.8, was the calculation of the radial density distribution for Be ground state and the transformation to natural orbitals. The file n4.cd contains three columns with the radial grid, the radial density distribution and the spherical electron density function as shown below. Using Matlab, GNU Octave or Python the distribution is readily plotted.
r [au] D(r)=4\pi*r^2*rho(r) rho(r)
1 0 +
0.0000000000D+00 0.0000000000D+00 3.5595248135D+01
2.5635548188D-08 2.9395876524D-13 3.5595191429D+01
5.2585459038D-08 1.2368931242D-12 3.5595161894D+01
8.0917121364D-08 2.9287460232D-12 3.5595164086D+01
1.1070137908D-07 5.4815947105D-12 3.5595163799D+01
1.4201270834D-07 9.0210123946D-12 3.5595163778D+01
1.7492940379D-07 1.3687574330D-11 3.5595163713D+01
2.0953377430D-07 1.9638527873D-11 3.5595163617D+01
2.4591234882D-07 2.7049642650D-11 3.5595163498D+01
2.8415609275D-07 3.6117260296D-11 3.5595163346D+01
3.2436063535D-07 4.7060564994D-11 3.5595163160D+01
3.6662650893D-07 6.0124098290D-11 3.5595162934D+01
4.1105940020D-07 7.5580544151D-11 3.5595162664D+01
......
2.2006596267D+01 1.4378899592D-12 2.3627079091D-16
2.3134898611D+01 2.4605656113D-13 3.6583890201D-17
2.4321050253D+01 3.8221221504D-14 5.1419760355D-18
2.5568017190D+01 5.3624070241D-15 6.5276342428D-19
2.6878917489D+01 6.7510077496D-16 7.4359283127D-20
2.8257029084D+01 7.6386795748D-17 7.6129930176D-21
2.9705797971D+01 5.9008393899D-18 5.3213458250D-22
3.1228846828D+01 3.8138158242D-19 3.1119883125D-23
3.2829984069D+01 1.9628254786D-22 1.4492071857D-26
8.5. Output Files from the Ninth Example
The ninth example was for the unexpected transition in Ni XXV, see Section 6.9. The file odd_n3.cgjhfs is shown below. First, the J quantum numbers, the parities, and the energies are shown for the computed states. Next come the reduced matrix elements
for the magnetic (Zeeman) interaction, see [11] Equations (34), (35), (44) and (45). This is followed by the reduced electronic matrix elements
for the magnetic dipole interaction, see [11] Equations (13) and (15). Finally, the reduced electronic matrix elements
for the electric quadrupole interaction, see [11] Equations (14) and (16). The reduced matrix elements adhere to the Brink and Satchler definition of the Wigner-Eckart theorem and they are not symmetric, see [11] Equation (57).
Number of relativistic eigenvalues 4 Lev J Parity E 1 2.0 - -944.099455445 1 1.0 - -944.694852121 2 1.0 - -942.723282825 1 0.0 - -944.877056498 Zeeman interaction matrix 0.18322E+01 -0.34691E+00 0.68227E-01 0.00000E+00 0.44786E+00 0.10439E+01 -0.67174E-01 0.40125E+00 -0.88081E-01 -0.67174E-01 0.71718E+00 -0.78350E-01 0.00000E+00 -0.69499E+00 0.13571E+00 0.00000E+00 HFI-matrix for the magnetic dipole operator 0.36369E+02 -0.10509E+02 0.27002E+02 0.00000E+00 0.13567E+02 0.36113E+02 0.22641E+02 0.15293E+02 -0.34859E+02 0.22641E+02 -0.18146E+01 0.81436E+01 0.00000E+00 -0.26488E+02 -0.14105E+02 0.00000E+00 HFI-matrix for the electric quadrupole operator 0.28620E+03 0.32475E+03 -0.59600E+02 -0.22196E+03 -0.41925E+03 -0.22145E+03 0.14396E+03 0.00000E+00 0.76944E+02 0.14396E+03 0.46833E+03 0.00000E+00 -0.49633E+03 -0.00000E+00 -0.00000E+00 0.00000E+00
9. Case Study I: , in Mo XXXVIII Using Scripts
In this case study, we use script files to perform systematic calculations for all the states of the and configurations in Mo XXXVIII. The 10 states are as follows:
The script files can be found in grasptest/case1/script.
In a real application a correlation model should be defined, i.e., some rule to generate the CSFs from an orbital set. The convergence of computed properties is then monitored as the orbital set is increased. For the odd state, a reasonable correlation model is to start from the MR and then generate all CSFs that can be obtained by single and double excitations from the MR to an active set of orbitals. The active set of orbitals is then systematically increased. Following the normal conventions, the orbital set is denoted by the highest principal quantum number. For example, means the orbital set . In this study, we increase the active set of orbitals up to . For the even states, we start from the reference and generate all CSFs that can be obtained by single and double excitations from the MR to the active sets of orbitals. The correlation model can be easily extended by adding CSFs to the MR.
9.1. Running Script Files
To automate the calculations, we use script files. For convenience, we have a main script that calls subscripts to perform different tasks. The construction of the scripts is greatly simplified if the names of the files are chosen in a simple and systematic way. In the case study we use the names odd2, odd3, odd4, odd5, odd6 and even2, even3, even4, even5, even6 to denote files for the odd and even parity states, respectively. The digit indicates which orbital set has been used to generate the expansion.
Before starting, please make sure that the grasp executables are on the path.
The main script sh_case1 is shown below. This script controls the computational flow and calls several subscripts.
#!/bin/sh
set -x
# Main script for 2s(2)2p and 2s2p(2)
# 1. Generate the expansions
./sh_files_c
# 2. Get the nuclear data
./sh_nuc
# 3. Get screened hydrogenic orbitals as initial estimates
./sh_initial
# 4. Perform scf calculations and a final rci calculation that
# includes the Breit correction and QED. All calculations
# are transformed to LSJ-coupling. Files are created that
# support creation of energy tables
./sh_scf
# 5. Perform a transition calculation
./sh_tr
Each of the subscripts is given below together with some comments.
If all script files are available with execute permission (use the command chmod +x) we start the computation by typing the name of the main script
./sh_case1
Please note that these calculations will take several hours!
- 1.
-
Generate Expansions
The expansions are generated by the script sh_files_c. This is by far the most complicated script. It is simplified by generating lists for large active sets and then using rcsfsplit, see Section 7.1.
#!/bin/sh set -x # 1. Generate CSF expansions # 1.1 MR for 2s(2)2p, 2p(3) rcsfgenerate <<OF1 * 0 1s(2,i)2s(2,i)2p(1,i) 1s(2,i)2p(3,i) 2s,2p 1,3 0 n EOF1 cp rcsf.out odd2.c # 1.2 SD-MR for n=6 rcsfgenerate <<EOF3 * 0 1s(2,*)2s(2,*)2p(1,*) 1s(2,*)2p(3,*) 6s,6p,6d,6f,6g,6h 1,3 2 n EOF3 cp rcsf.out odd.c # Split into odd3.c, odd4.c, odd5.c, odd6.c rcsfsplit <<EOF5 odd 4 3s,3p,3d 3 4s,4p,4d,4f 4 5s,5p,5d,5f,5g 5 6s,6p,6d,6f,6g,6h 6 EOF5 ########################################## # 2. Generate CSF expansions # 2.1 for 2s2p(2) rcsfgenerate <<EOF1 * 0 1s(2,i)2s(1,i)2p(2,i) 2s,2p 1,5 0 n EOF1 cp rcsf.out even2.c # 2.2 SD for n=6 rcsfgenerate <<EOF3 * 0 1s(2,*)2s(1,*)2p(2,*) 6s,6p,6d,6f,6g,6h 1,5 2 n EOF3 cp rcsf.out even.c # Split into even3.c, even4.c, even5.c, even6.c rcsfsplit <<EOF5 even 4 3s,3p,3d 3 4s,4p,4d,4f 4 5s,5p,5d,5f,5g 5 6s,6p,6d,6f,6g,6h 6 EOF5
- 2.
-
Get Nuclear Data
Nuclear data are defined by the script sh_nuc. Since we are not interested in hyperfine structure, the nuclear spin and moments have all been set to 1.
#!/bin/sh set -x # 2. Get nucleardata rnucleus <<S1 42 96 n 96 1 1 1 S1 cat isodata
- 3.
-
Get Initial Estimates
The script sh_initial performs angular integration, gets initial estimates and performs rmcdhf calculations for the odd and even reference states (odd2 and even2). As initial estimates, we use screened hydrogenic functions. For the reference states, all orbitals are required to be spectroscopic, i.e., they should have the correct number of nodes, see Section 7.1
#!/bin/sh set -x # 3. For n=2, Get initial estimates for odd. cp odd2.c rcsf.inp rangular <<S4 y S4 # Get initial estimates of wave functions rwfnestimate <<S5 y 3 * S5 # Perform self-consistent field calculations rmcdhf > outodd_rmcdhf_initial <<S6 y 1 1 5 * * 100 S6 # Save the result to odd2 rsave odd2 # 3. For n=2, Get initial estimates for even cp even2.c rcsf.inp rangular <<S4 y S4 # Get initial estimates of wave functions rwfnestimate <<S5 y 3 * S5 # Perform self-consistent field calculations rmcdhf > outeven_rmcdhf_initial <<S6 y 1,2,3 1,2,3 1,2 5 * * 100 S6 # Save the result to even2 rsave even2
- 4.
-
rmcdhf and rci Calculations
The script sh_scf performs angular integration, estimates the new radial functions and performs rmcdhf for the odd and even states up to . At the end, rci calculations are performed for the largest expansions. The rci calculations include Breit interaction and QED corrections. All results are transformed to -coupling. Please note how we loop in the script over the digit n that indicates the size of the orbital set.
#!/bin/sh set -x # 4. Get results for odd n=3,4,5,6 for n in 3 4 5 6 do (cp odd${n}.c rcsf.inp # Get angular data rangular <<S4 y S4 # Get initial estimates of wave functions m=`expr $n - 1` echo m=$m n=$n rwfnestimate <<S5 y 1 odd${m}.w * 3 * S5 # Perform self-consistent field calculations rmcdhf > outodd_rmcdhf_${n} <<S6 y 1 1 5 ${n}* 100 S6 rsave odd${n} # transform to LSJ-coupling jj2lsj <<S1 odd${n} n y y S1 echo) done # Perform Breit-correction using RCI for n=6. First copy to other file names n=6 cp odd${n}.c oddCI${n}.c cp odd${n}.w oddCI${n}.w rci > outodd_rci <<S7 y oddCI${n} y y 1.d-6 y n n y 4 1 1 S7 # transform to LSJ-coupling jj2lsj <<S1 oddCI${n} y y y S1 # 4. Get results for even n=3,4,5,6 for n in 3 4 5 6 do (cp even${n}.c rcsf.inp # Get angular data rangular <<S4 y S4 # Get initial estimates of wave functions m=`expr $n - 1` echo m=$m n=$n rwfnestimate <<S5 y 1 even${m}.w * 3 * S5 # Perform self-consistent field calculations rmcdhf > outeven_rmcdhf_${n} <<S6 y 1,2,3 1,2,3 1,2 5 ${n}* 100 S6 rsave even${n} # transform to LSJ-coupling jj2lsj <<S1 even${n} n y y S1 echo) done # Perform Breit-correction using RCI for n=6 n=6 cp even${n}.c evenCI${n}.c cp even${n}.w evenCI${n}.w rci > outeven_rci <<S7 y evenCI${n} y y 1.d-6 y n n y 4 1,2,3 1,2,3 1,2 S7 # transform to LSJ-coupling jj2lsj <<S1 evenCI${n} y y y S1
- 5.
-
Transition calculation
The script sh_tr computes the E1 transition rates between the odd and even states. First we perform a biorthonormal transformation, and then we perform the transition calculation itself.
#!/bin/sh set -x # 6. Perform transition calculation for the n=6 CI results n=6 # First the biorthonormal transformations rbiotransform > out_rbiotransform <<EOF y y oddCI$n evenCI$n y EOF # Then the transition calculations rtransition > out_transition <<EOF y y oddCI$n evenCI$n E1 EOF
9.2. Comparison with Experiment
To display the computed energies we give the command
rlevels oddCI6.cm evenCI6.cm
The computer returns the energies together with labels in -coupling for all the states.
nblock = 2 ncftot = 20641 nw = 36 nelec = 5
nblock = 3 ncftot = 36290 nw = 36 nelec = 5
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 1/2 - -2386.3200262 0.00 0.00 1s(2).2s(2).2p_2P
2 1 1/2 + -2382.2391997 895637.89 895637.89 1s(2).2s_2S.2p(2)3P2_4P
3 1 3/2 - -2381.9242100 964770.13 69132.25 1s(2).2s(2).2p_2P
4 1 3/2 + -2378.9986341 1606859.82 642089.69 1s(2).2s_2S.2p(2)3P2_4P
5 1 5/2 + -2378.1476302 1793633.59 186773.77 1s(2).2s_2S.2p(2)3P2_4P
6 2 3/2 + -2376.7269966 2105426.64 311793.05 1s(2).2s_2S.2p(2)1D2_2D
7 2 1/2 + -2376.5312708 2148383.48 42956.84 1s(2).2s_2S.2p(2)3P2_2P
8 2 5/2 + -2373.9013617 2725581.82 577198.34 1s(2).2s_2S.2p(2)1D2_2D
9 3 1/2 + -2371.9005560 3164707.90 439126.08 1s(2).2s_2S.2p(2)1S0_2S
10 3 3/2 + -2371.8561115 3174462.35 9754.45 1s(2).2s_2S.2p(2)3P2_2P
------------------------------------------------------------------------------------------
The Mo XXXVIII transitions have been observed in the JET Tokamak, Myrnäs et al. [44]. In the Table 8, the experimental transition energies are compared with the calculated energies. Please note that the quantum labels for the and seem to have been swapped in the experimental paper, i.e., the highest state should be and not . We see that the odd states are somewhat too high. This is due to an imbalance in the MR. As discussed in the beginning of the section the correlation model can be refined by extending the MR. Adopting the MRs and for, respectively, the odd and even parity states improves the energy separations considerably [45]. A careful investigation of the effects of increasing the MR is part of any systematic calculation (see Section 6.6).
Table 8.
Experimental and computed excitation energies for Mo XXXVIII.
9.3. Transition Rates
Below are the transition parameters as given in the file oddCI6.evenCI6.ct.lsj. The agreement between calculated values in the two gauges (the first line gives values in length gauge and the second line gives values in velocity gauge) is quite good, especially for the strong transitions. Expansions based on a larger MR set will further improve the agreement. The quantity is defined as
where and are the transition rates in length and velocity gauge. is a measure of the uncertainty of the computed transition rates [43].
Transition between files:
oddCI6
evenCI6
1-2386.32002619 1s(2).2s(2).2p_2P
1-2382.23919972 1s(2).2s_2S.2p(2)3P2_4P
895637.89 CM-1 111.65 ANGS(VAC) 111.65 ANGS(AIR)
E1 S = 4.42135D-03 GF = 1.20285D-02 AKI = 3.21802D+09 dT = 0.05152
4.66152D-03 1.26819D-02 3.39282D+09
1-2386.32002619 1s(2).2s(2).2p_2P
1-2376.53127082 1s(2).2s_2S.2p(2)3P2_2P
2148383.48 CM-1 46.55 ANGS(VAC) 46.55 ANGS(AIR)
E1 S = 1.87910D-02 GF = 1.22627D-01 AKI = 1.88765D+11 dT = 0.00415
1.88692D-02 1.23137D-01 1.89551D+11
1-2386.32002619 1s(2).2s(2).2p_2P
1-2371.90055603 1s(2).2s_2S.2p(2)1S0_2S
3164707.90 CM-1 31.60 ANGS(VAC) 31.60 ANGS(AIR)
E1 S = 1.51571D-05 GF = 1.45705D-04 AKI = 4.86690D+08 dT = 0.06893
1.62792D-05 1.56492D-04 5.22723D+08
1-2386.32002619 1s(2).2s(2).2p_2P
3-2378.99863414 1s(2).2s_2S.2p(2)3P2_4P
1606859.82 CM-1 62.23 ANGS(VAC) 62.23 ANGS(AIR)
E1 S = 1.11563D-04 GF = 5.44533D-04 AKI = 2.34457D+08 dT = 0.01690
1.13481D-04 5.53892D-04 2.38486D+08
1-2386.32002619 1s(2).2s(2).2p_2P
3-2376.72699656 1s(2).2s_2S.2p(2)1D2_2D
2105426.64 CM-1 47.50 ANGS(VAC) 47.50 ANGS(AIR)
E1 S = 2.45759D-02 GF = 1.57172D-01 AKI = 1.16181D+11 dT = 0.00644
2.47352D-02 1.58190D-01 1.16934D+11
1-2386.32002619 1s(2).2s(2).2p_2P
3-2371.85611149 1s(2).2s_2S.2p(2)3P2_2P
3174462.35 CM-1 31.50 ANGS(VAC) 31.50 ANGS(AIR)
E1 S = 6.34294D-04 GF = 6.11625D-03 AKI = 1.02780D+10 dT = 0.00529
6.30940D-04 6.08391D-03 1.02236D+10
1-2382.23919972 1s(2).2s_2S.2p(2)3P2_4P
3-2381.92421002 1s(2).2s(2).2p_2P
69132.25 CM-1 1446.50 ANGS(VAC) 1446.50 ANGS(AIR)
E1 S = 5.06265D-04 GF = 1.06312D-04 AKI = 8.47280D+04 dT = 0.18843
4.10869D-04 8.62797D-05 6.87626D+04
3-2381.92421002 1s(2).2s(2).2p_2P
1-2376.53127082 1s(2).2s_2S.2p(2)3P2_2P
1183613.34 CM-1 84.49 ANGS(VAC) 84.49 ANGS(AIR)
E1 S = 2.36464D-03 GF = 8.50157D-03 AKI = 3.97220D+09 dT = 0.05227
2.49506D-03 8.97046D-03 4.19128D+09
3-2381.92421002 1s(2).2s(2).2p_2P
1-2371.90055603 1s(2).2s_2S.2p(2)1S0_2S
2199937.76 CM-1 45.46 ANGS(VAC) 45.46 ANGS(AIR)
E1 S = 1.48021D-02 GF = 9.89140D-02 AKI = 1.59658D+11 dT = 0.00260
1.47636D-02 9.86566D-02 1.59243D+11
3-2381.92421002 1s(2).2s(2).2p_2P
3-2378.99863414 1s(2).2s_2S.2p(2)3P2_4P
642089.69 CM-1 155.74 ANGS(VAC) 155.74 ANGS(AIR)
E1 S = 1.00858D-03 GF = 1.96712D-03 AKI = 1.35240D+08 dT = 0.11531
1.14004D-03 2.22352D-03 1.52867D+08
3-2381.92421002 1s(2).2s(2).2p_2P
3-2376.72699656 1s(2).2s_2S.2p(2)1D2_2D
1140656.51 CM-1 87.67 ANGS(VAC) 87.67 ANGS(AIR)
E1 S = 2.73257D-03 GF = 9.46784D-03 AKI = 2.05420D+09 dT = 0.04984
2.87592D-03 9.96450D-03 2.16196D+09
3-2381.92421002 1s(2).2s(2).2p_2P
3-2371.85611149 1s(2).2s_2S.2p(2)3P2_2P
2209692.21 CM-1 45.26 ANGS(VAC) 45.26 ANGS(AIR)
E1 S = 4.49452D-02 GF = 3.01675D-01 AKI = 2.45632D+11 dT = 0.00389
4.51208D-02 3.02854D-01 2.46592D+11
3-2381.92421002 1s(2).2s(2).2p_2P
5-2378.14763025 1s(2).2s_2S.2p(2)3P2_4P
828863.45 CM-1 120.65 ANGS(VAC) 120.65 ANGS(AIR)
E1 S = 9.97378D-03 GF = 2.51112D-02 AKI = 1.91789D+09 dT = 0.08159
1.08599D-02 2.73422D-02 2.08828D+09
3-2381.92421002 1s(2).2s(2).2p_2P
5-2373.90136166 1s(2).2s_2S.2p(2)1D2_2D
1760811.69 CM-1 56.79 ANGS(VAC) 56.79 ANGS(AIR)
E1 S = 1.52580D-02 GF = 8.16083D-02 AKI = 2.81288D+10 dT = 0.01679
1.55185D-02 8.30017D-02 2.86091D+10
9.4. LaTeX Table with Energies as Functions of the Active Set
The script sh_scf is written in such a way that all results are transformed to -coupling using jj2lsj. The output from rlevels will then contain quantum labels of the states in -coupling. By saving the output from rlevels we can generate a LaTeX table showing the convergence of the energies as the active set is increased. If we include also the output from the final rci calculation, we can see the effect of the Breit interaction and QED.
