Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,947)

Search Parameters:
Keywords = De Novo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2516 KiB  
Article
Joint Metabolomics and Transcriptomics Reveal Rewired Glycerophospholipid and Arginine Metabolism as Components of BRCA1-Induced Metabolic Reprogramming in Breast Cancer Cells
by Thomas Lucaora and Daniel Morvan
Metabolites 2025, 15(8), 534; https://doi.org/10.3390/metabo15080534 - 7 Aug 2025
Abstract
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself [...] Read more.
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself a transcriptional factor, BRCA1, through its multiple protein interaction domains, exerts transcriptional coregulation. In addition, BRCA1 expression alters cellular metabolism including inhibition of de novo fatty acid synthesis, changes in cellular bioenergetics, and activation of antioxidant defenses. Some of these actions may contribute to its global oncosuppressive effects. However, the breadth of metabolic pathways reprogrammed by BRCA1 is not fully elucidated. Methods: Breast cancer cells expressing BRCA1 were investigated by multiplatform metabolomics, metabolism-related transcriptomics, and joint metabolomics/transcriptomics data processing techniques, namely two-way orthogonal partial least squares and pathway analysis. Results: Joint analyses revealed the most important metabolites, genes, and pathways of metabolic reprogramming in BRCA1-expressing breast cancer cells. The breadth of metabolic reprogramming included fatty acid synthesis, bioenergetics, HIF-1 signaling pathway, antioxidation, nucleic acid synthesis, and other pathways. Among them, rewiring of glycerophospholipid (including phosphatidylcholine, -serine and -inositol) metabolism and increased arginine metabolism have not been reported yet. Conclusions: Rewired glycerophospholipid and arginine metabolism were identified as components of BRCA1-induced metabolic reprogramming in breast cancer cells. The study helps to identify metabolites that are candidate biomarkers of the BRCA1 genotype and metabolic pathways that can be exploited in targeted therapies. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

19 pages, 787 KiB  
Review
Comparison of Polynucleotide and Polydeoxyribonucleotide in Dermatology: Molecular Mechanisms and Clinical Perspectives
by Sung Tae Kim
Pharmaceutics 2025, 17(8), 1024; https://doi.org/10.3390/pharmaceutics17081024 - 7 Aug 2025
Abstract
Polynucleotide (PN) and polydeoxyribonucleotide (PDRN) are DNA-derived biopolymers increasingly recognized for their potential in dermatology. Despite their structural similarities, PN and PDRN exhibit distinct functions due to differences in polymer length and molecular weight. PN, composed of longer DNA fragments, plays a key [...] Read more.
Polynucleotide (PN) and polydeoxyribonucleotide (PDRN) are DNA-derived biopolymers increasingly recognized for their potential in dermatology. Despite their structural similarities, PN and PDRN exhibit distinct functions due to differences in polymer length and molecular weight. PN, composed of longer DNA fragments, plays a key role in extracellular matrix remodeling. Conversely, PDRN, composed of relatively shorter oligonucleotide sequences than those of PN, enhances skin condition through adenosine receptor activations and supports nucleotide synthesis via both the salvage and de novo pathways. This review provides a critical comparison of the molecular characteristics and functions of PN and PDRN with particular emphasis on their dermatological applications. By delineating their respective roles in esthetic and regenerative medicine, we aim to highlight recent advances that may guide the development of optimized treatment strategies and foster evidence-based clinical practice. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology in Korea)
Show Figures