Issuing the commands below saves the output from rlevels corresponding to the increasing active set of orbitals in files energy3, energy4, energy5, energy6, energyCI6
>>rlevels even3.m odd3.m > energy3 >>rlevels even4.m odd4.m > energy4 >>rlevels even5.m odd5.m > energy5 >>rlevels even6.m odd6.m > energy6 >>rlevels evenCI6.cm oddCI6.cm > energyCI6
We now call rtablevels to produce a LaTeX table, see Section 7.6
>>rtablevels RTABLEVELS Makes LaTeX and ASCII tables of energy files produced by rlevels (in ljs format) Multiple energy files can be used as input Energies from file 1 fills column 1, energies from file 2 fills column 2 etc. Checks are done to see if the labels if the labels in the files are consistent Input file: name1, name2, ... Output files: energylabellatex.tex, energylabelascii.txt Inspect energy files and determine how many positions should be skipped in the string that determines the label e.g., if the string is 1s(2).2s_2S.2p(2)3P2_4P and 1s(2) is a core then you would like to skip 1s(2). i.e., 6 positions and determine the label from 2s_2S.2p(2)3P2_4P How many positions should be skipped? >>6 Give the number of energy files from rlevels >>5 Name of file 1 >>energy3 Name of file 2 >>energy4 Name of file 3 >>energy5 Name of file 4 >>energy6 Name of file 5 >>energyCI6
The generated LaTeX table is named energytablelatex.tex. After processing we obtain Table 9.
Table 9.
Energies in cm from the files energy3, energy4, energy5, energy6, energyCI6.
From the table, we see that the energies seem to be reasonably converged when the active orbital set has been increased to . We also see that the Breit interaction and QED, as included in the final rci calculation, change the energies substantially.
At this point, it is appropriate to comment on the labels. The term for electrons with occupation one is not written out. The terms for equivalent electrons with occupation two or more are written in parentheses together with the seniority number. The angular momenta are coupled from left to right and written in a linear fashion. As an example, we look at
The electron has the term , but this is not written out explicitly. The has the term with seniority 2. This is written as . Coupling the term of the core (not included in the label) with the term of results in . The term in turn is coupled with the term to yield . The final L and S are then coupled to . See also section 9.2 for a more detailed account of the labels.
9.5. LaTeX Table with Transition Data
There is also a program rtabtransE1, see Section 7.7, that produces a transition file. There are different options for the table. Below, we choose to display and A in the length gauge together with
>>rtabtransE1 RTABTRANSE1 Makes LaTeX tables of transition data from transition files name1.name2.ct.lsj Input file: name1.name2.ct.lsj Output file: transitiontable.tex Specify table format (1). Lower & Upper & Energy diff. & wavelength & S & gf & A & dT (2). Lower & Upper & Energy diff. & wavelength & gf & A & dT (3). Lower & Upper & Energy diff. & wavelength & gf & A (4). Lower & Upper & Energy diff. & S & gf & A & dT (5). Lower & Upper & Energy diff. & gf & A & dT (6). Lower & Upper & Energy diff. & gf & A >>5 Inspect the name1.name2.ct.lsj file and determine how many positions should be skipped in the string that determines the label e.g., if the string is 1s(2).2s_2S.2p(2)3P2_4P and 1s(2) is a core then you would like to skip 1s(2). i.e., 6 positions and determine the label from 2s_2S.2p(2)3P2_4P How many positions should be skipped? >>6 Name of file >>oddCI6.evenCI6.ct.lsj
The generated LaTeX table is named transitiontable.tex. After processing we obtain Table 10.
Table 10.
Transition data from the file oddCI6.evenCI6.ct.lsj.
9.6. Editing the LaTeX Table
The table programs translate the -notation from jj2lsj to LaTeX notation. If the user wants to simplify or change the LaTeX notation, this is easily done. For example, the global substitution 2s~^2\!S\, → 2s in the LaTeX file produces Table 11.
Table 11.
Transition data from the file oddCI6.evenCI6.ct.lsj.
9.7. Scripts for MPI Codes
The scripts above can, with very small modifications, also be used for performing the runs using the MPI codes. Before running the scripts for the MPI code, the file disks with paths to the working directory and to the directory containing temporary data must be created, see Section 6.4. In the different scripts, the calls to the MPI programs amount to changes of the type
rangular --> mpirun -np 8 rangular_mpi
rmcdhf --> mpirun -np 8 rmcdhf_mpi
rci --> mpirun -np 8 rci_mpi
etc. Scripts for the MPI cases are included under case1_mpi in the test data set. Consult the README file in the working directory for more details on setting up the file disks.
10. Case Study II: The Li Iso-Electronic Sequence Using Scripts
In this case study, we use script files to perform systematic calculations for the ground state and the excited states in the Li iso-electronic sequence. Computing data for an iso-electronic sequence, angular data can be reused and need not be recomputed for each member of the sequence. The script files can be found in grasptest/case2/script.
We start with a single calculation of the three reference states. After that, separate calculations are done for the two parities. Correlation is then included by allowing single, double, and triple (SDT) excitations from the reference to active sets up to (complete active space calculations). Calculations including hyperfine structures and transition rates are performed from to .
It is convenient to save the results for the different ions in directories Z6, Z7, Z8, …, Z12.
10.1. Running Script Files
The main script sh_case2 is shown below. This script controls the computational flow and calls several subscripts.
#!/bin/sh
set -x
# Main script for iso-electronic sequence
# 1. Generate directories Z6, Z7, .. for the elements
# Define nuclear data for each element
./sh_nuc_seq
# 2. Generate lists of CSFs in main directory
./sh_files_c
# 3. Start by performing rmcdhf calculations for the 1s(2)2s, 1s(2)2p
# reference states
./sh_DF
# 4. Perform rmcdhf calculations for all the even expansions
# Angular data computed only once and then moved to different directories
./sh_even
# 5. Perform rmcdhf calculations for all the odd expansions
# Angular data computed only once and then moved to different directories
./sh_odd
# 6. Perform rci calculations for the even5 and odd5 expansions
# Perform rhfs and transition calculations.
# Angular data computed only once and then moved to different directories
./sh_even_odd
Each of the subscripts is given below together with some comments.
If all script files are available with execute permission (use the command chmod +x) we start the computation by typing the name of the main script
./sh_case2
Please note that these calculations will take several hours!
- 1.
-
Generate Directories and Define Nuclear Data
The script sh_nuc_seq produces nuclear data for in the directories Z6, Z7, …, Z12. By modifying the script, we can produce nuclear data for any sequence of charges.
#!/bin/sh set -x # Full loop over all Z # for z in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \ # 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 \ # 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 \ # 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \ # 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 \ # 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 \ # 126 127 128 129 130 131 132 133 134 135 136 137 138 # We select Z from 6 to 12 for z in 6 7 8 9 10 11 12 do # Data from Jefferson Lab (http://education.jlab.org/itselemental) case $z in 1) m=0; MM=1.0794;; # Need to use point nucleus 2) m=4; MM=4.002602;; 3) m=7; MM=6.941;; 4) m=9; MM=9.012182;; 5) m=11; MM=10.811;; 6) m=12; MM=12.0107;; 7) m=14; MM=14.0067;; 8) m=16; MM=15.9994;; 9) m=19; MM=18.9984032;; 10) m=20; MM=20.1797;; 11) m=23; MM=22.98976928;; 12) m=24; MM=24.3050;; 13) m=27; MM=26.9815386;; 14) m=28; MM=29.0855;; 15) m=31; MM=30.973762;; 16) m=32; MM=32.065;; 17) m=35; MM=35.453;; 18) m=40; MM=39.948;; 19) m=39; MM=39.0938;; 20) m=40; MM=40.078;; 21) m=45; MM=44.955912;; 22) m=48; MM=47.867;; 23) m=51; MM=50.9415;; 24) m=52; MM=51.9961;; 25) m=55; MM=54.938045;; 26) m=56; MM=55.845;; 27) m=59; MM=58.933195;; 28) m=59; MM=58.6934;; 29) m=64; MM=63.546;; 30) m=65; MM=65.409;; 31) m=70; MM=69.723;; 32) m=73; MM=72.64;; 33) m=75; MM=74.92160;; 34) m=79; MM=78.96;; 35) m=80; MM=79.904;; 36) m=84; MM=83.798;; 37) m=85; MM=85.4678;; 38) m=88; MM=87.62;; 39) m=89; MM=88.90585;; 40) m=91; MM=91.224;; 41) m=93; MM=92.90638;; 42) m=96; MM=95.94;; 43) m=98; MM=98;; 44) m=101; MM=10.07;; 45) m=103; MM=102.90550;; 46) m=106; MM=106.42;; 47) m=108; MM=107.8682;; 48) m=112; MM=112.411;; 49) m=115; MM=114.818;; 50) m=119; MM=118.710;; 51) m=122; MM=121.760;; 52) m=128; MM=127.60;; 53) m=127; MM=126.90447;; 54) m=131; MM=131.293;; 55) m=133; MM=132.9054519;; 56) m=137; MM=137.327;; 57) m=139; MM=138.90547;; 58) m=140; MM=140.116;; 59) m=141; MM=140.90765;; 60) m=144; MM=144.242;; 61) m=145; MM=145;; 62) m=150; MM=150.36;; 63) m=152; MM=151.964;; 64) m=157; MM=157.25;; 65) m=159; MM=158.92535;; 66) m=163; MM=162.5;; 67) m=165; MM=164.93032;; 68) m=167; MM=167.259;; 69) m=169; MM=168.93421;; 70) m=173; MM=173.04;; 71) m=175; MM=174.967;; 72) m=178; MM=178.49;; 73) m=181; MM=180.94788;; 74) m=184; MM=183.84;; 75) m=186; MM=186.207;; 76) m=190; MM=190.23;; 77) m=192; MM=192.217;; 78) m=195; MM=195.084;; 79) m=197; MM=196.966569;; 80) m=201; MM=200.59;; 81) m=204; MM=204.3833;; 82) m=207; MM=207.2;; 83) m=209; MM=208.9804;; 84) m=209; MM=209;; 85) m=210; MM=210;; 86) m=222; MM=222;; 87) m=223; MM=223;; 88) m=226; MM=226;; 89) m=227; MM=227;; 90) m=232; MM=232.03806;; 91) m=231; MM=231.03588;; 92) m=238; MM=238.02891;; 93) m=237; MM=237;; 94) m=244; MM=244;; 95) m=243; MM=243;; 96) m=247; MM=247;; 97) m=247; MM=247;; 98) m=251; MM=251;; 99) m=252; MM=252;; 100) m=257; MM=257;; 101) m=258; MM=258;; 102) m=259; MM=259;; 103) m=262; MM=262;; 104) m=267; MM=267;; 105) m=268; MM=268;; 106) m=271; MM=271;; 107) m=272; MM=272;; 108) m=277; MM=277;; 109) m=276; MM=276;; 110) m=281; MM=281;; 111) m=280; MM=280;; 112) m=285; MM=285;; 113) m=284; MM=284;; 114) m=289; MM=289;; 115) m=288; MM=288;; 116) m=291; MM=291;; 117) m=293; MM=293;; #Estimated 118) m=294; MM=294;; 119) m=316; MM=316;; 120) m=318; MM=318;; 121) m=322; MM=322;; 122) m=324; MM=324;; 123) m=326; MM=326;; 124) m=330; MM=330;; 125) m=332; MM=332;; 126) m=334; MM=334;; 127) m=338; MM=338;; 128) m=340; MM=340;; 129) m=342; MM=342;; 130) m=346; MM=346;; 131) m=348; MM=348;; 132) m=350; MM=350;; 133) m=354; MM=354;; 134) m=356; MM=356;; 135) m=358; MM=358;; 136) m=362; MM=362;; 137) m=364; MM=364;; 138) m=366; MM=366;; esac echo "Starting: Z::"${z}, "ZZ::"$ZZ, "mass::"${m}, "Weight::"${MM} rm -r Z$z mkdir Z$z cd Z$z rnucleus <<EOF $z $m n $MM 1 1 1 EOF cd .. done
- 2.
-
Generate Expansions
The expansions are generated by the script sh_files_c.
rcsfgenerate << EOF * 0 1s(2,i)2s(1,i) 2s,2p 1,1 0 y 1s(2,i)2p(1,i) 2s,2p 1,3 0 n EOF cp rcsf.out DF.c ####################################### rcsfgenerate << EOF * 0 1s(2,*)2s(1,*) 5s,5p,5d,5f,5g 1,1 3 n EOF cp rcsf.out even.c rcsfsplit << EOF even 3 3s,3p,3d 3 4s,4p,4d,4f 4 5s,5p,5d,5f,5g 5 EOF ################################ rcsfgenerate << EOF * 0 1s(2,*)2p(1,*) 5s,5p,5d,5f,5g 1,3 3 n EOF cp rcsf.out odd.c rcsfsplit << EOF odd 3 3s,3p,3d 3 4s,4p,4d,4f 4 5s,5p,5d,5f,5g 5 EOF
- 3.
-
Ground and Excited Reference States
The script sh_DF performs angular integration, gets initial estimates and performs SCF calculations for the , reference states. The angular integration is done only once and the mcp.30, mcp.31 … files are moved between the directories.
for z in 6 7 8 9 10 11 12 do (if test $z -lt 7 then cd Z${z} cp ../DF.c rcsf.inp # Get angular data rangular <<S4 y S4 #Get initial estimates of wave functions rwfnestimate <<S5 y 2 * S5 # Perform self-consistent field calculations rmcdhf > out_rmcdhf <<S6 y 1 1 1 5 * * 100 S6 rsave DF cp DF.w even2.w cp DF.w odd2.w cd .. else cd Z${z} cp ../DF.c rcsf.inp #Move mcp files from previous directory m=`expr $z - 1` mv ../Z${m}/mcp* . #Get initial estimates of wave functions rwfnestimate <<S5 y 2 * S5 # Perform self-consistent field calculations rmcdhf > out_rmcdhf <<S6 y 1 1 1 5 * * 100 S6 rsave DF cp DF.w even2.w cp DF.w odd2.w cd .. fi echo) done
- 4.
-
Perform Calculations for the Even States
The script sh_even performs angular integration, gets initial estimates and performs rmcdhf calculations for the even states. The script loops over both the active set and the atomic number Z. Angular files are reused and moved between the directories.
for n in 3 4 5 do ( for z in 6 7 8 9 10 11 12 do (if test $z -lt 7 then cd Z${z} cp ../even${n}.c rcsf.inp # Get angular data rangular <<S4 y S4 k=`expr $n - 1` #Get initial estimates of wave functions rwfnestimate <<S5 y 1 even${k}.w * 2 * S5 # Perform self-consistent field calculations rmcdhf > outeven_rmcdhf_${n} <<S6 y 1 ${n}* 100 S6 rsave even${n} cd .. else cd Z${z} cp ../even${n}.c rcsf.inp #Move mcp files from previous directory m=`expr $z - 1` mv ../Z${m}/mcp* . k=`expr $n - 1` #Get initial estimates of wave functions rwfnestimate <<S5 y 1 even${k}.w * 2 * S5 # Perform self-consistent field calculations rmcdhf > outeven_rmcdhf_${n} <<S6 y 1 ${n}* 100 S6 rsave even${n} cd .. fi echo) done ) done
- 5.
-
Perform Calculations for the Odd States
The script sh_odd performs angular integration, gets initial estimates and performs rmcdhf calculations for the odd states. The script loops over both the active set and the atomic number Z. Angular files are reused and moved between the directories.
for n in 3 4 5 do ( for z in 6 7 8 9 10 11 12 do (if test $z -lt 7 then cd Z${z} cp ../odd${n}.c rcsf.inp # Get angular data rangular <<S4 y S4 k=`expr $n - 1` #Get initial estimates of wave functions rwfnestimate <<S5 y 1 odd${k}.w * 2 * S5 # Perform self-consistent field calculations rmcdhf > outodd_rmcdhf_${n} <<S6 y 1 1 5 ${n}* 100 S6 rsave odd${n} cd .. else cd Z${z} cp ../odd${n}.c rcsf.inp #Move mcp files from previous directory m=`expr $z - 1` mv ../Z${m}/mcp* . k=`expr $n - 1` #Get initial estimates of wave functions rwfnestimate <<S5 y 1 odd${k}.w * 2 * S5 # Perform self-consistent field calculations rmcdhf > out_rmcdhf_${n} <<S6 y 1 1 5 ${n}* 100 S6 rsave odd${n} cd .. fi echo) done ) done
- 6.
-
Configuration Interaction and Transition Calculations
The script sh_even_odd performs configuration interaction and transition calculations for even5 and odd5. Angular files are reused and moved between the directories.
for z in 6 7 8 9 10 11 12 do (cd Z${z} # RCI calculations for even5 rci > outeven_rci <<S6 y even5 y y 1.d-6 y n n y 3 1 S6 # RCI calculations for odd5 rci > outodd_rci <<S6 y odd5 y y 1.d-6 y n n y 3 1 1 S6 if test $z -lt 7 then # Run rbiotransform and save angular data rbiotransform <<S4 y y even5 odd5 y S4 # Run rtransition save angular data rtransition <<S4 y y even5 odd5 E1 S4 else #Move angular files from previous directory m=`expr $z - 1` mv ../Z${m}/even5.TB . mv ../Z${m}/odd5.TB . mv ../Z${m}/even5.odd5.-1T . # Run rbiotransform using available angular data rbiotransform <<S4 y y even5 odd5 y S4 # Run rtransition using available angular data rtransition <<S4 y y even5 odd5 E1 S4 fi cd .. echo) done
10.2. Comparison with Experiment
To display the computed energies for we enter the Z6 directory, and we give the command
rlevels even5.cm odd5.cm
The computer returns the energies together with labels in -coupling for all the states.
Energy levels for ...
Rydberg constant is 109737.31569
No - Serial number of the state; Pos - Position of the state within the
J/P block; Splitting is the energy difference with the lower neighbor
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 1/2 + -34.7859395
2 1 1/2 - -34.4919396 64525.53 64525.53
3 1 3/2 - -34.4914500 64632.98 107.45
These energies should be compared with NIST that give 64484.0 cm, 64591.7 cm. Increasing the active set further will improve the agreement with experiment.
The transition parameters are given in even5.odd5.ct. There is a good agreement between length (B) and velocity (C) forms of the parameters. The values in the length form are in good agreement with the values 0.1895 and 0.3789 from large-scale MCHF calculations [46]. Again, an increased active set will improve the agreement.
Transition between files:
f1 = even5
f2 = odd5
Electric 2**( 1)-pole transitions
=================================
Upper Lower
File Lev J P File Lev J P E (Kays) A (s-1) gf S
f2 1 1/2 - f1 1 1/2 + 64525.53 C 2.68596D+08 1.93430D-01 9.86890D-01
B 2.64473D+08 1.90461D-01 9.71741D-01
f2 1 3/2 - f1 1 1/2 + 64632.98 C 2.69981D+08 3.87564D-01 1.97408D+00
B 2.65907D+08 3.81715D-01 1.94429D+00
10.3. Scripts for MPI Codes
The scripts above can, with very small modifications, also be used for performing the calculations using the MPI codes. The most important change is that the user needs to prepare the files disks6, disks7, …, disks12 with paths to the working directory and to the directory containing temporary data. The disks files are copied to the Z6, Z7, …, Z12 directories by sh_nuc_seq. In the different scripts, the calls to the MPI programs amount to changes of the type
rangular --> mpirun -np 8 rangular_mpi
rmcdhf --> mpirun -np 8 rmcdhf_mpi
rci --> mpirun -np 8 rci_mpi
etc. For the MPI runs, the saved angular files reside in the tmp_mpi directory, and thus they need not be copied from Z6 to Z7 etc. Scripts for the MPI cases are included under case2_mpi in the test data set. Consult the README file in the working directory for more details on setting up the file disks.
11. Case Study III: Graphical Analysis of the Mg Iso-Electronic Sequence
In this case study, we use script files to perform systematic calculations for states belonging to the even configurations and to the odd configurations in the Mg iso-electronic sequence. Angular data are reused from one ion to another. The script files can be found in grasptest/case3/script.
Calculations are done by parity and valence–valence correlation is accounted for by allowing for SD excitations from the valence orbitals to active sets up to . Calculations for transition rates are performed for .
It is convenient to save the results for the different ions in directories named Z26, Z27, …, Z60. After all calculations are finished the energies from rlevels, the hyperfine data and the transition data are collected from the different directories and saved in files energy26, energy27, …, energy60, hfs26, hfs27, …, hfs60, trans26, trans27, …, trans60. These files are read by the rseqenergy and rseqtrans programs to produce GNU Octave/Matlab M-files that plot computed properties as functions of the nuclear charge Z of the ions. The M-files include some fitting capabilities as well.
11.1. Iso-Electronic Sequences
Properties of states, as specified by parity, J quantum number and order number within the symmetry (e.g., the second eigenvalue), are smoothly varying functions of the nuclear charge Z along the iso-electronic sequence. Based on hydrogenic approximations, scaling with Z can be derived for different properties (see for example [47], chapter 19). Using spline methods or least-squares fits to scaling expressions, atomic data along a sequence can be reconstructed with high accuracy from a limited set of calculations. When reconstructing data, attention must be paid to label changes. These changes are consequences of the transition from to -coupling, which introduces a label change between the low Z and high Z regions. In the Mg-sequence, a label change occurs for the , even parity states. At low Z the ordering is , , , . When the spin-orbit coupling becomes dominant, the ordering in -coupling is , , , . Since in the high-Z limit the state is lower than the state, there must be a label change for some Z. A label change corresponds to an energy level anti-crossing, where two energy levels with the same J and parity will be very close to each other and there will, in the multiconfiguration approximation, be strong interactions between CSFs over a range of Z values. These interactions may result in a decrease or increase of transition probabilities due to negative or positive interference between terms in the expressions for the transition matrix element. For Mg, such interference effects can be seen around . In Section 11.2 we will generate atomic data for the states in the Mg iso-electronic sequence. In Section 11.3 we will explore the energy level anti-crossings and the interference effects using the graphical tools.
11.2. Running Script Files
The main script sh_case3 is shown below. This script controls the computational flow and calls several subscripts.
#!/bin/sh
set -x
# Main script for iso-electronic sequence
# 1. Generate directories for the elements and nuclear data
./sh_nuc_seq
# 2. Generate lists of CSFs in main directory
./sh_files_c
# 3. Perform MCDHF calculations for the even reference states
./sh_DF_even
# 4. Perform MCDHF calculations for the odd reference states
./sh_DF_odd
# 5. Perform MCDHF calculations for even states
./sh_even
# 6. Perform MCDHF calculations for odd states
./sh_odd
# 7. Perform RCI, transition calculations
./sh_even_odd
# 8. Transformation to LSJ, run rlevels and pipe to energyZ
./sh_rlevels
# 9. Collect all data files and copy to the main directory
./sh_collect
- 1.
-
Generate Directories and Define Nuclear Data
The script sh_nuc_seq produces nuclear data for in the directories Z26, Z27, …, Z60. By modifying the script, we can produce nuclear data for any sequence of charges.
#!/bin/sh
set -x
# Full loop over all Z
# for z in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 \
# 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 \
# 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 \
# 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 \
# 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 \
# 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 \
# 126 127 128 129 130 131 132 133 134 135 136 137 138
# We select Z from 26 to 60
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
# Data from Jefferson Lab (http://education.jlab.org/itselemental)
case $z in
1) m=0; MM=1.0794;; # Need to use point nucleus
2) m=4; MM=4.002602;;
3) m=7; MM=6.941;;
4) m=9; MM=9.012182;;
5) m=11; MM=10.811;;
6) m=12; MM=12.0107;;
7) m=14; MM=14.0067;;
8) m=16; MM=15.9994;;
9) m=19; MM=18.9984032;;
10) m=20; MM=20.1797;;
11) m=23; MM=22.98976928;;
12) m=24; MM=24.3050;;
13) m=27; MM=26.9815386;;
14) m=28; MM=29.0855;;
15) m=31; MM=30.973762;;
16) m=32; MM=32.065;;
17) m=35; MM=35.453;;
18) m=40; MM=39.948;;
19) m=39; MM=39.0938;;
20) m=40; MM=40.078;;
21) m=45; MM=44.955912;;
22) m=48; MM=47.867;;
23) m=51; MM=50.9415;;
24) m=52; MM=51.9961;;
25) m=55; MM=54.938045;;
26) m=56; MM=55.845;;
27) m=59; MM=58.933195;;
28) m=59; MM=58.6934;;
29) m=64; MM=63.546;;
30) m=65; MM=65.409;;
31) m=70; MM=69.723;;
32) m=73; MM=72.64;;
33) m=75; MM=74.92160;;
34) m=79; MM=78.96;;
35) m=80; MM=79.904;;
36) m=84; MM=83.798;;
37) m=85; MM=85.4678;;
38) m=88; MM=87.62;;
39) m=89; MM=88.90585;;
40) m=91; MM=91.224;;
41) m=93; MM=92.90638;;
42) m=96; MM=95.94;;
43) m=98; MM=98;;
44) m=101; MM=10.07;;
45) m=103; MM=102.90550;;
46) m=106; MM=106.42;;
47) m=108; MM=107.8682;;
48) m=112; MM=112.411;;
49) m=115; MM=114.818;;
50) m=119; MM=118.710;;
51) m=122; MM=121.760;;
52) m=128; MM=127.60;;
53) m=127; MM=126.90447;;
54) m=131; MM=131.293;;
55) m=133; MM=132.9054519;;
56) m=137; MM=137.327;;
57) m=139; MM=138.90547;;
58) m=140; MM=140.116;;
59) m=141; MM=140.90765;;
60) m=144; MM=144.242;;
61) m=145; MM=145;;
62) m=150; MM=150.36;;
63) m=152; MM=151.964;;
64) m=157; MM=157.25;;
65) m=159; MM=158.92535;;
66) m=163; MM=162.5;;
67) m=165; MM=164.93032;;
68) m=167; MM=167.259;;
69) m=169; MM=168.93421;;
70) m=173; MM=173.04;;
71) m=175; MM=174.967;;
72) m=178; MM=178.49;;
73) m=181; MM=180.94788;;
74) m=184; MM=183.84;;
75) m=186; MM=186.207;;
76) m=190; MM=190.23;;
77) m=192; MM=192.217;;
78) m=195; MM=195.084;;
79) m=197; MM=196.966569;;
80) m=201; MM=200.59;;
81) m=204; MM=204.3833;;
82) m=207; MM=207.2;;
83) m=209; MM=208.9804;;
84) m=209; MM=209;;
85) m=210; MM=210;;
86) m=222; MM=222;;
87) m=223; MM=223;;
88) m=226; MM=226;;
89) m=227; MM=227;;
90) m=232; MM=232.03806;;
91) m=231; MM=231.03588;;
92) m=238; MM=238.02891;;
93) m=237; MM=237;;
94) m=244; MM=244;;
95) m=243; MM=243;;
96) m=247; MM=247;;
97) m=247; MM=247;;
98) m=251; MM=251;;
99) m=252; MM=252;;
100) m=257; MM=257;;
101) m=258; MM=258;;
102) m=259; MM=259;;
103) m=262; MM=262;;
104) m=267; MM=267;;
105) m=268; MM=268;;
106) m=271; MM=271;;
107) m=272; MM=272;;
108) m=277; MM=277;;
109) m=276; MM=276;;
110) m=281; MM=281;;
111) m=280; MM=280;;
112) m=285; MM=285;;
113) m=284; MM=284;;
114) m=289; MM=289;;
115) m=288; MM=288;;
116) m=291; MM=291;;
117) m=293; MM=293;; #Estimated
118) m=294; MM=294;;
119) m=316; MM=316;;
120) m=318; MM=318;;
121) m=322; MM=322;;
122) m=324; MM=324;;
123) m=326; MM=326;;
124) m=330; MM=330;;
125) m=332; MM=332;;
126) m=334; MM=334;;
127) m=338; MM=338;;
128) m=340; MM=340;;
129) m=342; MM=342;;
130) m=346; MM=346;;
131) m=348; MM=348;;
132) m=350; MM=350;;
133) m=354; MM=354;;
134) m=356; MM=356;;
135) m=358; MM=358;;
136) m=362; MM=362;;
137) m=364; MM=364;;
138) m=366; MM=366;;
esac
echo "Starting: Z::"${z}, "ZZ::"$ZZ, "mass::"${m}, "Weight::"${MM}
rm -r Z$z
mkdir Z$z
cd Z$z
rnucleus <<EOF
$z
$m
n
$MM
1
1
1
EOF
cd ..
done
- 2.
-
Generate Expansions
The expansions are generated by the script sh_files_c.
rcsfgenerate << EOF * 2 3s(2,i) 3p(2,i) 3d(2,i) 3s(1,i)3d(1,i) 3s,3p,3d 0,8 0 n EOF cp rcsf.out DFeven.c ####################################### rcsfgenerate << EOF * 2 3s(1,i)3p(1,i) 3p(1,i)3d(1,i) 3s,3p,3d 0,8 0 n EOF cp rcsf.out DFodd.c ####################################### rcsfgenerate << EOF * 2 3s(2,*) 5s,5p,5d,5f,5g 0,8 2 n EOF cp rcsf.out even.c rcsfsplit << EOF even 2 4s,4p,4d,4f 4 5s,5p,5d,5f,5g 5 EOF ################################ rcsfgenerate << EOF * 2 3s(1,*)3p(1,*) 5s,5p,5d,5f,5g 0,8 2 n EOF cp rcsf.out odd.c rcsfsplit << EOF odd 2 4s,4p,4d,4f 4 5s,5p,5d,5f,5g 5 EOF
- 3.
-
Even Parity Reference States
The script sh_DF_even performs angular integration, gets initial estimates and performs rmcdhf calculations for the even reference states. The angular integration is done only once and the mcp.30, mcp.31 … files are moved between the directories.
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(if test $z -lt 27
then
cd Z${z}
cp ../DFeven.c rcsf.inp
# Get angular data
rangular <<S4
y
S4
#Get initial estimates of wave functions
rwfnestimate <<S5
y
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outeven_rmcdhf <<S6
y
1-5
1-3
1-7
1-2
1-2
5
*
*
100
S6
rsave DFeven
cp DFeven.w even3.w
cd ..
else
cd Z${z}
cp ../DFeven.c rcsf.inp
#Move mcp files from previous directory
m=`expr $z - 1`
mv ../Z${m}/mcp* .
#Get initial estimates of wave functions
rwfnestimate <<S5
y
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outeven_rmcdhf <<S6
y
1-5
1-3
1-7
1-2
1-2
5
*
*
100
S6
rsave DFeven
cp DFeven.w even3.w
cd ..
fi
echo)
done
- 4.
-
Odd Parity Reference States
The script sh_DF_odd performs angular integration, gets initial estimates and performs rmcdhf calculations for the odd reference states. The angular integration is done only once and the mcp.30, mcp.31 … files are moved between the directories.
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(if test $z -lt 27
then
cd Z${z}
cp ../DFodd.c rcsf.inp
# Get angular data
rangular <<S4
y
S4
#Get initial estimates of wave functions
rwfnestimate <<S5
y
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outodd_rmcdhf <<S6
y
1-2
1-5
1-5
1-3
1
5
*
*
100
S6
rsave DFodd
cp DFodd.w odd3.w
cd ..
else
cd Z${z}
cp ../DFodd.c rcsf.inp
#Move mcp files from previous directory
m=`expr $z - 1`
mv ../Z${m}/mcp* .
#Get initial estimates of wave functions
rwfnestimate <<S5
y
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outodd_rmcdhf <<S6
y
1-2
1-5
1-5
1-3
1
5
*
*
100
S6
rsave DFodd
cp DFodd.w odd3.w
cd ..
fi
echo)
done
- 5.
-
Perform Calculations for Even States
The script sh_even performs angular integration, gets initial estimates and performs rmcdhf calculations for the odd states. The script loops over both the active set and the atomic number Z. Angular files are reused and moved between the directories.
for n in 4 5
do
(
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(if test $z -lt 27
then
cd Z${z}
cp ../even${n}.c rcsf.inp
# Get angular data
rangular <<S4
y
S4
k=`expr $n - 1`
#Get initial estimates of wave functions
rwfnestimate <<S5
y
1
even${k}.w
*
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outeven_rmcdhf_${n} <<S6
y
1-5
1-3
1-7
1-2
1-2
5
${n}*
100
S6
rsave even${n}
cd ..
else
cd Z${z}
cp ../even${n}.c rcsf.inp
#Move mcp files from previous directory
m=`expr $z - 1`
mv ../Z${m}/mcp* .
k=`expr $n - 1`
#Get initial estimates of wave functions
rwfnestimate <<S5
y
1
even${k}.w
*
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outeven_rmcdhf_${n} <<S6
y
1-5
1-3
1-7
1-2
1-2
5
${n}*
100
S6
rsave even${n}
cd ..
fi
echo)
done
)
done
- 6.
-
Perform Calculations for Odd States
The script sh_odd performs angular integration, gets initial estimates and performs rmcdhf calculations for the odd states. The script loops over both the active set and the atomic number Z. Angular files are reused and moved between the directories.
for n in 4 5
do
(
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(if test $z -lt 27
then
cd Z${z}
cp ../odd${n}.c rcsf.inp
# Get angular data
rangular <<S4
y
S4
k=`expr $n - 1`
#Get initial estimates of wave functions
rwfnestimate <<S5
y
1
odd${k}.w
*
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outodd_rmcdhf_${n} <<S6
y
1-2
1-5
1-5
1-3
1
5
${n}*
100
S6
rsave odd${n}
cd ..
else
cd Z${z}
cp ../odd${n}.c rcsf.inp
#Move mcp files from previous directory
m=`expr $z - 1`
mv ../Z${m}/mcp* .
k=`expr $n - 1`
#Get initial estimates of wave functions
rwfnestimate <<S5
y
1
odd${k}.w
*
2
*
S5
# Perform self-consistent field calculations
rmcdhf > outodd_rmcdhf_${n} <<S6
y
1-2
1-5
1-5
1-3
1
5
${n}*
100
S6
rsave odd${n}
cd ..
fi
echo)
done
)
done
- 7.
-
Perform rci and Transition Calculations
The script sh_even_odd performs configuration interaction and transition calculations for even5 and odd5. Angular files are reused and moved between the directories.
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(cd Z${z}
# RCI calculations for even5
rci > outeven_rci <<S6
y
even5
y
y
1.d-6
y
n
n
y
3
1-5
1-3
1-7
1-2
1-2
S6
# RCI calculations for odd5
rci > outodd_rci <<S6
y
odd5
y
y
1.d-6
y
n
n
y
3
1-2
1-5
1-5
1-3
1
S6
if test $z -lt 27
then
# Run rbiotransform and save angular data
rbiotransform <<S4
y
y
even5
odd5
y
S4
# Run rtransition save angular data
rtransition <<S4
y
y
even5
odd5
E1
S4
else
#Move angular files from previous directory
m=`expr $z - 1`
mv ../Z${m}/even5.TB .
mv ../Z${m}/odd5.TB .
mv ../Z${m}/even5.odd5.-1T .
# Run rbiotransform using available angular data
rbiotransform <<S4
y
y
even5
odd5
y
S4
# Run rtransition using available angular data
rtransition <<S4
y
y
even5
odd5
E1
S4
fi
cd ..
echo)
done
Transformation to LSJ, Run rlevels and Pipe to energyZ
This script runs jj2lsj to transform to -coupling. The energy files energyZ are created by redirecting the output from rlevels.
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(cd Z${z}
jj2lsj <<S1
even5
y
y
y
S1
jj2lsj <<S2
odd5
y
y
y
S2
rlevels even5.cm odd5.cm > energy${z}
cd ..
echo)
done
Collect Data to Prepare for the Runs of the ISO-Electronic Plotting Tools
This script collects, in one directory, all the energy, hfs and transition files that are needed to run the tools that create the iso-electronic plots.
for z in 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 \
49 50 51 52 53 54 55 56 57 58 59 60
do
(cd Z${z}
cp energy${z} ../.
cp even5.odd5.ct ../trans${z}
cd ..
echo)
done
11.3. Generating Plots of Properties along the Sequence
After the script sh_case3 has been executed the energy files energy26, energy27, …, energy60, as obtained from rlevels, the hyperfine structure files hfs26, hfs27, …, hfs60 and the transition files trans26, trans27, …, trans60 all reside in one directory. The energy file energy26 is shown below
nblock = 5 ncftot = 327 nw = 25 nelec = 12
nblock = 5 ncftot = 320 nw = 25 nelec = 12
Energy levels for ...
Rydberg constant is 109737.31569
Splitting is the energy difference with the lower neighbor
------------------------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting Configuration
(a.u.) (cm^-1) (cm^-1)
------------------------------------------------------------------------------------------
1 1 0 + -1182.3727764 0.00 0.00 3s(2)_1S0
2 1 0 - -1181.3113834 232948.84 232948.84 3s.3p_3P
3 1 1 - -1181.2847265 238799.35 5850.52 3s.3p_3P
4 1 2 - -1181.2205551 252883.36 14084.01 3s.3p_3P
5 2 1 - -1180.7554700 354957.74 102074.38 3s.3p_1P
6 2 0 + -1179.8373301 556466.16 201508.42 3p(2)_3P2
7 1 2 + -1179.8217549 559884.50 3418.34 3p(2)_1D2
8 1 1 + -1179.7920926 566394.64 6510.13 3p(2)_3P2
9 2 2 + -1179.7154124 583224.00 16829.37 3p(2)_3P2
10 3 0 + -1179.3515752 663077.02 79853.02 3p(2)_1S0
11 2 1 + -1179.2726721 680394.26 17317.24 3s.3d_3D
12 3 2 + -1179.2681277 681391.63 997.37 3s.3d_3D
13 1 3 + -1179.2610200 682951.61 1559.97 3s.3d_3D
14 4 2 + -1178.8798082 766617.92 83666.31 3s.3d_1D
15 2 2 - -1178.1400307 928980.31 162362.40 3p.3d_3F
16 1 3 - -1178.0956514 938720.44 9740.12 3p.3d_3F
17 3 2 - -1178.0442947 949991.94 11271.50 3p.3d_1D
18 1 4 - -1178.0436090 950142.42 150.48 3p.3d_3F
19 3 1 - -1177.8805639 985926.68 35784.26 3p.3d_3D
20 4 2 - -1177.8791774 986230.98 304.30 3p.3d_3P
21 2 3 - -1177.8255556 997999.61 11768.62 3p.3d_3D
22 2 0 - -1177.8238082 998383.12 383.51 3p.3d_3P
23 4 1 - -1177.8213613 998920.17 537.05 3p.3d_3P
24 5 2 - -1177.8188346 999474.72 554.55 3p.3d_3D
25 3 3 - -1177.5116442 1066895.20 67420.48 3p.3d_1F
26 5 1 - -1177.4560254 1079102.13 12206.93 3p.3d_1P
27 5 2 + -1176.1165400 1373085.18 293983.04 3d(2)_3F2
28 2 3 + -1176.1091750 1374701.61 1616.44 3d(2)_3F2
29 1 4 + -1176.1001735 1376677.21 1975.59 3d(2)_3F2
30 6 2 + -1175.9683503 1405609.08 28931.87 3d(2)_1D2
31 4 0 + -1175.9539314 1408773.66 3164.58 3d(2)_3P2
32 3 1 + -1175.9511232 1409389.97 616.31 3d(2)_3P2
33 2 4 + -1175.9496890 1409704.75 314.78 3d(2)_1G2
34 7 2 + -1175.9446852 1410802.96 1098.21 3d(2)_3P2
35 5 0 + -1175.5824952 1490294.48 79491.51 3d(2)_1S0
------------------------------------------------------------------------------------------
Each state is specified by the position within the symmetry, the J quantum number and the parity. For example, the four states , , , with even parity and are specified as 1 2 +, 2 2 +, 3 2 +, 4 2 +. These specifications remain valid over the iso-electronic sequence, although the designation may change. Thus, to follow states along the iso-electronic sequence, the above specifications should be used. To generate a GNU Octave/Matlab M-file that plots the , , , states along the sequence, the rseqenergy program should be run. The program looks for all energy files in a given range of Z. Then, after having specified the states to be plotted, there is an option to perform least squares fits to obtain analytical expressions of the trends. If no fits are done, the data are instead interpolated using cubic splines. The rseqenergy program outputs an M-file with name seqenergyplot.m. The M-file contains all data needed for the plot, and the file can also very easily be edited to comply with the desires of the user. The input session for rseqenergy is shown below. Please note that you should input and not J and the sequence 1 2 +, 2 2 +, 3 2 +, 4 2 + above should thus be inserted in the program as 1 4 +, 2 4 +, 3 4 +, 4 4 +.
>>rseqenergy RSEQENERGY This program reads output from rlevels for several ions and produces a Matlab/Octave file that plots energy as a function of Z Input files: energyZ1, energyZ2, .., energyZn Output file: seqenergyplot.m Give the first Z and last Z of the sequence >>26,60 How many states do you want to plot? >>4 Give number within symmetry,2*J and parity (+/-) >>1,4,+ Give number within symmetry,2*J and parity (+/-) >>2,4,+ Give number within symmetry,2*J and parity (+/-) >>3,4,+ Give number within symmetry,2*J and parity (+/-) >>4,4,+ Least-squares fit (y/n) ? >>n
rseqenergy produces the file seqenergyplot.m. To run this file, open GNU Octave (or Matlab) and issue the command
octave:1>seqenergyplot
On the GNU Octave command line, and the plot shown in Figure 7 will appear. There is an energy level anti-crossing around .
Figure 7.
Plot of the energy of the four lowest even parity states with as function of the nuclear charge Z. There is an energy level anti-crossing around . The M-file was edited, and we added the legend, see Section 11.5.