Figure 1

52 pages, 3790 KiB  
Article
The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body
by Yashuai Wu, Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He, Mingtao Huang, Yi Ren, Xian Zhong, Dongrui Zhao, Jinchen Li, Mengyao Liu, Jinyuan Sun, Mingquan Huang and Baoguo Sun
Foods 2025, 14(15), 2743; https://doi.org/10.3390/foods14152743 - 6 Aug 2025
Abstract
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 [...] Read more.
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 3830 KiB  
Article
ZNF496 as Candidate Gene for Neurodevelopmental Disorders: Identification of a Pathogenic De Novo Frameshift Variant
by Francesco Calì, Miriam Virgillito, Simone Treccarichi, Antonino Musumeci, Pinella Failla, Carla Papa, Rosanna Galati Rando, Concetta Federico, Salvatore Saccone and Mirella Vinci
Int. J. Mol. Sci. 2025, 26(15), 7586; https://doi.org/10.3390/ijms26157586 - 5 Aug 2025
Abstract
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome [...] Read more.
Zinc finger proteins are frequently implicated in a wide range of neurodevelopmental disorders (NDDs). In this study, we report a case of mild intellectual disability (ID), global developmental delay (GDD), and developmental coordination disorder (DCD) in an individual with unaffected parents. Trio-based whole-exome sequencing (WES) identified a de novo variant (c.1530dup, p.Glu511ArgfsTer16) in the ZNF496 gene of the proband. According to ACMG guidelines, this novel variant is classified as pathogenic. It creates a frameshift that introduces a premature stop codon, resulting in a truncated protein of 525 amino acids (compared to the wild-type 587 residues). Notably, NMDEscPredictor analysis predicted that the transcript escapes nonsense-mediated decay (NMD) despite the frameshift. Computational analyses suggest the potential pathogenetic effects of the identified variant. As documented, ZNF496 interacts with JARID2, a gene associated with NDDs, ID and facial dysmorphism (MIM: #620098). In silico analyses suggest that the identified mutation disrupts this interaction by deleting ZNF496’s C2H2 domain, potentially dysregulating JARID2 target genes. To our knowledge, this is the first reported association between ZNF496 and NDDs, and the variant has been submitted to the ClinVar database (SCV006100880). Functional studies are imperative to validate ZNF496’s role in NDDs and confirm the mutation’s impact on ZNF496-JARID2 interactions. Full article
Show Figures

Figure 1

18 pages, 3111 KiB  
Article
Ectopic Recruitment of the CTCF N-Terminal Domain with Two Proximal Zinc-Finger Domains as a Tool for 3D Genome Engineering
by Eugenia A. Tiukacheva, Artem V. Luzhin, Natalia Kruglova, Anastasia S. Shtompel, Grigorii Antonov, Anna Tvorogova, Yegor Vassetzky, Sergey V. Ulianov and Sergey V. Razin
Int. J. Mol. Sci. 2025, 26(15), 7446; https://doi.org/10.3390/ijms26157446 - 1 Aug 2025
Viewed by 206
Abstract
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated [...] Read more.
Enhancer-promoter interactions occur in the chromatin loci delineated by the CCCTC-binding zinc-finger protein CTCF. CTCF binding is frequently perturbed in genetic disorders and cancer, allowing for misregulation of genes. Here, we developed a panel of chimeric proteins consisting of either full-length or truncated CTCF fused with programmable DNA-binding module dCas9 and fluorescent tracker EGFP. We found that the recruitment of a chimeric protein based on the CTCF N-terminal domain and two zinc-finger domains to the human HOXD locus leads to the de novo formation of a spatial contact with a nearby cohesin/CTCF-bound region, anchoring several chromatin loops. This chimeric protein did not show binding to CTCF motifs and did not affect the epigenetic and transcription profile of the locus. Recruitment of this chimeric protein is also able to restore chromatin loops, lost after deletion of an endogenous CTCF-binding site. Together, our data indicate that the ectopic recruitment of the CTCF N-terminal part could be an appropriate tool for 3D genome engineering. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 1549 KiB  
Article
Divergence in Coding Sequences and Expression Patterns Among the Functional Categories of Secretory Genes Between Two Aphid Species
by Atsbha Gebreslasie Gebrekidan, Yong Zhang and Julian Chen
Biology 2025, 14(8), 964; https://doi.org/10.3390/biology14080964 - 1 Aug 2025
Viewed by 175
Abstract
Disparities in the functional classification of secretory genes among aphid taxa may be attributed to variations in coding sequences and gene expression profiles. However, the driving factors that regulate sequence evolution remain unclear. This study aimed to investigate the differences in coding sequences [...] Read more.
Disparities in the functional classification of secretory genes among aphid taxa may be attributed to variations in coding sequences and gene expression profiles. However, the driving factors that regulate sequence evolution remain unclear. This study aimed to investigate the differences in coding sequences and expression patterns of secretory genes between the rose grain aphid (Metopolophium dirhodum) and the pea aphid (Acrythosiphon pisum), with a particular focus on their roles in evolutionary adaptations and functional diversity. The study involved the rearing of aphids, RNA extraction, de novo transcriptome assembly, functional annotation, secretory protein prediction, and comparative analysis of coding sequences and expression patterns across various functional categories using bioinformatics tools. The results revealed that metabolic genes exhibited greater coding sequence divergence, indicating the influence of positive selection. Moreover, significant expression divergence was noted among functional categories, particularly in metabolic and genetic information processing genes, which exhibited higher variability. This study enhances our understanding of the molecular mechanisms that contribute to phenotypic and genetic diversity among aphid species. This study elucidates the relationship between variations in coding sequences and differences in gene expression among functional categories, thereby establishing a foundation for future studies on gene evolution in response to environmental pressures. Full article
Show Figures