We now turn to the hyperfine structure. The hyperfine structure file hfs26 is shown below
Nuclear spin 1.000000000000000D+00 au Nuclear magnetic dipole moment 1.000000000000000D+00 n.m. Nuclear electric quadrupole moment 1.000000000000000D+00 barns Interaction constants: Level1 J Parity A (MHz) B (MHz) g_J 1 1 + -3.4234867098D+02 4.4613609212D+03 1.5001883281D+00 2 1 + -1.9244748754D+04 6.2528206291D+02 4.9806452460D-01 3 1 + -1.1351236243D+01 6.2649343224D+02 1.5002882611D+00 1 2 + 8.7390089731D+03 1.1076017221D+04 1.0772838047D+00 2 2 + 4.4795474977D+03 -5.4746961897D+03 1.4215362332D+00 3 2 + 8.8230369547D+03 8.9310422936D+02 1.1660563087D+00 4 2 + 2.4077816233D+03 5.0250957600D+03 9.9939681308D-01 5 2 + 1.8500821856D+03 5.8565536591D+02 6.6595057454D-01 6 2 + 1.2714709459D+03 -7.1108884710D+02 1.0473515636D+00 7 2 + 7.3078965369D+02 -1.2063797242D+03 1.4511063589D+00 1 3 + 1.5225771095D+04 1.7639256187D+03 1.3331477513D+00 2 3 + 1.1924106175D+03 6.4316600861D+02 1.0826447519D+00 1 4 + 9.0356371406D+02 8.6788620599D+02 1.2493914010D+00 2 4 + 1.2426420132D+03 3.5362685668D+03 9.9942996698D-01
States are specified in the same way as in the energy file by giving position (level1) within the symmetry, the J quantum number and the parity. To plot the hyperfine interaction constants or the Landé factor as a function of the nuclear charge, we use the program rseqhfs. The input session for plotting the magnetic dipole interaction constant for the states 2 2 + and 3 2 + is shown below (again please note that you should input and not J)
>>rseqhfs RSEQHFS This program reads output from rhfs for several ions and produces a Matlab/Octave file that plots hfs parameters as functions of Z Input files: hfsZ1, hfsZ2, .., hfsZn or Output file: seqhfsplot.m Give the first Z and last Z of the sequence >>26,60 How many states do you want to plot? >>2 Give number within symmetry,2*J and parity (+/-) >>2,4,+ Give number within symmetry,2*J and parity (+/-) >>3,4,+ Plot A (1), B (2) or gJ (3) ? >>1 Least-squares fit (y/n) ? >>n
rseqhfs produces the file seqhfsplot.m. To run this file open GNU Octave (or Matlab) and issue the command
octave:1>seqhfsplot
at the GNU Octave command line and the plot in Figure 8 will now be displayed. The strong mixing of the CSFs around the level anti-crossing at causes interference effects that have large influence on the hyperfine structure constants of the two states.
Figure 8.
Plot of the hyperfine interaction constants for the two interfering even parity states with as function of the nuclear charge Z. The M-file was edited, and we added the legend, see Section 11.5.
The transition file trans26 is shown below. A transition is specified by giving the multipolarity along with the position (Lev) within the symmetry, the J quantum number and the parity for the upper and lower states.
Transition between files:
f1 = even5
f2 = odd5
Electric 2**( 1)-pole transitions
=================================
Upper Lower
f2 1 1 - f1 1 0 + 238799.35 C 4.30268D+07 3.39353D-03 4.67836D-03
B 4.08059D+07 3.21837D-03 4.43688D-03
f2 2 1 - f1 1 0 + 354957.74 C 2.33297D+10 8.32789D-01 7.72385D-01
B 2.28391D+10 8.15275D-01 7.56142D-01
f2 3 1 - f1 1 0 + 985926.68 C 2.38998D+05 1.10582D-06 3.69245D-07
B 9.80884D+04 4.53845D-07 1.51544D-07
f2 4 1 - f1 1 0 + 998920.17 C 6.50658D+04 2.93272D-07 9.66530D-08
B 4.71469D+04 2.12506D-07 7.00351D-08
f2 5 1 - f1 1 0 + 1079102.13 C 3.67086D+08 1.41782D-03 4.32549D-04
B 3.05391D+08 1.17953D-03 3.59851D-04
f1 2 0 + f2 1 1 - 317666.81 C 1.88797D+10 2.80485D-01 2.90679D-01
B 1.82388D+10 2.70963D-01 2.80811D-01
...............
f1 2 4 + f2 3 3 - 342809.55 C 2.26092D+10 2.59586D+00 2.49289D+00
B 2.24521D+10 2.57782D+00 2.47557D+00
f1 1 4 + f2 1 4 - 426534.79 C 1.66046D+10 1.23146D+00 9.50477D-01
B 1.52594D+10 1.13169D+00 8.73472D-01
f1 2 4 + f2 1 4 - 459562.33 C 2.30387D+07 1.47187D-03 1.05439D-03
B 2.11352D+07 1.35026D-03 9.67271D-04
To plot A, or S as a function of the nuclear charge, we use the program rseqtrans. The input session for plotting the transition rate A from the states 2 2 + and 3 2 + to 1 1 - is shown below. Please observe that we should input .
>>rseqtrans RSEQTRANS This program reads output from rtransition for several ions and produces a Matlab/Octave file that plots A, gf, or S as a function of Z Input files: transZ1, transZ2, .., transZn Output file: seqtransplot.m Give the first Z and last Z of the sequence >>26,60 Give multipolarity of transition: E1, M1, E2, M2 >>E1 How many transitions do you want to plot? >>2 Give number within symmetry,2*J and parity (+/-) for upper and lower state >>2,4,+,1,2,- Give number within symmetry,2*J and parity (+/-) for upper and lower state >>3,4,+,1,2,- Plot A (1), gf (2) or S (3) ? >>1 Least-squares fit (y/n) ? >>n
The rseqtrans program produces the file seqtransplot.m. To run this file, open GNU Octave or Matlab and issue the command
octave:1>seqtransplot
and the plot in Figure 9 will now be shown. The strong mixing of the CSFs around the level anti-crossing at causes interference effects that influence the rates.
Figure 9.
Plot of transition rates involving two interfering states. The M-file was edited, and we added the legend, see Section 11.5.
11.4. Least-Squares Fits to Data
If deemed important, least-squares fits can be done for atomic data that are not affected by interference effects from level anti-crossings. Below we fit a polynomial to the energies for the 1 0 -, 1 1 -, 2 1 -, and 1 2 - states.
>>rseqenergy
RSEQENERGY
This program reads output from rlevels for several
ions and produces a Matlab/Octave file that plots
energy as a function of Z
Input files: energyZ1, energyZ2, .., energyZn
Output file: seqenergyplot.m
Give the first Z and last Z of the sequence
>>26,60
How many states do you want to plot?
>>4
Give number within symmetry,2*J and parity (+/-)
>>1,0,-
Give number within symmetry,2*J and parity (+/-)
>>1,2,-
Give number within symmetry,2*J and parity (+/-)
>>2,2,-
Give number within symmetry,2*J and parity (+/-)
>>1,4,-
Least-squares fit (y/n) ?
>>y
Type of fitting: a1 Z^-2 + a2 Z^-1 + ...+ a6 Z^3 (1)
a1 + a2 Z + a3 Z^2 + a4 Z^3 (2)
>>2
Starting GNU Octave (or Matlab) and giving the command
octave:1>seqenergyplot
at the GNU Octave command line gives the fitting coefficients for the four states
a = -3.8990e+00 9.3243e-02 -3.2068e-04 5.5596e-06 a = -3.3884e+00 5.7768e-02 4.6734e-04 -7.9666e-08 a = -3.4271e+00 1.4637e-01 -3.6443e-03 4.5791e-05 a = -3.1674e+00 1.3634e-01 -3.6161e-03 4.7051e-05
along with the plot in Figure 10.
Figure 10.
Polynomial fitted to the energies of the 1 0 -, 1 1 -, 2 1 -, and 1 2 - states. The m-file was edited, and we added the legend, see Section 11.5.
We can do fits to transition data as well. Below we fit a Laurent series to the line strength S for the transition from 1 1 -, 2 1 - down to 1 0 +.
>>rseqtrans
RSEQTRANS
This program reads output from rtransition for several
ions and produces a Matlab/Octave file that plots
A, gf, or S as a function of Z
Input files: transZ1, transZ2, .., transZn
Output file: seqtransplot.m
Give the first Z and last Z of the sequence
>>26,60
Give multipolarity of transition: E1, M1, E2, M2
>>E1
How many transitions do you want to plot?
>>2
Give number within symmetry,2*J and parity (+/-)
for upper and lower state
>>1,2,-,1,0,+
Give number within symmetry,2*J and parity (+/-)
for upper and lower state
>>2,2,-,1,0,+
Plot A (1), gf (2) or S (3) ?
>>3
Least-squares fit (y/n) ?
>>y
Type of fitting: a1 Z^-2 + a2 Z^-1 + ...+ a6 Z^3 (1)
a1 + a2 Z + a3 Z^2 + a4 Z^3 (2)
>>1
Starting GNUOctave (or Matlab) and giving the command
octave:1>seqtransplot
at the GNU Octave command line gives the fitting coefficients
a = -2.9422e+04 4.7527e+03 -2.9700e+02 8.5307e+00 -1.1226e-01 5.4992e-04 a = 1.4276e+04 -1.1873e+03 4.8383e+01 -1.0910e+00 1.2034e-02 -5.2794e-05
The produced plot is displayed in Figure 11. The fitted function describes the data very well.
Figure 11.
Fitted function to the line strength S for the transitions of 1 1 -, 2 1 - down to the 1 0 + groundstate. The m-file was edited, and we added the legend, see Section 11.5.
11.5. Modifying the GNU Octave/MATLAB M-Files
The M-files produced by rseqenergy, rseqhfs and rseqtrans are very easy to modify to include legends, change captions etc. Additionally, other types of modifications should be considered. If, for example, calculations are done for even Z in an iso-electronic sequence then the user can easily modify seqenergyplot.m to output interpolated values of the energies for odd Z. Away from level anti-crossings the accuracy of the interpolated values should be quite high. In many cases data for a full iso-electronic sequence can be interpolated from a comparatively small number of ions. The M-files can be concatenated (some minor editing is needed) and it is then possible to overlay several plots.
The seqtransplot.m file from the last run is shown below. The data are organized in a matrix A where the first column contains the nuclear charge Z. The atomic data are stored in columns 2 and 3. Standard commands are used for plotting and least-squares fits.
A = [
26 4.4368799999999998E-003 0.75614199999999998
27 5.1946300000000004E-003 0.68008400000000002
28 6.0161700000000004E-003 0.61473800000000001
29 6.8959800000000003E-003 0.55813599999999997
30 7.8269499999999992E-003 0.50873800000000002
31 8.8007499999999995E-003 0.46534399999999998
32 9.8050199999999994E-003 0.42698700000000001
33 1.0828300000000001E-002 0.39289900000000000
34 1.1857500000000000E-002 0.36245699999999997
35 1.2878700000000000E-002 0.33515299999999998
36 1.3878400000000001E-002 0.31056699999999998
37 1.4843300000000000E-002 0.28835200000000000
38 1.5761100000000000E-002 0.26822099999999999
39 1.6621100000000000E-002 0.24992900000000001
40 1.7414099999999998E-002 0.23326900000000000
41 1.8133000000000000E-002 0.21806200000000001
42 1.8772700000000000E-002 0.20415900000000001
43 1.9330000000000000E-002 0.19142600000000001
44 1.9803700000000000E-002 0.17974599999999999
45 2.0194199999999999E-002 0.16901600000000000
46 2.0503600000000000E-002 0.15914600000000001
47 2.0734900000000001E-002 0.15005599999999999
48 2.0892299999999999E-002 0.14167199999999999
49 2.0980599999999999E-002 0.13392999999999999
50 2.1004800000000001E-002 0.12677099999999999
51 2.0970699999999998E-002 0.12014300000000000
52 2.0883800000000001E-002 0.11399800000000000
53 2.0749699999999999E-002 0.10829400000000000
54 2.0573700000000000E-002 0.10299200000000000
55 2.0360799999999998E-002 9.8056500000000005E-002
56 2.0116100000000001E-002 9.3456800000000007E-002
57 1.9844100000000000E-002 8.9163800000000001E-002
58 1.9548800000000002E-002 8.5151699999999997E-002
59 1.9234100000000001E-002 8.1397200000000003E-002
60 1.8903300000000001E-002 7.7879100000000007E-002
];
clf, hold on
zip = linspace( 26, 60);
title('transition parameters as functions of Z')
xlabel('Z')
ylabel('S')
plot(A(:,1),A(:, 2),'+')
z = A(:,1);
AD = [z.^(-2) z.^(-1) z.^0 z.^1 z.^2 z.^3];
y = A(:, 2);
m = mean(y); s = std(y);
a = AD\(y-m)/s
aiplsq = a(1)./zip.^2 + a(2)./zip + a(3) + a(4)*zip + a(5)*zip.^2 + a(6)*zip.^3;
aiplsq = s*aiplsq + m;
plot(zip,aiplsq,'r')
plot(A(:,1),A(:, 3),'+')
z = A(:,1);
AD = [z.^(-2) z.^(-1) z.^0 z.^1 z.^2 z.^3];
y = A(:, 3);
m = mean(y); s = std(y);
a = AD\(y-m)/s
aiplsq = a(1)./zip.^2 + a(2)./zip + a(3) + a(4)*zip + a(5)*zip.^2 + a(6)*zip.^3;
aiplsq = s*aiplsq + m;
plot(zip,aiplsq,'r')
12. Case Study IV: Isotope Shift in Li-like Nd and the Effect of Nuclear Deformation Using fical
In this case study, we use script files to generate wave functions for the and states in Li-like Nd from which the isotope shift parameters are computed. The isotope shift parameters are used as input for the fical program that computes the frequency isotope shift based on that 1) the Nd nucleus is assumed to be spherical and 2) the Nd nucleus is assumed to be deformed with a deformation parameter [48]. The Nd nucleus is assumed to be spherical.
We start with a single calculation for the and states. After that, separate calculations are done for the even and odd parities. Correlation is included by allowing single, double, and triple (SDT) excitations from the reference to active sets up to (complete active space calculations). The Breit interactions and QED effects are included in the rci calculations. At the end, the ris4 program is run to produce isotope data for the even and odd states. The script files can be found in grasptest/case2/script.
12.1. Running Script Files
The main script sh_case4 is shown below. This script controls the computational flow and calls several subscripts.
#!/bin/sh
set -x
# Main script for 1s(2)2s and 1s(2)2p
# 1. Generate the expansions
./sh_files_c
# 2. Get the nuclear data
./sh_nuc
# 3. Get screened hydrogenic orbitals as initial estimates
./sh_initial
# 4. Perform scf calculations and a final rci calculation that
# includes the Breit correction and QED. Perform ris4
# calculations for the rci wave functions
./sh_scf
Each of the subscripts is given below together with some comments.
If all script files are available with execute permission (use the command chmod +x) we start the computation by typing the name of the main script
./sh_case4
- 1.
-
Generate Expansions
The expansions are generated by the script sh_files_c. The script is simplified by generating lists for large active sets and then using rcsfsplit, see Section 7.1.
#!/bin/sh set -x # 1. Generate CSF expansions # 1.1 DF for 1s(2)2s and 1s(2)2p rcsfgenerate <<EOF1 * 0 1s(2,i)2s(1,i) 2s 1,1 0 y 1s(2,i)2p(1,i) 1s,2p 1,3 0 n EOF1 cp rcsf.out DF.c # 1.2 SDT even for n=4 rcsfgenerate <<EOF3 * 0 1s(2,*)2s(1,*) 4s,4p,4d,4f 1,1 3 n EOF3 cp rcsf.out even.c # Split into even3.c, even4.c rcsfsplit <<EOF5 even 2 3s,3p,3d 3 4s,4p,4d,4f 4 EOF5 # 1.3 SDT odd for n=4 rcsfgenerate <<EOF3 * 0 1s(2,*)2p(1,*) 4s,4p,4d,4f 1,3 3 n EOF3 cp rcsf.out odd.c # Split into odd3.c, odd4.c rcsfsplit <<EOF5 odd 2 3s,3p,3d 3 4s,4p,4d,4f 4 EOF5
- 2.
-
Get Nuclear Data
Nuclear data are defined by the script sh_nuc. Since we are not interested in hyperfine structure, the nuclear spin and moments have all been set to 1.
#!/bin/sh set -x # 2. Get nuclear data for 150Nd rnucleus <<S1 60 150 n 150 1 1 1 S1 cat isodata
- 3.
-
Get Initial Estimates
The script sh_initial performs angular integration, gets initial estimates and performs rmcdhf calculations for the and reference states. As initial estimates, we use screened hydrogenic functions. For the reference states, all orbitals are required to be spectroscopic, i.e., they should have the correct number of nodes, see Section 7.1. Please note how we (to simplify the scripts for the rmcdhf calculations for and ) copy the radial wave functions to two files even2.w and odd2.w
#!/bin/sh set -x # 3. Get initial estimates for DF cp DF.c rcsf.inp rangular <<S4 y S4 # Get initial estimates of wave functions rwfnestimate <<S5 y 3 * S5 # Perform self-consistent field calculations rmcdhf > DF <<S6 y 1 1 1 5 * * 100 S6 # Save the result to DF rsave DF # For convenience in the scf script, and to avoid if statements in the latter, # copy DF.w to even2.w and odd2.w cp DF.w even2.w cp DF.w odd2.w
- 4.
-
rmcdhf, rci and ris4 Calculations
The script sh_scf performs angular integration, estimates the new radial functions and performs rmcdhf for the odd and even states up to . At the end, rci calculations are performed for the largest expansions. The rci calculations include Breit interaction and QED corrections. All results are transformed to -coupling. Please note how we loop in the script over the digit n that indicates the size of the orbital set.
#!/bin/sh set -x # 4. Get results for even n=3,4 # Please note that we copied DF.w to even2.w so this is available for n in 3 4 do (cp even${n}.c rcsf.inp # Get angular data rangular <<S1 y S1 # Get initial estimates of wave functions m=`expr $n - 1` echo m=$m n=$n rwfnestimate <<S2 y 1 even${m}.w * 3 * S2 # Perform self-consistent field calculations rmcdhf > outeven_rmcdhf_${n} <<S3 y 1 ${n}* 100 S3 rsave even${n} echo) done # Perform Breit-correction using CI for n=4 n=4 cp even${n}.c evenCI${n}.c cp even${n}.w evenCI${n}.w rci > outeven_rci <<S4 y evenCI${n} y y 1.d-6 y n n y 4 1 S4 # RIS4 calculation using CI for n=4 ris4 > outeven_ris4 <<S5 y evenCI${n} y y n S5 # Get results for odd n=3,4 # Please note that we copied DF.w to odd2.w so this is available for n in 3 4 do (cp odd${n}.c rcsf.inp # Get angular data rangular <<S6 y S6 # Get initial estimates of wave functions m=`expr $n - 1` echo m=$m n=$n rwfnestimate <<S7 y 1 odd${m}.w * 3 * S7 # Perform self-consistent field calculations rmcdhf > outodd_rmcdhf_${n} <<S8 y 1 1 5 ${n}* 100 S8 rsave odd${n} echo) done # Perform Breit-correction using CI for n=4. First copy to other file names n=4 cp odd${n}.c oddCI${n}.c cp odd${n}.w oddCI${n}.w rci > outodd_rci <<S9 y oddCI${n} y y 1.d-6 y n n y 4 1 1 S9 # RIS4 calculation using CI for n=4 ris4 > outodd_ris4 <<S10 y oddCI${n} y y n S10
12.2. Evaluating the Isotope Shift Using fical
Given the isotope shift parameters in evenCI4.ci and oddCI4.ci we use fical (frequency isotope calculation) to compute the Nd isotope shift. In fical, a five-parameter Fermi distribution is used to compute the nuclear radial moments, which together with the electronic factors is used to compute the line frequency field shift. To study the effect of deformation in Nd we do two calculations, where we in the first case assume a spherical nucleus for Nd () and in the second case a deformed nucleus for Nd with . In all cases, we use skin diffuseness parameter fm, and , where the latter is a parameter describing the nuclear interior. The rest of the used nuclear parameters are collected in Table 12.
Table 12.
Nuclear parameters for Nd isotopes.
Input to fical in the first case with spherical nucleus for Nd.
>>fical WELCOME TO PROGRAM FICAL Computes line frequency isotope shift parameters and/or energies using output files from ris4 Input files: <state1>.(c)i, <state2>.(c)i Output file: <state1>.<state2>.(c)fi Default settings (y/n)?: >>n Give name of state 1: >>evenCI4 Give name of state 2: >>oddCI4 Resulting isotope shifts from CI calculations (y/n)?: >>y Have electronic factors been calculated (y/n)?: >>y Compute IS parameters (para), IS energies (ener) or both (both)?: both Units (GHz, MHz or meV)?: >>meV Use relativistically corrected mass shift parameters (y/n)?: >>y Use sophisticated model for radial moments (y/n)?: >>y Data for isotope 1 Enter mass(amu),rms radius, t, omega, b20, b40: >>141.907719d0,4.9123d0,2.3d0,0.d0,0.d0,0.d0 Data for isotope 2 Enter mass(amu),rms radius, t, omega, b20, b40: >>149.920887d0,5.0400d0,2.3d0,0.d0,0.d0,0.d0 program FICAL finished ... Isotope shift parameters/energies written to file evenCI4.oddCI4.cfi
Copy output file
cp evenCI4.oddCI4.cfi spherical_150Nd.cfi
Input to fical in the second case with deformed nucleus for Nd with deformation parameter .
>>fical WELCOME TO PROGRAM FICAL Computes line frequency isotope shift parameters and/or energies using output files from ris4 Input files: <state1>.(c)i, <state2>.(c)i Output file: <state1>.<state2>.(c)fi Default settings (y/n)?: >>n Give name of state 1: >>evenCI4 Give name of state 2: >>oddCI4 Resulting isotope shifts from CI calculations (y/n)?: >>y Have electronic factors been calculated (y/n)?: >>y Compute IS parameters (para), IS energies (ener) or both (both)?: >>both Units (GHz, MHz or meV)?: >>meV Use relativistically corrected mass shift parameters (y/n)?: >>y Use sophisticated model for radial moments (y/n)?: >>y Data for isotope 1 Enter mass(amu),rms radius, t, omega, b20, b40: >>141.907719d0,4.9123d0,2.3d0,0.d0,0.d0,0.d0 Data for isotope 2 Enter mass(amu),rms radius, t, omega, b20, b40: >>149.920887d0,5.0400d0,2.3d0,0.d0,0.28d0,0.d0 program FICAL finished ... Isotope shift parameters/energies written to file evenCI4.oddCI4.cfi
Copy output file
cp evenCI4.oddCI4.cfi deformed_150Nd.cfi
The output file from fical in the spherical case is shown below
REFERENCE ISOTOPE DATA FROM ISODATA
Atomic number: 60.000000
Fermi nucleus:
c: 6.002295 fm
r_rms: 5.040000 fm
t: 2.300000 fm
INPUT ISOTOPE DATA
Isotope 1 Isotope 2
Mass [amu]: 141.907719 149.920887
r_rms [fm]: 4.912300 5.040000
t [fm]: 2.300000 2.300000
omega: 0.000000 0.000000
b_20: 0.000000 0.000000
b_40: 0.000000 0.000000
NUCLEAR RADIAL MOMENTS
Isotope 1 Isotope 2 Isotope 1 - Isotope 2
<r^2> [fm^2]: 2.41307D+01 2.54016D+01 -1.27091D+00
<r^4> [fm^4]: 7.60906D+02 8.39120D+02 -7.82141D+01
<r^6> [fm^6]: 2.88468D+04 3.31530D+04 -4.30613D+03
<r^8> [fm^8]: 1.28426D+06 1.52909D+06 -2.44823D+05
LINE MASS SHIFT PARAMETERS
Upper level Lower level Energy (cm-1) NMS-S (meV u) NMS (meV u) SMS (meV u) MS (meV u)
1 1/2 - 1 1/2 + 1125499.71 -7.6551133D+01 -6.3724766D+01 -3.3925317D+03 -3.4562565D+03
1 3/2 - 1 1/2 + 5888985.01 -4.0054073D+02 -3.5384665D+02 -3.6362230D+03 -3.9900697D+03
LINE FIELD SHIFT PARAMETERS
Upper level Lower level Energy (cm-1) F0 (meV fm-2) F2 (meV fm-4) F4 (meV fm-6) F6 (meV fm-8)
1 1/2 - 1 1/2 + 1125499.71 -3.2436717D+01 2.5299266D-02 -7.6869849D-05 1.4267634D-07 0.0000000
1 3/2 - 1 1/2 + 5888985.01 -3.3575752D+01 2.6140884D-02 -7.9461478D-05 1.4748393D-07 1.7895846
Upper level Lower level Energy (cm-1) F0VED0 (meV fm-2) F0VED1 (meV fm-4)
1 1/2 - 1 1/2 + 1125499.71 -3.1084870D+01 2.1805779D-02 0.0000000
1 3/2 - 1 1/2 + 5888985.01 -3.2179044D+01 2.2527429D-02 2.0376932
LINE ISOTOPE SHIFT ENERGIES
Upper level Lower level Energy (cm-1) MS (meV) FS (meV) IS (meV)
1 1/2 - 1 1/2 + 1125499.71 1.3017934D+00 -3.9541428D+01 -3.8239635D+01
1 3/2 - 1 1/2 + 5888985.01 1.5028532D+00 -4.0933194D+01 -3.9430341D+01
The output file from fical in the deformed case is shown below
REFERENCE ISOTOPE DATA FROM ISODATA
Atomic number: 60.000000
Fermi nucleus:
c: 6.002295 fm
r_rms: 5.040000 fm
t: 2.300000 fm
INPUT ISOTOPE DATA
Isotope 1 Isotope 2
Mass [amu]: 141.907719 149.920887
r_rms [fm]: 4.912300 5.040000
t [fm]: 2.300000 2.300000
omega: 0.000000 0.000000
b_20: 0.000000 0.280000
b_40: 0.000000 0.000000
NUCLEAR RADIAL MOMENTS
Isotope 1 Isotope 2 Isotope 1 - Isotope 2
<r^2> [fm^2]: 2.41307D+01 2.54016D+01 -1.27091D+00
<r^4> [fm^4]: 7.60906D+02 8.54142D+02 -9.32367D+01
<r^6> [fm^6]: 2.88468D+04 3.47906D+04 -5.94381D+03
<r^8> [fm^8]: 1.28426D+06 1.66639D+06 -3.82129D+05
LINE MASS SHIFT PARAMETERS
Upper level Lower level Energy (cm-1) NMS-S (meV u) NMS (meV u) SMS (meV u) MS (meV u)
1 1/2 - 1 1/2 + 1125499.71 -7.6551133D+01 -6.3724766D+01 -3.3925317D+03 -3.4562565D+03
1 3/2 - 1 1/2 + 5888985.01 -4.0054073D+02 -3.5384665D+02 -3.6362230D+03 -3.9900697D+03
LINE FIELD SHIFT PARAMETERS
Upper level Lower level Energy (cm-1) F0 (meV fm-2) F2 (meV fm-4) F4 (meV fm-6) F6 (meV fm-8)
1 1/2 - 1 1/2 + 1125499.71 -3.2436717D+01 2.5299266D-02 -7.6869849D-05 1.4267634D-07 0.0000000
1 3/2 - 1 1/2 + 5888985.01 -3.3575752D+01 2.6140884D-02 -7.9461478D-05 1.4748393D-07 1.7895846
Upper level Lower level Energy (cm-1) F0VED0 (meV fm-2) F0VED1 (meV fm-4)
1 1/2 - 1 1/2 + 1125499.71 -3.1084870D+01 2.1805779D-02 0.0000000
1 3/2 - 1 1/2 + 5888985.01 -3.2179044D+01 2.2527429D-02 2.0376932
LINE ISOTOPE SHIFT ENERGIES
Upper level Lower level Energy (cm-1) MS (meV) FS (meV) IS (meV)
1 1/2 - 1 1/2 + 1125499.71 1.3017934D+00 -3.9267665D+01 -3.7965872D+01
1 3/2 - 1 1/2 + 5888985.01 1.5028532D+00 -4.0650373D+01 -3.9147519D+01
In Table 13, the resulting line frequency mass shifts (MS), field shifts (MS) and isotope shifts (IS) in units of meV for the and transitions are collected. The field shifts labeled Nd () and Nd (spherical) have been computed using the full set of line field shift factors (F0, F2, F4, F6) and radial moments (<rN>) given in the fical output files (see TP Section 3.3). It is seen that with the onset of deformation in Nd, the resulting field shifts increase with 0.27 meV and 0.28 meV for the and transitions, respectively. This is in very good agreement with other calculations using alternative methods [49,50]. In the table, as Nd (spherical, ved), we also show the field shifts computed with the reduced electronic factors (F0VED0 in output) and (F0VED1 in output) as (see TP Section 3.3)
where fm has been used. As seen in the table, these approximate values, in units of meV, agree well with field shifts computed with the full set of electronic factors, assuming the Nd nucleus to be spherical.
Table 13.
Line frequency isotope shifts in units of meV for the and transitions in Nd.
13. Methods to Ensure Convergence
In this section, we will try to give some practical advice on how to handle cases when the rmcdhf calculations for the MR do not converge. In the calculations for the MR the orbitals are spectroscopic and are required to have the correct number of nodes. Once the MR is in place, the remaining rmcdhf calculations for layers of correlation orbitals (no node counting required) are unproblematic.
13.1. Start with the Core and Gradually Build the Orbitals
Advice is to start from the inner part of the core and gradually include more and more core orbitals until simultaneous convergence of all core orbitals has been achieved. Once the core orbitals are in place, gradually start to build more and more valence orbitals. If needed, keep all previous orbitals fixed the first time a layer of new orbitals is introduced. Once the new layer of orbitals is converged, optimize all orbitals together. This somewhat tedious multistep procedure is in general the preferred way to achieve convergence. If not working, the methods suggested below can be used.
13.2. Using Converted Hartree–Fock Orbitals
It can be difficult to achieve convergence when the MR consists of many configurations. In these cases, advice is to do a sequence of average HF calculations for the different configurations. The wave functions for each HF run are saved and at the end all wave functions are concatenated and then converted to relativistic wave functions that are used as starting estimates. As a practical example, we will perform a calculation for all states belonging to , , , , in Mg I using converted HF orbitals as starting estimates.
- Overview
- Define nuclear data.
- Generate list of CSFs for the MR set.
- Perform angular integration.
- Generate initial estimates of radial orbitals.
- Perform SCF calculation on the weighted average of the states (this will fail).
- Perform average HF calculations for the configurations. Save the wave functions for each run.
- Concatenate the HF wave functions to a file wfn.inp.
- Use rwfnmchfmcdf to convert the wfn.inp to rwfn.out.
- Copy rwfn.out to rwfn.inp and run rmcdhf (this will converge).
- Run rsave.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>12
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>24
The default root mean squared radius is 3.0569999217987061 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>24
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs *
* FOR THE MULTIREFERNCE *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>2
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>3s(2,i)
Give configuration 2
>>3s(1,i)3p(1,i)
Give configuration 3
>>3s(1,i)4s(1,i)
Give configuration 4
>>3s(1,i)3d(1,i)
Give configuration 5
>>3s(1,i)4p(1,i)
Give configuration 6
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,6
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
....
7 blocks were created
block J/P NCSF
1 0+ 2
2 0- 2
3 1+ 2
4 1- 4
5 2+ 2
6 2- 2
7 3+ 1
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 12 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.4601D+02 0.8063D+02 0.1000D+01 0.1332D+00 331 T-F
2s 0.3992D+01 0.2155D+02 0.1000D+01 0.6753D+00 355 T-F
2p- 0.2856D+01 0.2719D-01 0.1000D+01 0.6377D+00 358 T-F
2p 0.2845D+01 0.5572D+02 0.2000D+01 0.6395D+00 358 T-F
3s 0.4681D+00 0.6648D+01 0.1000D+01 0.2415D+01 378 T-F
3p- 0.2743D+00 0.7261D-02 0.1000D+01 0.2954D+01 383 T-F
3p 0.2736D+00 0.1488D+02 0.2000D+01 0.2960D+01 383 T-F
3d- 0.8141D-01 0.4498D-03 0.2000D+01 0.6214D+01 397 T-F
3d 0.8141D-01 0.1119D+01 0.3000D+01 0.6215D+01 397 T-F
4s 0.1150D+00 0.2438D+01 0.1000D+01 0.7036D+01 394 T-F
4p- 0.8009D-01 0.2721D-02 0.1000D+01 0.8957D+01 398 T-F
4p 0.7998D-01 0.5583D+01 0.2000D+01 0.8969D+01 398 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p *
* AND THEY ARE ALL SPECTROSCOPIC. *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 12 relativistic subshells;
Loading CSF File for ALL blocks
There are 15 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 7 blocks (block J/Parity NCF):
1 0+ 2 2 0- 2 3 1+ 2 4 1- 4
5 2+ 2 6 2- 2 7 3+ 1
Enter ASF serial numbers for each block
Block 1 ncf = 2 id = 0+
>>1,2
Block 2 ncf = 2 id = 0-
>>1,2
Block 3 ncf = 2 id = 1+
>>1,2
Block 4 ncf = 4 id = 1-
>>1-4
Block 5 ncf = 2 id = 2+
>>1,2
Block 6 ncf = 2 id = 2-
>>1,2
Block 7 ncf = 1 id = 3+
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
...
3p 4p -6.226030140D-03
Method 2 unable to solve for 4s orbital
Iteration number: 12, limit: 12
Present estimate of P0; 0.35970148280037D+01
Present estimate of E(J): 0.67584059942824D-01, DELEPS: -0.56222533604713D-02
Lower bound on energy: 0.41905738989649D-01, upper bound: 0.58877041760686D+01
Join point: 366, Maximum tabulation point: 404
Number of nodes counted: 3, Correct number: 3
Sign of P at first oscillation: -1.
Failure; equation for orbital 4s could not be solved using method 2
****** Error in SUBROUTINE IMPROV ******
Convergence not obtained
*******************************************************************************
* RMCDHF CALCULATION DOES NOT CONVERGE. WE PERFORM HF CALCULATIONS *
* FOR 3s3p, 3s4s, 3s3d, 3s4p TO OBTAIN BETTER ESTIMATES OF THE *
* WAVE FUNCTION *
*******************************************************************************
*******************************************************************************
* HF CALCULATION FOR 3s3p *
*******************************************************************************
>>hf
=============================
H A R T R E E - F O C K . 86
=============================
THE DIMENSIONS FOR THE CURRENT VERSION ARE:
NWF= 20 NO=220
START OF CASE
=============
Enter ATOM,TERM,Z
Examples: O,3P,8. or Oxygen,AV,8.
>>Mg,AV,12.
List the CLOSED shells in the fields indicated (blank line if none)
... ... ... ... ... ... ... ... etc.
>> 1s 2s 2p (! NOTE That shells occupy three positions and are right-justified)
Enter electrons outside CLOSED shells (blank line if none)
Example: 2s(1)2p(3)
>>3s(1)3p(1)
There are 5 orbitals as follows:
1s 2s 2p 3s 3p
Orbitals to be varied: ALL/NONE/=i (last i)/comma delimited list/H
>>all
Default electron parameters ? (Y/N/H)
>>y
1s 1.00 0.000 76.282 SCREENED HYDROGENIC
2s 3.00 0.000 22.274 SCREENED HYDROGENIC
2p 7.00 0.000 32.977 SCREENED HYDROGENIC
3s 10.00 0.000 3.810 SCREENED HYDROGENIC
3p 11.00 0.000 5.111 SCREENED HYDROGENIC
Default values for remaining parameters? (Y/N/H)
>>y
...................
TOTAL ENERGY (a.u.)
----- ------
Non-Relativistic -199.52165286 Kinetic 199.52163203
Relativistic Shift -0.29267673 Potential -399.04328489
Relativistic -199.81432960 Ratio -2.000000104
Additional parameters ? (Y/N/H)
>>n
Do you wish to continue along the sequence ?
>>n
END OF CASE
===========
*******************************************************************************
* COPY FILE WFN.OUT TO WFN3S3P *
*******************************************************************************
>>cp wfn.out wfn3s3p
*******************************************************************************
* HF CALCULATION FOR 3s4s COPY wfn.out TO wfn3s4s *
*******************************************************************************
>>hf
=============================
H A R T R E E - F O C K . 86
=============================
THE DIMENSIONS FOR THE CURRENT VERSION ARE:
NWF= 20 NO=220
START OF CASE
=============
Enter ATOM,TERM,Z
Examples: O,3P,8. or Oxygen,AV,8.
>>Mg,AV,12.
List the CLOSED shells in the fields indicated (blank line if none)
... ... ... ... ... ... ... ... etc.
>> 1s 2s 2p
Enter electrons outside CLOSED shells (blank line if none)
Example: 2s(1)2p(3)
>>3s(1)4s(1)
There are 5 orbitals as follows:
1s 2s 2p 3s 4s
Orbitals to be varied: ALL/NONE/=i (last i)/comma delimited list/H
>>all
Default electron parameters ? (Y/N/H)
>>y
1s 1.00 0.000 76.282 SCREENED HYDROGENIC
2s 3.00 0.000 22.274 SCREENED HYDROGENIC
2p 7.00 0.000 32.977 SCREENED HYDROGENIC
3s 10.00 0.000 3.810 SCREENED HYDROGENIC
4s 11.00 0.000 1.625 SCREENED HYDROGENIC
Default values for remaining parameters? (Y/N/H)
>>y
...............
TOTAL ENERGY (a.u.)
----- ------
Non-Relativistic -199.45963917 Kinetic 199.45962102
Relativistic Shift -0.29285961 Potential -398.91926019
Relativistic -199.75249878 Ratio -2.000000091
Additional parameters ? (Y/N/H)
>>n
Do you wish to continue along the sequence ?
>>n
END OF CASE
===========
*******************************************************************************
* COPY FILES WFN.OUT TO WFN3S4S *
*******************************************************************************
>>cp wfn.out wfn3s4s
*******************************************************************************
* HF CALCULATION FOR 3s3d *
*******************************************************************************
>>hf
=============================
H A R T R E E - F O C K . 86
=============================
THE DIMENSIONS FOR THE CURRENT VERSION ARE:
NWF= 20 NO=220
START OF CASE
=============
Enter ATOM,TERM,Z
Examples: O,3P,8. or Oxygen,AV,8.
>>Mg,AV,12.
List the CLOSED shells in the fields indicated (blank line if none)
... ... ... ... ... ... ... ... etc.
>> 1s 2s 2p
Enter electrons outside CLOSED shells (blank line if none)
Example: 2s(1)2p(3)
>>3s(1)3d(1)
There are 5 orbitals as follows:
1s 2s 2p 3s 3d
Orbitals to be varied: ALL/NONE/=i (last i)/comma delimited list/H
>>all
Default electron parameters ? (Y/N/H)
>>y
1s 1.00 0.000 76.282 SCREENED HYDROGENIC
2s 3.00 0.000 22.274 SCREENED HYDROGENIC
2p 7.00 0.000 32.977 SCREENED HYDROGENIC
3s 10.00 0.000 3.810 SCREENED HYDROGENIC
3d 11.00 0.000 2.476 SCREENED HYDROGENIC
Default values for remaining parameters? (Y/N/H)
>>y
.............
TOTAL ENERGY (a.u.)
----- ------
Non-Relativistic -199.42914481 Kinetic 199.42914489
Relativistic Shift -0.29277506 Potential -398.85828970
Relativistic -199.72191987 Ratio -2.000000000
Additional parameters ? (Y/N/H)
>>n
Do you wish to continue along the sequence ?
>>n
END OF CASE
===========
*******************************************************************************
* COPY FILE WFN.OUT TO WFN3S3D *
*******************************************************************************
>>cp wfn.out wfn3s3d
*******************************************************************************
* HF CALCULATION FOR 3s4p *
*******************************************************************************
>>hf
=============================
H A R T R E E - F O C K . 86
=============================
THE DIMENSIONS FOR THE CURRENT VERSION ARE:
NWF= 20 NO=220
START OF CASE
=============
Enter ATOM,TERM,Z
Examples: O,3P,8. or Oxygen,AV,8.
>>Mg,AV,12.
List the CLOSED shells in the fields indicated (blank line if none)
... ... ... ... ... ... ... ... etc.
>> 1s 2s 2p
Enter electrons outside CLOSED shells (blank line if none)
Example: 2s(1)2p(3)
>>3s(1)4p(1)
There are 5 orbitals as follows:
1s 2s 2p 3s 4p
Orbitals to be varied: ALL/NONE/=i (last i)/comma delimited list/H
>>all
Default electron parameters ? (Y/N/H)
>>y
1s 1.00 0.000 76.282 SCREENED HYDROGENIC
2s 3.00 0.000 22.274 SCREENED HYDROGENIC
2p 7.00 0.000 32.977 SCREENED HYDROGENIC
3s 10.00 0.000 3.810 SCREENED HYDROGENIC
4p 11.00 0.000 3.409 SCREENED HYDROGENIC
Default values for remaining parameters? (Y/N/H)
>>y
.........
TOTAL ENERGY (a.u.)
----- ------
Non-Relativistic -199.43021560 Kinetic 199.43022615
Relativistic Shift -0.29277432 Potential -398.86044175
Relativistic -199.72298992 Ratio -1.999999947
Additional parameters ? (Y/N/H)
>>n
Do you wish to continue along the sequence ?