Figure 1

12 pages, 434 KiB  
Article
Gastroesophageal Reflux Disease 10 Years After Bariatric Surgery—Is It a Problem? A Multicenter Study (BARI-10-POL)
by Natalia Dowgiałło-Gornowicz, Monika Proczko-Stepaniak, Anna Kloczkowska, Paweł Jaworski and Piotr Major
J. Clin. Med. 2025, 14(15), 5405; https://doi.org/10.3390/jcm14155405 - 31 Jul 2025
Viewed by 245
Abstract
Background/Objectives: Gastroesophageal reflux disease (GERD) seems to be a common complaint which persists or develops after metabolic bariatric surgery (MBS). Endoscopic evaluation is vital in both the preoperative and postoperative phases to ensure optimal patient outcomes. The aim of this study was [...] Read more.
Background/Objectives: Gastroesophageal reflux disease (GERD) seems to be a common complaint which persists or develops after metabolic bariatric surgery (MBS). Endoscopic evaluation is vital in both the preoperative and postoperative phases to ensure optimal patient outcomes. The aim of this study was to evaluate the prevalence of GERD after MBS in a 10-year follow-up and analyze the endoscopic outcomes. Methods: This retrospective, multicenter study included 368 patients who underwent single bariatric procedure. The data came from five bariatric centers in Poland, part of the BARI-10-POL project. Data on symptoms of GERD, endoscopic findings, demographics, and surgical outcomes were collected for a 10-year follow-up period. Surgical procedures included SG, Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). Results: Of the 305 patients without symptoms of GERD, 12.3% developed de novo GERD postoperatively. There was no statistical significance regarding the new-onset symptoms and the type of MBS (p = 0.074) and the presence of symptoms of GERD and the type of MBS (p = 0.208). However, SG was associated with a significantly lower likelihood of GERD remission after MBS (p = 0.005). Endoscopic evaluation showed abnormal findings in asymptomatic patients in both preoperative (35.8%) and postoperative (14.1%) examinations (p < 0.001). Conclusions: GERD may be a common issue after MBS. One-quarter of patients after MBS may experience symptoms of GERD, regardless of the type of MBS. SG appears to be associated with a higher risk of persistent symptoms of GERD and a lower likelihood of GERD remission after MBS. Asymptomatic patients both before and after MBS may have abnormal findings in gastroscopy. Full article
(This article belongs to the Special Issue Clinical and Surgical Updates on Bariatric Surgery)
Show Figures