>>n
END OF CASE
===========
*******************************************************************************
* COPY WFN.OUT TO WFN3S4P *
*******************************************************************************
>>cp wfn.out wfn3s4p
*******************************************************************************
* CONCATENATE HF WAVE FUNCTION FILES *
*******************************************************************************
>>cat wfn3s3p wfn3s4s wfn3s3d wfn3s4p > wfn.inp
*******************************************************************************
* RUN RWFNMCHFMCDF TO CONVERT NON-RELATIVISTIC RADIAL ORBITALS TO *
* RELATIVISTIC ONES *
* INPUT FILE: wfn.inp *
* OUTPUT FILE: rwfn.out *
*******************************************************************************
>>rwfnmchmcdf
RWFNMCHFMCDF
This program converts non-relativistic radial
orbitals to relativistic ones in GRASP format
Input file: wfn.inp
Output file: rwfn.out
*******************************************************************************
* COPY FILES *
* WE DONT NEED TO INVOKE RWFNESTIMATE SINCE ALL ORBITALS HAVE *
* BEEN ESTIMATED THROUGH THE MCHF MCDF CONVERSION *
*******************************************************************************
>>cp rwfn.out rwfn.inp
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p AND *
* THEY ARE ALL SPECTROSCOPIC. *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 12 relativistic subshells;
Loading CSF File for ALL blocks
There are 15 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 7 blocks (block J/Parity NCF):
1 0+ 2 2 0- 2 3 1+ 2 4 1- 4
5 2+ 2 6 2- 2 7 3+ 1
Enter ASF serial numbers for each block
Block 1 ncf = 2 id = 0+
>>1,2
Block 2 ncf = 2 id = 0-
>>1,2
Block 3 ncf = 2 id = 1+
>>1,2
Block 4 ncf = 4 id = 1-
>>1-4
Block 5 ncf = 2 id = 2+
>>1,2
Block 6 ncf = 2 id = 2-
>>1,2
Block 7 ncf = 1 id = 3+
>>1
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
......
Wall time:
46 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2014/09/05
Time (Hr/Min/Sec): 13/51/24.996
Zone: +0200
RMCDHF: Execution complete.
*******************************************************************************
* THIS TIME IT CONVERGED! RUN RSAVE *
*******************************************************************************
>>rsave mr
Created mr.w, mr.c, mr.m, mr.sum, mr.alog and mr.log
13.3. Decrease Nuclear Charge in Small Steps
Convergence can sometimes be difficult to achieve for large systems that are neutral or near neutral. In these cases, one advice is to edit isodata and increase the nuclear charge. If the rmcdhf run is converged for the increased charge then copy rwfn.out to rwfn.inp, decrease the nuclear charge by a small amount and run rmcdhf that hopefully will converge. Repeat the procedure until you are down to the correct charge. To illustrate the technique, we will perform a calculation for the ground state [Rn] of No I ().
- Overview
- Define nuclear data.
- Generate list of CSFs.
- Perform angular integration.
- Generate initial estimates of radial orbitals.
- Perform SCF calculation on the weighted average of the states (this will not converge)
- Edit isodata and increase nuclear charge to .
- Generate initial estimates of radial orbitals.
- Perform SCF calculation on the weighted average of the states (this will converge).
- Copy rwfn.out to rwfn.inp. Decrease nuclear charge to .
- Perform SCF calculation on the weighted average of the states (this will converge).
- Copy rwfn.out to rwfn.inp. Decrease nuclear charge to .
- Perform SCF calculation on the weighted average of the states (this will converge).
- Copy rwfn.out to rwfn.inp. Decrease nuclear charge to .
- Perform SCF calculation on the weighted average of the states (this will converge).
- Copy rwfn.out to rwfn.inp. Decrease nuclear charge to .
- Perform SCF calculation on the weighted average of the states (this will converge).
- Run rsave.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>102
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>259
The default root mean squared radius is 5.8989242234501091 fm; (default)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>259
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>6
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>5f(14,i)7s(2,i)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>7s,6p,5d,5f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,0
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
1 blocks were created
block J/P NCSF
1 1/2+ 1
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log mr.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
......
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 27 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 7s
Read subshell radial wavefunctions. Choose one below
1--GRASP92 File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.5535D+04 0.8367D+04 0.1000D+01 0.1161D-01 328 T-F
2s 0.1090D+04 0.3673D+04 0.1000D+01 0.4758D-01 344 T-F
2p- 0.1062D+04 0.5365D+03 0.1000D+01 0.3770D-01 344 T-F
2p 0.8187D+03 0.4714D+05 0.2000D+01 0.4932D-01 347 T-F
3s 0.2880D+03 0.1820D+04 0.1000D+01 0.1242D+00 358 T-F
3p- 0.2739D+03 0.2826D+03 0.1000D+01 0.1154D+00 358 T-F
3p 0.2159D+03 0.2629D+05 0.2000D+01 0.1361D+00 360 T-F
3d- 0.1922D+03 0.6033D+03 0.2000D+01 0.1163D+00 361 T-F
3d 0.1810D+03 0.1243D+06 0.3000D+01 0.1223D+00 362 T-F
4s 0.7989D+02 0.9782D+03 0.1000D+01 0.2658D+00 370 T-F
4p- 0.7297D+02 0.1523D+03 0.1000D+01 0.2614D+00 371 T-F
4p 0.5672D+02 0.1435D+05 0.2000D+01 0.2997D+00 374 T-F
4d- 0.4539D+02 0.3560D+03 0.2000D+01 0.2913D+00 375 T-F
4d 0.4246D+02 0.7373D+05 0.3000D+01 0.3022D+00 376 T-F
4f- 0.2737D+02 0.4518D+03 0.3000D+01 0.2818D+00 379 T-F
4f 0.2652D+02 0.1174D+06 0.4000D+01 0.2869D+00 379 T-F
5s 0.1976D+02 0.5211D+03 0.1000D+01 0.5350D+00 384 T-F
5p- 0.1675D+02 0.7958D+02 0.1000D+01 0.5469D+00 385 T-F
5p 0.1243D+02 0.7413D+04 0.2000D+01 0.6265D+00 388 T-F
5d- 0.7880D+01 0.1754D+03 0.2000D+01 0.6730D+00 392 T-F
5d 0.7220D+01 0.3613D+05 0.3000D+01 0.6986D+00 393 T-F
6s 0.3744D+01 0.2510D+03 0.1000D+01 0.1117D+01 400 T-F
6p- 0.2724D+01 0.3631D+02 0.1000D+01 0.1204D+01 403 T-F
6p 0.1859D+01 0.3246D+04 0.2000D+01 0.1414D+01 406 T-F
5f- 0.2174D-01 0.1722D+01 0.3000D+01 0.2805D+02 457 T-F
5f 0.2173D-01 0.4523D+03 0.4000D+01 0.2807D+02 457 T-F
7s 0.5319D+00 0.9661D+02 0.1000D+01 0.2704D+01 419 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF FOR Z = 102 (WILL NOT CONVERGE) *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 27 relativistic subshells;
Loading CSF File for ALL blocks
There are 1 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 1
Enter ASF serial numbers for each block
Block 1 ncf = 1 id = 0+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 7s
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
...................
Iteration number 2
--------------------
Self- Damping
Subshell Energy Method P0 consistency Norm-1 factor JP MTP INV NNP
1s 5.5386641D+03 1 8.370D+03 1.36D-03 1.62D-05 0.000 274 377 0 0
2s 1.0949842D+03 1 3.649D+03 4.51D-03 -1.88D-04 0.000 302 382 0 1
2p- 1.0594702D+03 1 5.267D+02 4.11D-03 -2.43D-05 0.000 302 384 0 0
2p 8.2094271D+02 1 4.636D+04 7.53D-03 -1.04D-05 0.000 306 385 0 0
3s 2.9768023D+02 1 1.800D+03 1.17D-02 -7.39D-04 0.000 320 385 0 2
3p- 2.8135963D+02 1 2.760D+02 1.16D-02 -6.04D-04 0.000 321 388 0 1
3p 2.2441931D+02 1 2.576D+04 1.98D-02 -7.16D-04 0.000 324 389 0 1
3d- 1.9934224D+02 1 5.773D+02 1.86D-02 -2.83D-04 0.000 325 411 0 0
3d 1.8864448D+02 1 1.194D+05 2.21D-02 -2.02D-04 0.000 326 411 0 0
4s 9.0606030D+01 1 9.551D+02 1.73D-02 -1.59D-03 0.100 335 393 0 3
4p- 8.2942623D+01 1 1.468D+02 1.77D-02 -1.56D-03 0.100 336 404 0 2
4p 6.7111537D+01 1 1.395D+04 2.78D-02 -2.27D-03 0.100 339 408 0 2
4d- 5.5119356D+01 1 3.369D+02 2.90D-02 -2.26D-03 0.100 341 434 0 1
4d 5.2313964D+01 1 7.011D+04 2.95D-02 -1.95D-03 0.100 342 434 0 1
4f- 3.6521991D+01 1 4.126D+02 2.19D-03 1.73D-04 0.050 346 408 0 0
4f 3.5747535D+01 1 1.084D+05 6.02D-03 -2.02D-04 0.100 346 408 0 0
5s 3.0255721D+01 1 5.092D+02 1.83D-02 3.85D-03 0.100 348 407 0 4
5p- 2.6881305D+01 1 7.699D+01 2.36D-02 5.21D-03 0.100 350 428 0 3
5p 2.2514178D+01 1 7.371D+03 3.91D-02 6.74D-03 0.100 352 429 0 3
5d- 1.7326694D+01 1 1.729D+02 5.78D-02 1.18D-02 0.100 356 440 0 2
5d 1.6650195D+01 1 3.611D+04 6.18D-02 1.05D-02 0.100 356 440 0 2
6s 1.2077305D+01 1 2.810D+02 4.61D-03 -1.36D-03 0.050 361 429 0 5
6p- 1.0606432D+01 1 4.187D+01 7.79D-03 -2.88D-03 0.050 363 436 0 4
6p 9.2631692D+00 1 3.969D+03 4.70D-02 -1.32D-02 0.190 365 438 0 4
Method 2 unable to solve for 5f- orbital
Iteration number: 15, limit: 15
Present estimate of P0; 0.19118742906131D+01
Present estimate of E(J): 0.98080405136720D+02, DELEPS: -0.60275500767866D+02
Lower bound on energy: 0.13875636426564D+02, upper bound: 0.26234163356640D+03
Join point: 339, Maximum tabulation point: 457
Number of nodes counted: 2, Correct number: 1
Sign of P at first oscillation: -1.
Failure; equation for orbital 5f- could not be solved using method 2
****** Error in SUBROUTINE IMPROV ******
Convergence not obtained
*******************************************************************************
* Increase nuclear charge to Z = 105 *
*******************************************************************************
>>open editor and change Z to 105 in isodata
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 27 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 7s
Read subshell radial wavefunctions. Choose one below
1--GRASP92 File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.5997D+04 0.9512D+04 0.1000D+01 0.1105D-01 328 T-F
2s 0.1211D+04 0.4259D+04 0.1000D+01 0.4510D-01 344 T-F
2p- 0.1185D+04 0.6741D+03 0.1000D+01 0.3545D-01 344 T-F
2p 0.8980D+03 0.5365D+05 0.2000D+01 0.4752D-01 347 T-F
3s 0.3318D+03 0.2128D+04 0.1000D+01 0.1176D+00 357 T-F
3p- 0.3177D+03 0.3582D+03 0.1000D+01 0.1088D+00 357 T-F
3p 0.2480D+03 0.3038D+05 0.2000D+01 0.1300D+00 360 T-F
3d- 0.2242D+03 0.7505D+03 0.2000D+01 0.1107D+00 360 T-F
3d 0.2109D+03 0.1473D+06 0.3000D+01 0.1167D+00 361 T-F
4s 0.9893D+02 0.1162D+04 0.1000D+01 0.2491D+00 369 T-F
4p- 0.9179D+02 0.1966D+03 0.1000D+01 0.2437D+00 370 T-F
4p 0.7154D+02 0.1696D+05 0.2000D+01 0.2817D+00 372 T-F
4d- 0.5977D+02 0.4572D+03 0.2000D+01 0.2713D+00 374 T-F
4d 0.5611D+02 0.9032D+05 0.3000D+01 0.2818D+00 374 T-F
4f- 0.4043D+02 0.6235D+03 0.3000D+01 0.2580D+00 377 T-F
4f 0.3931D+02 0.1559D+06 0.4000D+01 0.2630D+00 377 T-F
5s 0.2861D+02 0.6415D+03 0.1000D+01 0.4882D+00 382 T-F
5p- 0.2533D+02 0.1071D+03 0.1000D+01 0.4944D+00 383 T-F
5p 0.1943D+02 0.9208D+04 0.2000D+01 0.5672D+00 385 T-F
5d- 0.1433D+02 0.2428D+03 0.2000D+01 0.5924D+00 388 T-F
5d 0.1337D+02 0.4789D+05 0.3000D+01 0.6140D+00 389 T-F
6s 0.7815D+01 0.3387D+03 0.1000D+01 0.9513D+00 395 T-F
6p- 0.6526D+01 0.5491D+02 0.1000D+01 0.9968D+00 396 T-F
6p 0.5004D+01 0.4650D+04 0.2000D+01 0.1150D+01 399 T-F
5f- 0.7111D+01 0.3258D+03 0.3000D+01 0.6774D+00 394 T-F
5f 0.6883D+01 0.8130D+05 0.4000D+01 0.6891D+00 395 T-F
7s 0.2311D+01 0.1686D+03 0.1000D+01 0.1898D+01 408 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF FOR Z = 105 (WILL CONVERGE) *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 27 relativistic subshells;
Loading CSF File for ALL blocks
There are 1 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 1
Enter ASF serial numbers for each block
Block 1 ncf = 1 id = 0+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 7s
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
...................
Wall time:
75 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/11/26
Time (Hr/Min/Sec): 12/58/42.303
Zone: +0100
RMCDHF: Execution complete.
*******************************************************************************
* RMCDHF IS CONVERGING *
* EDIT ISODATA AND DECREASE Z TO Z = 104 (SMALLER STEPS MAY BE NEEDED)*
*******************************************************************************
>>open editor and change Z to 104 in isodata
*******************************************************************************
* COPY RWFN.OUT TO RWFN.INP *
* THUS WE USE THE PREVIOUS OUTPUT AS INPUT FOR THE NEW RUN *
*******************************************************************************
>>cp rwfn.out rwfn.inp
*******************************************************************************
* RUN RMCDHF FOR Z = 104 (WILL CONVERGE) *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 27 relativistic subshells;
Loading CSF File for ALL blocks
There are 1 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 1 blocks (block J/Parity NCF):
1 0+ 1
Enter ASF serial numbers for each block
Block 1 ncf = 1 id = 0+
>>1
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 7s
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
...................
Wall time:
75 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/11/26
Time (Hr/Min/Sec): 12/58/42.303
Zone: +0100
RMCDHF: Execution complete.
*******************************************************************************
* CONTINUE IN THE SAME WAY UNTIL REACHING THE ORIGINAL CHARGE Z = 102 *
* IF THINGS DO NOT CONVERGE TRY MAKING THE CHANGE IN NUCLEAR CHARGE *
* SMALLER AND REDO THINGS *
*******************************************************************************
13.4. Using Non-Default Options
If combining HF estimates and decreasing the nuclear charge in small steps does not ensure convergence, then the remaining alternative is to use the non-default options in rmcdhf. The user may play around with the threshold for node counting. An oscillation in the large-component of the radial wavefunction is disregarded for the purposes of node counting if its amplitude is less than 1/20 the maximum amplitude. The user may change this value. If convergence is achieved, then it is required that all the spectroscopic orbitals are plotted and inspected so that they have the correct node structure. The user may also want to set accelerating parameters odamp for subshell radial wavefunctions. Setting odamp to a value close to 1 damps the changes in the radial wave functions at each iteration. This may sometimes help.
13.5. Changing the Grid
For neutral or near neutral super heavy systems, it is sometimes desirable to increase the number of grid points and change the grid parameters. To install the program with the extended grid, follow the instructions in Section 1.4. Go to GRASP2018/src/lib/libmod, open the file parameter_def_M.f90 and change the NNNP and NNN1 variables to, respectively, 1990 and 2000 and recompile the full package. Below we perform a calculation for all states of the U I ground configuration where the grid parameters have been changed to smaller values and the number of grid points has been set to 1990.
- Overview
- Define nuclear data.
- Generate list of CSFs.
- Perform angular integration.
- Generate initial estimates of radial orbitals. Override default options and change grid parameters.
- Perform SCF calculation on the weighted average of the states. Override default options and change grid parameters.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
Enter the atomic number:
>>92
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>238
The default root mean squared radius is 5.8571000099182129 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>238
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program generates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>6
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>5f(3,*)6d(1,*)7s(2,*)
Give configuration 2
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>7s,6d,5f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,22
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
12 blocks were created
block J/P NCSF
1 0- 13
2 1- 35
3 2- 51
4 3- 61
5 4- 61
6 5- 54
7 6- 44
8 7- 31
9 8- 19
10 9- 11
11 10- 5
12 11- 1
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* NON-DEFAULT OPTIONS ARE USED TO CHANGE GRID PARAMETERS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>n
Generate debug printout?
>>n
File erwf.sum will be created as the ERWF SUMmary File;
enter another file name if this is not acceptable; null otherwise:
>>
Loading CSF file ... Header only
There are/is 29 relativistic subshells;
Change the default speed of light or radial grid parameters?
>>y
The physical speed of light in atomic units is 137.03599913900001 ;
revise this value?
>>n
The default radial grid parameters for this case are:
RNT = 2.1739130434782606E-008 ;
H = 5.0000000000000003E-002 ;
HP = 0.0000000000000000 ;
N = 1990 ;
revise these values?
>>y
Enter RNT:
>>2.17d-08
Enter H:
>>1.5d-02
Enter HP:
>>0.0d0
Enter N:
>>1990
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 6d- 6d 7s
Read subshell radial wavefunctions. Choose one below
1--GRASP92 File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.4269D+04 0.5532D+04 0.1000D+01 0.1367D-01 1111 T-F
2s 0.8051D+03 0.2294D+04 0.1000D+01 0.5637D-01 1166 T-F
2p- 0.7805D+03 0.2568D+03 0.1000D+01 0.4550D-01 1166 T-F
2p 0.6379D+03 0.3086D+05 0.2000D+01 0.5568D-01 1172 T-F
3s 0.2059D+03 0.1122D+04 0.1000D+01 0.1464D+00 1211 T-F
3p- 0.1939D+03 0.1335D+03 0.1000D+01 0.1371D+00 1213 T-F
3p 0.1609D+03 0.1675D+05 0.2000D+01 0.1554D+00 1219 T-F
3d- 0.1407D+03 0.3040D+03 0.2000D+01 0.1337D+00 1222 T-F
3d 0.1339D+03 0.7409D+05 0.3000D+01 0.1391D+00 1223 T-F
4s 0.5410D+02 0.5921D+03 0.1000D+01 0.3157D+00 1255 T-F
4p- 0.4849D+02 0.7042D+02 0.1000D+01 0.3128D+00 1258 T-F
4p 0.3965D+02 0.8901D+04 0.2000D+01 0.3478D+00 1265 T-F
4d- 0.3040D+02 0.1726D+03 0.2000D+01 0.3423D+00 1272 T-F
4d 0.2873D+02 0.4221D+05 0.3000D+01 0.3528D+00 1274 T-F
4f- 0.1647D+02 0.1933D+03 0.3000D+01 0.3375D+00 1289 T-F
4f 0.1602D+02 0.5762D+05 0.4000D+01 0.3425D+00 1290 T-F
5s 0.1225D+02 0.3046D+03 0.1000D+01 0.6505D+00 1304 T-F
5p- 0.9992D+01 0.3527D+02 0.1000D+01 0.6732D+00 1309 T-F
5p 0.7827D+01 0.4401D+04 0.2000D+01 0.7505D+00 1317 T-F
5d- 0.4418D+01 0.7930D+02 0.2000D+01 0.8322D+00 1334 T-F
5d 0.4088D+01 0.1926D+05 0.3000D+01 0.8594D+00 1337 T-F
6s 0.2056D+01 0.1373D+03 0.1000D+01 0.1427D+01 1362 T-F
6p- 0.1383D+01 0.1474D+02 0.1000D+01 0.1583D+01 1374 T-F
6p 0.1019D+01 0.1768D+04 0.2000D+01 0.1811D+01 1384 T-F
5f- 0.4670D+00 0.6493D+02 0.3000D+01 0.1279D+01 1405 T-F
5f 0.4268D+00 0.1908D+05 0.4000D+01 0.1313D+01 1408 T-F
6d- 0.2724D+00 0.2243D+02 0.2000D+01 0.2720D+01 1428 T-F
6d 0.2470D+00 0.5293D+04 0.3000D+01 0.2869D+01 1432 T-F
7s 0.2991D+00 0.4866D+02 0.1000D+01 0.3695D+01 1428 T-F
Revise any of these estimates?
>>n
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF WITH NON-DEFAULT OPTIONS FOR GRID PARAMETERS *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>n
Generate debug output? (y/n)
>>n
Loading CSF file ... Header only
There are/is 29 relativistic subshells;
Loading CSF File for ALL blocks
There are 385 relativistic CSFs... load complete;
Change the default speed of
light or radial grid parameters? (y/n)
>>y
Speed of light = 137.03599913900001 ; revise ?
>>n
The default radial grid parameters for this case are:
RNT = 2.1739130434782606E-008
H = 5.0000000000000003E-002
HP = 0.0000000000000000
N = 1990
revise these values?
>>y
Enter RNT:
>>2.17d-08
Enter H:
>>1.5d-02
Enter HP:
>>0.0d0
Enter N:
>>1990
Revised RNT = 2.1699999999999999E-008
Revised H = 1.4999999999999999E-002
Revised HP = 0.0000000000000000
Revised N = 1990
Revise the default ACCY = 1.5625000000000006E-008
>>n
Loading Radial WaveFunction File ...
There are 11 blocks (block J/Parity NCF):
1 0- 13 2 1- 35 3 2- 51 4 3- 61
5 4- 61 6 5- 54 7 6- 44 8 7- 31
9 8- 19 10 9- 11 11 10- 5
Enter ASF serial numbers for each block
Block 1 ncf = 13 id = 0-
>>1-13
Block 2 ncf = 35 id = 1-
>>1-35
Block 3 ncf = 51 id = 2-
>>1-51
Block 4 ncf = 61 id = 3-
>>1-61
Block 5 ncf = 61 id = 4-
>>1-61
Block 6 ncf = 54 id = 5-
>>1-54
Block 7 ncf = 44 id = 6-
>>1-44
Block 8 ncf = 31 id = 7-
>>1-31
Block 9 ncf = 19 id = 8-
>>1-19
Block 10 ncf = 11 id = 9-
>>1-11
Block 11 ncf = 5 id = 10-
>>1-5
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f 5s 5p- 5p 5d- 5d 6s 6p-
6p 5f- 5f 6d- 6d 7s
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>100
Modify other defaults? (y/n)
>>n
Orthonomalization order?
1--Update order
2--Self consistency connected
>>1
........
Wall time:
98 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/11/26
Time (Hr/Min/Sec): 23/43/02.595
Zone: +0100
RMCDHF: Execution complete.
13.6. Correlation Orbitals Not Converging
For large orbital sets it may happen that the higher layers of correlation orbitals, not spectroscopic orbitals, do not converge. This is often due to the fact that the initial orbital estimates, either Thomas-Fermi or screened hydrogenic, options 2 and 3 for rwfnestimate, are localized too far out in relation to the region where the spectroscopic orbitals reside. In these cases, the user can use option 4 in rwfnestimate and increase Z so that the orbitals are contracted and overlap the desired region, see Section 6.8 for an example of the use of the option.
14. Managing Large Expansions
14.1. Rearrange Lists of CSFs into Zero- and First-Order Spaces
Sometimes the CSF expansions get so large that they cannot be handled by the normal SCF procedure in the rmcdhf program. In these cases, an approximate optimization scheme can be employed in which the CSF list is rearranged into zero- and a first-order spaces:
where is the total number of CSFs in the original list. The zero-order space contains the most important CSFs, while the first-order space contain less important CSFs that can be regarded as minor corrections. Normally . Associated with the rearrangement of the CSFs is a decomposition of the Hamiltonian interaction matrix in submatrices
The energy expression, on which to optimize, is now obtained from the limited interaction matrix where the full , , submatrices are included (interactions within the zero-order space and between the zero- and first-order spaces) but only the diagonal part of . The rearrangement of the list of CSFs in zero- and first-order spaces is done by the program rcsfzerofirst.
As an example, we use zero- and first-order spaces for a calculation of the states belonging to the configuration in Si-like iron. The calculation accounts for valence–valence and core–valence correlation and is based on a MR of the form .
- Overview
- Define nuclear data.
- Obtain common orbitals for the MR set from DHF
- (a)
- Generate list of CSFs for MR
- (b)
- Perform angular integration.
- (c)
- Generate initial estimates of radial orbitals.
- (d)
- Perform SCF calculation on the weighted average of the states.
- (e)
- Save output to mr.
- Improve the states using the zero- and first-order method where only part of the interactions are retained
- (a)
- Generate valence–valence and core–valence CSF expansion from the MR
- (b)
- Rearrange CSFs in zero- and first-order spaces using rcsfzerofirst
- (c)
- Perform angular integration.
- (d)
- Generate initial estimates of radial orbitals.
- (e)
- Perform SCF calculation on the weighted average of the states.
- (f)
- Save output to zerofirst_n4
- (g)
- Perform rci calculations in which the transverse photon interaction (Breit) and vacuum polarization and self-energy (QED) corrections are added.
*******************************************************************************
* RUN RNUCLEUS TO GENERATE NUCLEAR DATA AND DEFINE RADIAL GRID *
* OUTPUT FILE: isodata *
*******************************************************************************
>>rnucleus
RNUCLEUS
This program defines nuclear data and the radial grid
Outputfile: isodata
Enter the atomic number:
>>26
Enter the mass number (0 if the nucleus is to be modelled as a point source:
>>56
The default root mean squared radius is 3.7376999855041504 fm; (Angeli)
the default nuclear skin thickness is 2.2999999999999998 fm;
Revise these values?
>>n
Enter the mass of the neutral atom (in amu) (0 if the nucleus is to be static):
>>56
Enter the nuclear spin quantum number (I) (in units of h / 2 pi):
>>1
Enter the nuclear dipole moment (in nuclear magnetons):
>>1
Enter the nuclear quadrupole moment (in barns):
>>1
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs *
* FOR THE MULTIREFERNCE *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,i)3s(2,i)3p(2,i)
Give configuration 2
>>2s(2,i)2p(6,i)3s(1,i)3p(2,i)3d(1,i)
Give configuration 3
>>2s(2,i)2p(6,i)3p(4,i)
Give configuration 4
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>3s,3p,3d
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>0
Generate more lists ? (y/n)
>>n
.........
block J/P NCSF
1 0+ 9
2 1+ 15
3 2+ 20
*******************************************************************************
* COPY FILES *
* IT IS ADVISABLE TO SAVE THE rcsfgenerate.log FILE TO HAVE A *
* RECORD ON HOW THE LIST OF CSFs WAS CREATED *
*******************************************************************************
>>cp rcsfgenerate.log mr.exc
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,.... *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>y
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.3024D+03 0.2944D+03 0.1000D+01 0.5776D-01 329 T-F
2s 0.5961D+02 0.1001D+03 0.1000D+01 0.2416D+00 346 T-F
2p- 0.5782D+02 0.7556D+00 0.1000D+01 0.2037D+00 346 T-F
2p 0.5718D+02 0.6771D+03 0.2000D+01 0.2062D+00 346 T-F
3s 0.2068D+02 0.4969D+02 0.1000D+01 0.5885D+00 359 T-F
3p- 0.1992D+02 0.4010D+00 0.1000D+01 0.5568D+00 359 T-F
3p 0.1976D+02 0.3607D+03 0.2000D+01 0.5608D+00 359 T-F
3d- 0.1847D+02 0.5063D+00 0.2000D+01 0.4838D+00 359 T-F
3d 0.1842D+02 0.5695D+03 0.3000D+01 0.4852D+00 359 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 1s, 2s, 2p, 3s, 3p, 3d AND THEY ARE *
* ALL SPECTROSCOPIC. WE CAN USE WILD CARDS FOR SPECIFYING ORBITALS *
* *
* NOTE WE HAVE ASKED FOR 900 ITERATIONS *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 9 relativistic subshells;
Loading CSF File for ALL blocks
There are 44 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0+ 9 2 1+ 15 3 2+ 20
Enter ASF serial numbers for each block
Block 1 ncf = 9 id = 0+
>>1,2
Block 2 ncf = 15 id = 1+
>>1
Block 3 ncf = 20 id = 2+
>>1,2
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d
Enter orbitals to be varied (Updating order)
>>*
Which of these are spectroscopic orbitals?
>>*
Enter the maximum number of SCF cycles:
>>900
............
RMCDHF: Execution complete.
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave mr
Created mr.w, mr.c, mr.m, mr.sum, mr.alog and mr.log
*******************************************************************************
* RUN RCSFGENERATE TO GENERATE LIST OF CSFs *
* ACCOUNTING FOR VALENCE-VALENCE AND CORE-VALENCE CORRELATION *
* OUTPUT FILES: rcsfgenerate.log, rcsf.out *
*******************************************************************************
>>rcsfgenerate
RCSFGENERATE
This program creates a list of CSFs
Configurations should be entered in spectroscopic notation
with occupation numbers and indications if orbitals are
closed (c), inactive (i), active (*) or has a minimal
occupation e.g., 1s(2,1)2s(2,*)
Outputfiles: rcsf.out, rcsfgenerate.log
Default, reverse, symmetry or user specified ordering? (*/r/s/u)
>>*
Select core
0: No core
1: He ( 1s(2) = 2 electrons)
2: Ne ([He] + 2s(2)2p(6) = 10 electrons)
3: Ar ([Ne] + 3s(2)3p(6) = 18 electrons)
4: Kr ([Ar] + 3d(10)4s(2)4p(6) = 36 electrons)
5: Xe ([Kr] + 4d(10)5s(2)5p(6) = 54 electrons)
6: Rn ([Xe] + 4f(14)5d(10)6s(2)6p(6) = 86 electrons)
>>1
Enter list of (maximum 100) configurations. End list with a blank line or an asterisk (*)
Give configuration 1
>>2s(2,i)2p(6,5)3s(2,*)3p(2,*)
Give configuration 2
>>2s(2,i)2p(6,5)3s(1,*)3p(2,*)3d(1,*)
Give configuration 3
>>2s(2,i)2p(6,5)3p(4,*)
Give configuration 4
>>
Give set of active orbitals, as defined by the highest principal quantum number
per l-symmetry, in a comma delimited list in s,p,d etc order, e.g., 5s,4p,3d
>>4s,4p,4d,4f
Resulting 2*J-number? lower, higher (J=1 -> 2*J=2 etc.)
>>0,4
Number of excitations (if negative number e.g., -2, correlation
orbitals will always be doubly occupied)
>>2
Generate more lists ? (y/n)
>>n
.........
3 blocks were created
block J/P NCSF
1 0+ 4720
2 1+ 12774
3 2+ 17554
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RCSFZEROFIRST TO ARRANGE LIST *
*******************************************************************************
>>rcsfzerofirst
RCSFzerofirst: Takes a list of CSFs and partitions each symmetry
block into a zero- and first-order CSF space from
a zero-order list.
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: list with CSFs to be partitioned
list with CSFs defining
the zero-order space
Output file: rcsf.out
Give the full name of the list that contains the zero-order space
mr.c
Give the full name of the list that should be partitioned
rcsf.inp
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
Block Zero-order Space Complete Space
1 9 4720
2 15 12774
3 20 17554
RCSFzerofirst: Execution complete.
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out rcsf.inp
*******************************************************************************
* RUN RANGULAR TO GENERATE ENERGY EXPRESSION *
* INPUT FILE : rcsf.inp *
* OUTPUT FILES: rangular.alog, mcp.30, mcp.31,... *
* NOTE EXECUTION VERY FAST SINCE WE DO NOT INCLUDE ALL INTERACTIONS *
*******************************************************************************
>>rangular
RANGULAR
This program performs angular integration
Input file: rcsf.inp
Outputfiles: mcp.30, mcp.31, ....
rangular.log
Full interaction? (y/n)
>>n
Block 1 , ncf = 4720
Block 2 , ncf = 12774
Block 3 , ncf = 17554
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
The contribution of CSFs 1--ICCUT will be treated variationally;
the remainder perturbatively; enter ICCUT:
Give ICCUT for block 1
>>9
Give ICCUT for block 2
>>15
Give ICCUT for block 3
>>20
.....
RANGULAR: Execution complete.
*******************************************************************************
* RUN RWFNESTIMATE TO GENERATE INITIAL ESTIMATES FOR RADIAL ORBITALS *
* INPUT FILES: isodata, rcsf.inp, previous rwfn files *
* OUTPUT FILE: rwfn.inp, rwfnestimate.log *
*******************************************************************************
>>rwfnestimate
RWFNESTIMATE
This program estimates radial wave functions
for orbitals
Input files: isodata, rcsf.inp, optional rwfn file
Output file: rwfn.inp
Default settings ?
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
The following subshell radial wavefunctions remain to be estimated:
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP2K File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>1
Enter the file name (Null then "rwfn.out")
>>
Enter the list of relativistic subshells:
>>*
The following subshell radial wavefunctions remain to be estimated:
4s 4p- 4p 4d- 4d 4f- 4f
Read subshell radial wavefunctions. Choose one below
1--GRASP92 File
2--Thomas-Fermi
3--Screened Hydrogenic
4--Screened Hydrogenic [custom Z]
>>2
Enter the list of relativistic subshells:
>>*
All required subshell radial wavefunctions have been estimated:
Shell e p0 gamma <r> MTP SRC
1s 0.2768D+03 0.2922D+03 0.1000D+01 0.5839D-01 358 rwf
2s 0.4499D+02 0.9142D+02 0.1000D+01 0.2600D+00 361 rwf
2p- 0.4040D+02 0.6302D+00 0.1000D+01 0.2307D+00 359 rwf
2p 0.3993D+02 0.5641D+03 0.2000D+01 0.2336D+00 359 rwf
3s 0.1448D+02 0.3728D+02 0.1000D+01 0.7068D+00 364 rwf
3p- 0.1327D+02 0.2857D+00 0.1000D+01 0.6992D+00 364 rwf
3p 0.1318D+02 0.2569D+03 0.2000D+01 0.7038D+00 364 rwf
3d- 0.1475D+02 0.1697D+00 0.2000D+01 0.6708D+00 364 rwf
3d 0.1477D+02 0.1889D+03 0.3000D+01 0.6732D+00 364 rwf
4s 0.9572D+01 0.2915D+02 0.1000D+01 0.1142D+01 368 T-F
4p- 0.9220D+01 0.2388D+00 0.1000D+01 0.1123D+01 368 T-F
4p 0.9167D+01 0.2151D+03 0.2000D+01 0.1129D+01 368 T-F
4d- 0.8577D+01 0.3386D+00 0.2000D+01 0.1074D+01 369 T-F
4d 0.8563D+01 0.3811D+03 0.3000D+01 0.1076D+01 369 T-F
4f- 0.7863D+01 0.1681D+00 0.3000D+01 0.9589D+00 369 T-F
4f 0.7857D+01 0.2052D+03 0.4000D+01 0.9598D+00 369 T-F
RWFNESTIMATE: Execution complete.
*******************************************************************************
* RUN RMCDHF TO OBTAIN SELF CONSISTENT SOLUTIONS *
* INPUT FILES: isodata, rcsf.inp, rwfn.inp, mcp.30, mcp.31,... *
* OUTPUT FILES: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log *
* *
* NOTE: ORBITALS BUILDING REFERENCE STATES ARE REQUIRED TO HAVE *
* THE CORRECT NUMBER OF NODES. THEY ARE REFERRED TO AS SPECTROSCOPIC *
* ORBITALS. IN THIS RUN WE VARY 4s,4p,4d,4f AND THEY ARE ALL *
* CORRELATION ORBITALS WITH NO NODE COUNTING *
*******************************************************************************
>>rmcdhf
RMCDHF
This program determines the radial orbitals
and the expansion coefficients of the CSFs
in a self-onsistent field proceedure
Input file: isodata, rcsf.inp, rwfn.inp, mcp.30, ...
Outputfiles: rwfn.out, rmix.out, rmcdhf.sum, rmcdhf.log
Default settings? (y/n)
>>y
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Loading CSF File for ALL blocks
There are 35048 relativistic CSFs... load complete;
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0+ 4720 2 1+ 12774 3 2+ 17554
Enter ASF serial numbers for each block
Block 1 ncf = 4720 id = 0+
>>1,2
Block 2 ncf = 12774 id = 1+
>>1
Block 3 ncf = 17554 id = 2+
>>1,2
level weights (1 equal; 5 standard; 9 user)
>>5
Radial functions
1s 2s 2p- 2p 3s 3p- 3p 3d- 3d 4s 4p- 4p 4d- 4d 4f- 4f
Enter orbitals to be varied (Updating order)
>>4*
Which of these are spectroscopic orbitals?
>>
Enter the maximum number of SCF cycles:
>>100
.......
*******************************************************************************
* RUN RSAVE TO SAVE OUTPUT FILES: name.c, name.w, name.m, name.sum *
* name.alog, name.log *
*******************************************************************************
>>rsave zerofirst_n4
Created zerofirst_n4.w, zerofirst_n4.c, zerofirst_n4.m, zerofirst_n4.sum
zerofirst_n4.alog and zerofirst_n4.log
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* OUTPUT FILE: zerofirst_n4.cm, zerofirst_n4.csum, ...., rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
* NOTE THAT THIS IS VERY FAST SINCE WE DO NOT INCLUDE ALL INTERACTIONS*
*******************************************************************************
>>rci
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog, rci.res
rci.res (can be used for restart)
Default settings?
>>n
Name of state:
>>zerofirst_n4
Block 1 , ncf = 4720
Block 2 , ncf = 12774
Block 3 , ncf = 17554
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Restarting RCI ?
>>n
Revise the physical speed of light ( 137.03599913900001 in a.u.) ?
>>n
Treat contributions of some CSFs as first-order perturbations?
>>y
There are 3 blocks. They are:
block J Parity No of CSFs
1 0+ 4720
2 1+ 12774
3 2+ 17554
Enter iccut for each block
Block 1 ncf = 4720 id = 0+
>>9
Block 2 ncf = 12774 id = 1+
>>15
Block 3 ncf = 17554 id = 2+
>>20
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>n
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0+ 4720 2 1+ 12774 3 2+ 17554
Enter ASF serial numbers for each block
Block 1 ncf = 4720 id = 0+
>>1,2
Block 2 ncf = 12774 id = 1+
>>1
Block 3 ncf = 17554 id = 2+
>>1,2
.........
RCI: Execution complete.
Below we compare the energies from calculations with zero- and first-order spaces and limited interactions and calculations with full interaction in different combinations. In addition we show the energies from the rci run of the MR and the experimental energies from NIST.
Energies from the rci run with zero- and first-order spaces and wave functions from an rmcdhf calculation with zero- and first-order spaces:
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 0 + -1210.0270500
2 1 1 + -1209.9855970 9097.89 9097.89
3 1 2 + -1209.9431699 18409.56 9311.67
4 2 2 + -1209.8062337 48463.58 30054.02
5 2 0 + -1209.6073434 92114.95 43651.37
-------------------------------------------------------------------------
Energies from the rci run with the full interaction and radial wave functions from an rmcdhf calculation with zero- and first-order spaces:
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 0 + -1210.0256925
2 1 1 + -1209.9837680 9201.37 9201.37
3 1 2 + -1209.9412180 18540.02 9338.65
4 2 2 + -1209.8027763 48924.45 30384.43
5 2 0 + -1209.6000618 93415.14 44490.69
-------------------------------------------------------------------------
Energies from an rci run with the full interaction and radial wave functions from an rmcdhf calculation with the full interaction:
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 0 + -1210.0257424
2 1 1 + -1209.9838159 9201.80 9201.80
3 1 2 + -1209.9412660 18540.41 9338.61
4 2 2 + -1209.8028394 48921.54 30381.14
5 2 0 + -1209.6001081 93415.93 44494.39
-------------------------------------------------------------------------
Energies from an rci run for only the MR:
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 0 + -1209.9394925
2 1 1 + -1209.8995764 8760.57 8760.57
3 1 2 + -1209.8558763 18351.63 9591.06
4 2 2 + -1209.7026579 51979.19 33627.56
5 2 0 + -1209.4545733 106427.47 54448.28
-------------------------------------------------------------------------
Experimental energies from NIST:
------------------------------------------------------------
Configuration | Term | J | Level |
---------------------|--------|-----|----------------------|
| | | |
3s2.3p2 | 3P | 0 | 0.0 |
| | 1 | 9302.5 |
| | 2 | 18561.0 |
| | | |
3s2.3p2 | 1D | 2 | 48068 |
| | | |
3s2.3p2 | 1S | 0 | 91508 |
------------------------------------------------------------
In Figure 12 we compare the correlation orbitals from rmcdhf calculations with limited and full interactions, respectively. The differences between the orbitals are very small.
Figure 12.
Plot of orbitals from an rmcdhf calculation using the full interaction matrix and an rmcdhf calculation with only part of the interaction.
The conclusion of all this, energy tables and shapes of radial orbitals, is that a limited interaction rmcdhf calculation combined with full interaction rci recovers almost perfectly the result of a full interaction rmcdhf combined with full interaction rci.
14.2. Accumulating the Wave Function to a Specified Fraction
A very good way of selecting the zero-order space is to accumulate the wave function to a specified fraction of the squared weights. This is done by the following procedure:
- Start from a calculation targeting one or more states, thus start from a number of ASFsbuilt from a set of CSFs.
- For i from 1 to N compute
- Sort in descending order.
- Accumulate terms of s until a specified fraction of the total squared weightis attained.
The CSFs that are associated with the accumulated fraction can then be taken as the zero-order space. Alternatively, and dependent on the fraction, the method can be used to condense the list of CSFs.
Below are some different scenarios:
- Perform some initial calculations. Use accumulation to a specified fraction to select the CSFs (configurations) in the MR. The selected CSFs can then also be used by rcsfinteract, see Section 5.5.
- Perform large-scale calculations. To further push the calculations, use accumulation to a specified fraction to select the zero-order space.
- Perform large-scale calculations. Use accumulation to a specified fraction to condense the list of CSFs.
The accumulation to a specified fraction is done with the program rmixaccumulate.
As an example, we apply the accumulation to a specified fraction (0.9999 in this case) to the states defined in zerofirst_n4. We use the accumulated list as the zero-order space and redo the rci calculation to see how big is the difference between the obtained energies and the energies from the full interaction calculation.
*******************************************************************************
* RMIXACCUMULATE TO ACCUMULATE TO A SPECIFIED FRACTION *
* INPUT FILE: zerofirst_n4.c, zerofirst_n4.cm *
* OUTPUT FILE: rcsf.out *
*******************************************************************************
WELCOME TO PROGRAM RMIXACCUMULATE
Input files: <state>.(c)m, <state>.c
Reduced CSF list is written to rcsf.out
Give name of the state:
>>zerofirst_n4
Expansion coefficients resulting from CI calculation (y/n)?
>>y
Fraction of total wave function [0-1] to be included in reduced list:
>>0.9999
CSFs in output file sorted by mixing coefficients (y/n)?
>>y
Block data read from mixing file
block ncf nev 2j+1 parity
1 4720 2 1 1
2 12774 1 3 1
3 17554 2 5 1
Number of CSF:s written to rcsf.out
block ncf
1 188
2 396
3 712
For the different blocks we see that 188, 396, and 712 CSFs, respectively, contribute to 99.99% of the total squared weight.
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out zero_order_0.9999.c
*******************************************************************************
* RUN RCSFZEROFIRST TO ARRANGE LIST *
*******************************************************************************
>>rcsfzerofirst
RCSFzerofirst: Takes a list of CSFs and partitions each symmetry
block into a zero- and first-order CSF space from
a zero-order list.
(C) Copyright by G. Gaigalas and Ch. F. Fischer
(Fortran 95 version) NIST (2017).
Input files: list with CSFs to be partitioned
list with CSFs defining
the zero-order space
Output file: rcsf.out
Give the full name of the list that contains the zero-order space
>>zero_order_0.9999.c
Give the full name of the list that should be partitioned
>>rcsf.inp
Loading Configuration Symmetry List File ...
There are 16 relativistic subshells;
Block Zero-order Space Complete Space
1 188 4720
2 391 12774
3 712 17554
Wall time:
11 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/07/31
Time (Hr/Min/Sec): 11/56/50.926
Zone: +0200
RCSFzerofirst: Execution complete.
*******************************************************************************
* COPY FILES *
*******************************************************************************
>>cp rcsf.out zerofirst_0.9999.c
>>cp zerofirst_n4.w zerofirst_0.9999.w
*******************************************************************************
* RUN RCI TO INCLUDE TRANSVERSE PHOTON INTERACTION AND QED EFFECTS *
* OUTPUT FILE: zerofirst_0.9999.cm, ...., rci.res *
* *
* THE TRANSVERSE PHOTON FREQUENCIES CAN BE SET TO THE LOW FREQUENCY *
* LIMIT. RECOMMENDED IN CASES WHERE YOU HAVE CORRELATION ORBITALS *
* THE SELF ENERGY CORRECTION MAY FAIL FOR CORRELATION ORBITALS WITH *
* HIGH N. *
* NOTE THAT THIS IS VERY FAST SINCE WE DO NOT INCLUDE ALL INTERACTIONS*
*******************************************************************************
RCI
This is the configuration interaction program
Input file: isodata, name.c, name.w
Outputfiles: name.cm, name.csum, name.clog
rci.res (can be used for restart)
Default settings?
>>n
Name of state:
>>zerofirst_0.9999
Block 1 , ncf = 4720
Block 2 , ncf = 12774
Block 3 , ncf = 17554
Loading CSF file ... Header only
There are/is 16 relativistic subshells;
Restarting RCI90 ?
>>n
Revise the physical speed of light ( 137.03599913900001 in a.u.) ?
>>n
Treat contributions of some CSFs as first-order perturbations?
>>y
There are 3 blocks. They are:
block J Parity No of CSFs
1 0+ 4720
2 1+ 12774
3 2+ 17554
Enter iccut for each block
Block 1 ncf = 4720 id = 0+
>>188
Block 2 ncf = 12774 id = 1+
>>396
Block 3 ncf = 17554 id = 2+
>>712
Include contribution of H (Transverse)?
>>y
Modify all transverse photon frequencies?
>>n
Include H (Vacuum Polarisation)?
>>y
Include H (Normal Mass Shift)?
>>n
Include H (Specific Mass Shift)?
>>n
Estimate self-energy?
>>y
Largest n quantum number for including self-energy for orbital
n should be less or equal 8
>>3
Loading Radial WaveFunction File ...
There are 3 blocks (block J/Parity NCF):
1 0+ 4720 2 1+ 12774 3 2+ 17554
Enter ASF serial numbers for each block
Block 1 ncf = 4720 id = 0+
>>1,2
Block 2 ncf = 12774 id = 1+
>>1
Block 3 ncf = 17554 id = 2+
>>1,2
......
Finish time, Statistics
Wall time:
95 seconds
Finish Date and Time:
Date (Yr/Mon/Day): 2018/07/31
Time (Hr/Min/Sec): 12/03/43.197
Zone: +0200
RCI: Execution complete.
Below we display the energies from the rci run with the zero-order space from an accumulation to 0.9999.
nblock = 3 ncftot = 35048 nw = 16 nelec = 14
Energy levels for ...
Rydberg constant is 109737.31569
No - Serial number of the state; Pos - Position of the state within the
J/P block; Splitting is the energy difference with the lower neighbor
-------------------------------------------------------------------------
No Pos J Parity Energy Total Levels Splitting
(a.u.) (cm^-1) (cm^-1)
-------------------------------------------------------------------------
1 1 0 + -1210.0257297
2 1 1 + -1209.9838005 9202.40 9202.40
3 1 2 + -1209.9412600 18538.95 9336.55
4 2 2 + -1209.8028337 48920.02 30381.07
5 2 0 + -1209.6001292 93408.50 44488.48
-------------------------------------------------------------------------
We see that with a larger zero-order space, we now have energies in very good agreement with the ones from an rci calculation with full interaction. In this example, we did two rci calculations. The first was with a very small zero-order space in terms of the MR. We then used this calculation to accumulate to a defined fraction. By redoing the rci with the new zero-order space, we get energies that are very close to the ones from a full interaction calculation. For large expansions, two calculations with limited interaction are much faster than one calculation with full interaction.
14.3. Computational Strategies Using Zero- and First-Order
Based on the experience from a number of studies, we suggest the following computational strategy for large cases:
- The MR is always generated using full interaction
- To run rmcdhf for an expansion that is large:
- (a)
- Start by running rmixaccumulate with 0.99 or something similar on an expansion you have that is not too large, e.g., an expansion based on just one or two orbital layers.
- (b)
- Generate your large expansion and run rcsfinteract to make sure you only retain CSFs that interact with the CSFs of the MR.
- (c)
- Run rcsfzerofirstzero-order—output from rmixaccumulate with 0.99 (or something similar)list to be partitioned—output from rcsfgenerate (step above)
- (d)
- Run rangular with ICCUT values for the size of the zero-order expansion from rmixaccumulate
- (e)
- Run rmcdhf in the usual way. Due to the fact that limited interaction is included in the angular integration, the rmcdhf calculation will be fast.
- Run rci for the large expansion with full interaction.
- For very large expansions, consider performing the rci calculation with the expansion from the previous layer as a zero-order space or the expansion from the previous layer accumulated to a high fraction, say 0.99999999, as the zero-order space. Alternatively, run rci with a small zero-order space and accumulate to some fraction and use this list as a new zero-order space and redo the rci calculation.
Please remember that all strategies are dependent on the atomic system at hand, and that some explorations of the fractions used for rmixaccumulate are needed. See [28] for one application of the zero- and first-order strategy.
15. Learn More about Computational Atomic Structure and GRASP
To learn more about computational atomic structure and the use of grasp, the reader is encouraged to consult https://github.com/compas, accessed on 5 November 2022. Here, in addition to the grasp code, there is an extensive list of books and articles that provide the theoretical background to multiconfiguration methods, electron correlation, and the systematic computation of different atomic properties with grasp in real- and large-scale applications. The list is constantly updated to cover the latest studies.
Author Contributions
All authors contributed to developing the methodology and the software presented in the manuscript. All authors contributed in some way to the writing, review, and editing of the manuscript. All authors have read and agreed to the published version of the manuscript.
Funding
J.G. acknowledges funding from the Swedish Research Council (2020-05467).
Data Availability Statement
Not applicable.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Froese Fischer, C.; Tachiev, G.; Gaigalas, G.; Godefroid, M.R. An MCHF atomic-structure package for large-scale calculations. Comput. Phys. Commun. 2007, 176, 559. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Godefroid, M.; Brage, T.; Jönsson, P.; Gaigalas, G. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J. Phys. B 2016, 49, 182004. [Google Scholar] [CrossRef]
- Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer Science and Business Media, LLC: New York, NY, USA, 2007. [Google Scholar]
- Froese Fischer, C.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018-A Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 2019, 237, 184. [Google Scholar] [CrossRef]
- Jönsson, P.; Gaigalas, G.; Bieroń, J.; Froese Fischer, C.; Grant, I.P. New version: Grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2013, 184, 2197. [Google Scholar] [CrossRef]
- Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I.P. The grasp2K relativistic atomic structure package. Comput. Phys. Commun. 2007, 176, 597. [Google Scholar] [CrossRef]
- Parpia, F.; Froese Fischer, C.; Grant, I.P. GRASP92: A package for large-scale relativistic atomic structure calculations. Comput. Phys. Commun. 1996, 94, 249. [Google Scholar] [CrossRef]
- Jönsson, P.; Parpia, F.A.; Froese Fischer, C. hfs92: A program for relativistic atomic hyperfine structure calculation. Comput. Phys. Commun. 1996, 96, 301. [Google Scholar] [CrossRef]
- Jönsson, P.; Froese Fischer, C. Sms92: A program for relativistic isotope shift calculations. Comput. Phys. Commun. 1997, 94, 249. [Google Scholar] [CrossRef]
- Sturesson, L.; Jönsson, P.; Froese Fischer, C. Jjgen: A flexible program for generating lists of jj-coupled configuration state functions. Comput. Phys. Commun. 2007, 177, 539. [Google Scholar] [CrossRef]
- Andersson, M.; Jönsson, P. Hfszeeman. A program for computing weak and intermediate field fine and hyperfine structure Zeeman splittings from MCDHF wave functions. Comput. Phys. Commun. 2008, 178, 156. [Google Scholar] [CrossRef]
- Ekman, J.; Jönsson, P.; Godefroid, M.; Nazé, C.; Gaigalas, G.; Bieroń, J. ris4: A program for relativistic isotope shift calculations. Comput. Phys. Commun. 2019, 235, 433. [Google Scholar] [CrossRef]
- Nazé, C.; Gaidamauskas, G.; Gaigalas, G.; Godefroid, M.; Jönsson, P. ris3: A program for relativistic isotope shift calculations. Comput. Phys. Commun. 2013, 184, 2187. [Google Scholar] [CrossRef]
- Gaigalas, G. Coupling: The program for searching optimal coupling scheme in atomic theory. Comput. Phys. Commun. 2020, 247, 106960. [Google Scholar] [CrossRef]
- Li, W.; Grumer, J.; Brage, T.; Jönsson, P. Hfszeeman95: A program for computing weak and intermediate magnetic-field- and hyperfine-induced transition rates. Comput. Phys. Commun. 2020, 253, 107211. [Google Scholar] [CrossRef]
- Schiffmann, S.; Li, J.G.; Ekman, J.; Gaigalas, G.; Godefroid, M.; Jönsson, P.; Bieroń, J. Relativistic radial electron density functions and natural orbitals from GRASP2018. Comput. Phys. Commun. 2022, 278, 108403. [Google Scholar] [CrossRef]
- Jönsson, P.; Godefroid, M.; Gaigalas, G.; Ekman, J.; Grumer, J.; Brage, T.; Li, J.; Li, W.; Grant, I.P.; Bieroń, J.; et al. An introduction to relativistic theory as implemented in GRASP. Atoms 2023, 11, 7. [Google Scholar] [CrossRef]
- Stathopoulos, A.; Froese Fischer, C. A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix. Comput. Phys. Commun. 1994, 79, 268. [Google Scholar] [CrossRef]
- Gaigalas, G.; Rudzikas, Z.B.; Froese Fischer, C. An efficient approach for spin-angular integrations in atomic structure calculations. J. Phys. B At. Mol. Phys. 1997, 30, 3747. [Google Scholar] [CrossRef]
- Gaigalas, G.; Fritzsche, S.; Grant, I.P. Program to calculate pure angular momentum coefficients in jj-coupling. Comput. Phys. Commun. 2001, 139, 263. [Google Scholar] [CrossRef]
- Gaigalas, G.; Fritzsche, S.; Rudzikas, Z. Reduced Coefficients of Fractional Parentage and Matrix Elements of the Tensor W(kqkj) in jj-Coupling. At. Data Nucl. Data Tables 2000, 76, 235. [Google Scholar] [CrossRef]
- Gaigalas, G. A Program Library for Computing Pure Spin–Angular Coefficients for One- and Two-Particle Operators in Relativistic Atomic Theory. Atoms 2022, 10, 129. [Google Scholar] [CrossRef]
- Gaigalas, G.; Fritzsche, S. Pure spin-angular momentum coefficients for non-scalar one-particle operators in jj-coupling. Comput. Phys. Commun. 2002, 148, 349. [Google Scholar] [CrossRef]
- Gaigalas, G.; Žalandauskas, T.; Rudzikas, Z. LS-jj t ansformation matrices for a shell of equivalent electrons. At. Data Nucl. Data Tables 2003, 84, 99. [Google Scholar] [CrossRef]
- Gaigalas, G.; Žalandauskas, T.; Fritzsche, S. Spectroscopic LSJ notation for atomic levels obtained from relativistic calculations. Comput. Phys. Commun. 2004, 157, 239. [Google Scholar] [CrossRef]
- Gaigalas, G.; Froese Fischer, C.; Rynkun, P.; Jönsson, P. JJ2LSJ Transformation and Unique Labeling for Energy Levels. Atoms 2017, 5, 6. [Google Scholar] [CrossRef]
- Olsen, J.; Godefroid, M.; Jönsson, P.; Malmqvist, P.-Å.; Froese Fischer, C. Transition probability calculations for atoms using non-orthogonal orbitals. Phys. Rev. E 1995, 52, 4499. [Google Scholar] [CrossRef]
- Gustafsson, S.; Jönsson, P.; Froese Fischer, C.; Grant, I.P. Combining Multiconfiguration and Perturbation Methods: Perturbative Estimates of Core-Core Electron. Correlation Contributions to Excitation Energies in Mg-Like Iron. Atoms 2017, 5, 3. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Brage, T.; Jönsson, P. Computational Atomic Structure-An MCHF Approach; IoP: Bristol, UK, 1997. [Google Scholar]
- Zatsarinny, O.; Froese Fischer, C. DBSR_HF: A B-spline Dirac–Hartree–Fock program. Comput. Phys. Commun. 2016, 202, 287. [Google Scholar] [CrossRef]
- Jönsson, P.; Ekman, J.; Gustafsson, S.; Hartman, H.; Karlsson, L.B.; du Rietz, R.; Gaigalas, G.; Godefroid, M.R.; Froese Fischer, C. Energy levels and transition rates for the boron isoelectronic sequence: Si X, Ti XVIII-Cu XXV. Astron. Astrophys. 2013, 559, A100. [Google Scholar] [CrossRef]
- Ekman, J.; Jönsson, P.; Gustafsson, S.; Hartman, G.; Gaigalas, G.; Godefroid, M.R.; Froese Fischer, C. Calculations with spectroscopic accuracy: Energies, transition rates, and Landé gJ-factors in the carbon isoelectronic sequence from Ar XIII to Zn XXV. Astron. Astrophys. 2014, 564, A24. [Google Scholar] [CrossRef]
- Froese Fischer, C. Evaluation and Comparison of the Configuration Interaction Calculations for Complex Atoms. Atoms 2014, 2, 1–14. [Google Scholar] [CrossRef]
- Godefroid, M.; Jönsson, P.; Froese Fischer, C. Atomic Structure Variational Calculations in Spectroscopy. Phys. Scr. 1998, T78, 33. [Google Scholar] [CrossRef]
- Papoulia, A.; Ekman, J.; Gaigalas, G.; Godefroid, M.; Gustafsson, S.; Hartman, H.; Li, W.; Radžiūtė, L.; Rynkun, P.; Schiffmann, S.; et al. Coulomb (Velocity) Gauge Recommended in Multiconfiguration Calculations of Transition Data Involving Rydberg Series. Atoms 2019, 7, 106. [Google Scholar] [CrossRef]
- Bieroń, J.; Filippin, L.; Gaigalas, G.; Godefroid, M.; Jönsson, P.; Pyykkö, P. Ab initio calculations of the hyperfine structure of zinc and evaluation of the nuclear quadrupole moment Q(67Zn). Phys. Rev. A 2018, 97, 062505. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Si, R.; Godefroid, M.; Gaigalas, G.; Chen, C.Y.; Jönsson, P. Reducing the computational load-atomic multiconfiguration calculations based on configuration state function generators. Comput. Phys. Commun. 2023, 283, 108562. [Google Scholar] [CrossRef]
- Orth, H.; Ackermann, H.; Otten, E.W. Fine and hyperfine structure of the 2P term of 7Li; determination of the nuclear quadrupole moment. Z. Phys. A 1975, 273, 221. [Google Scholar] [CrossRef]
- Andersson, M.; Jönsson, P.; Sabel, H. Hyperfine induced interference effects in the 4s4d 3D2-4s4f 3F2,3 transitions in Ga II. J. Phys. B At. Mol. Phys. 2006, 39, 4239. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Gaigalas, G. Multiconfiguration Dirac-Hartree-Fock energy levels and transition probabilities for W XXXVIII. Phys. Rev. A 2012, 85, 042501. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Tachiev, G. Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences. At. Data Nucl. Data Tables 2004, 87, 1. [Google Scholar] [CrossRef]
- Grumer, J.; Li, W.; Bernhardt, D.; Li, J.; Schippers, S.; Brage, T.; Jönsson, P.; Hutton, R.; Zou, Y. Effect of an external magnetic field on the determination of E1M1 two-photon decay rates in Be-like ions. Phys. Rev A 2013, 88, 022513. [Google Scholar] [CrossRef]
- Ekman, J.; Godefroid, M.; Hartman, H. Validation and Implementation of Uncertainty Estimates of Calculated Transition Rates. Atoms 2014, 2, 215–224. [Google Scholar] [CrossRef]
- Myrnäs, R.; Jupén, C.; Miecznik, G.; Martinson, I.; Denne-Hinnov, B. Transitions in boronlike Ni XXIV, Ge XXVIII, Kr XXXII and Mo XXXVIII and fluorinelike Zr XXXII and Mo XXXIV, observed in the JET tokamak. Phys. Scr. 1994, 49, 429. [Google Scholar] [CrossRef]
- Rynkun, P.; Jönsson, P.; Gaigalas, G. Energies and E1, M1, E2, M2 transition rates for states of the 2s22p, 2s2p2, and 2p3 configurations in boron-like ions between N III and Zn XXVI. At. Data Nucl. Data Tables 2012, 98, 481. [Google Scholar] [CrossRef]
- Godefroid, M.; Froese Fischer, C.; Jönsson, P. Non-relativistic variational calculations of atomic properties in Li-like ions: Li I to O VI. J. Phys. B At. Mol. Opt. Phys. 2001, 34, 1079. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Fricke, G.; Bernhardt, C.; Heilig, K.; Schaller, L.A.; Schellenberg, L.; Shera, E.B.; Dejager, C.W. Nuclear Ground State Charge Radii from Electromagnetic Interactions. At. Data Nucl. Data Tables 1995, 60, 177. [Google Scholar] [CrossRef]
- Kozhedub, Y.S.; Andreev, O.; Shabaev, V.M.; Tupitsyn, I.I.; Brandau, C.; Kozhuharov, C.; Plunien, G.; Stöhlker, T. Nuclear deformation effect on the binding energies in heavy ions. Phys. Rev. A 2008, 77, 032501. [Google Scholar] [CrossRef]
- Zubova, N.A.; Kozhedub, Y.S.; Shabaev, V.M.; Tupitsyn, I.I.; Volotka, A.V.; Plunien, G.; Brandau, C.; Stöhlker, T. Relativistic calculations of the isotope shifts in highly charged Li-like ions. Phys. Rev. A 2014, 90, 062512. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).