Figure 1

24 pages, 1766 KiB  
Article
From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
by Maria de Lurdes Roque, Claudia Botelho and Ana Novo Barros
Molecules 2025, 30(15), 3212; https://doi.org/10.3390/molecules30153212 - 31 Jul 2025
Viewed by 276
Abstract
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing [...] Read more.
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing interest in circular economy approaches that promote the valorization of agricultural residues. These by-products are rich in bioactive compounds, particularly phenolics such as oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities. This study aimed to evaluate the phenolic content and antioxidant capacity of by-products from three olive cultivars using high-performance liquid chromatography with photodiode array detection (HPLC–PDA) and mass spectrometry (MS). The leaves and seeds, particularly from the “Cobrança” and a non-identified variety, presented the highest antioxidant activity, as well as the highest concentration of phenolic compounds, demonstrating once again the direct relationship between these two parameters. The identification of the compounds present demonstrated that the leaves and branches have a high diversity of phenolic compounds, particularly secoiridoids, flavonoids, phenylpropanoids, phenylethanoids, and lignans. An inverse relationship was observed between the chlorophyll and carotenoid content and the antioxidant activity, suggesting that phenolic compounds, rather than pigments, are the major contributors to antioxidant properties. Therefore, the by-products of the olive oil industry are a valuable source of sustainable bioactive compounds for distinct industrial sectors, such as the food, nutraceutical, and pharmaceutical industries, aligning with the European strategies for resource efficiency and waste reduction in the agri-food industries. Full article
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
Computational Design of Potentially Multifunctional Antimicrobial Peptide Candidates via a Hybrid Generative Model
by Fangli Ying, Wilten Go, Zilong Li, Chaoqian Ouyang, Aniwat Phaphuangwittayakul and Riyad Dhuny
Int. J. Mol. Sci. 2025, 26(15), 7387; https://doi.org/10.3390/ijms26157387 - 30 Jul 2025
Viewed by 272
Abstract
Antimicrobial peptides (AMPs) provide a robust alternative to conventional antibiotics, combating escalating microbial resistance through their diverse functions and broad pathogen-targeting abilities. While current deep learning technologies enhance AMP generation, they face challenges in developing multifunctional AMPs due to intricate amino acid interdependencies [...] Read more.
Antimicrobial peptides (AMPs) provide a robust alternative to conventional antibiotics, combating escalating microbial resistance through their diverse functions and broad pathogen-targeting abilities. While current deep learning technologies enhance AMP generation, they face challenges in developing multifunctional AMPs due to intricate amino acid interdependencies and limited consideration of diverse functional activities. To overcome this challenge, we introduce a novel de novo multifunctional AMP design framework that enhances a Feedback Generative Adversarial Network (FBGAN) by integrating a global quantitative AMP activity regression module and a multifunctional-attribute integrated prediction module. This integrated approach not only facilitates the automated generation of potential AMP candidates, but also optimizes the network’s ability to assess their multifunctionality. Initially, by integrating an effective pre-trained regression and classification model with feedback-loop mechanisms, our model can not only identify potential valid AMP candidates, but also optimizes computational predictions of Minimum Inhibitory Concentration (MIC) values. Subsequently, we employ a combinatorial predictor to simultaneously identify and predict five multifunctional AMP bioactivities, enabling the generation of multifunctional AMPs. The experimental results demonstrate the efficiency of generating AMPs with multiple enhanced antimicrobial properties, indicating that our work can provide a valuable reference for combating multi-drug-resistant infections. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Molecular Sciences)
Show Figures

Figure 1

10 pages, 2048 KiB  
Article
Ultrasound-Guided PECS II Block Reduces Periprocedural Pain in Cardiac Device Implantation: A Prospective Controlled Study
by Mihaela Butiulca, Florin Stoica Buracinschi and Alexandra Lazar
Medicina 2025, 61(8), 1389; https://doi.org/10.3390/medicina61081389 - 30 Jul 2025
Viewed by 236
Abstract
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an [...] Read more.
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an interfascial regional technique, offers promising analgesic benefits in thoracic wall procedures but remains underutilized in cardiac electrophysiology. Materials and Methods: We conducted a prospective, controlled, non-randomized clinical study including 106 patients undergoing de novo CIED implantation. Patients were assigned to receive either a PECS II block (n = 53) or standard lidocaine-based local anesthesia (n = 53). Pain intensity was assessed using the numeric rating scale (NRS) intraoperatively and at 1, 6, and 12 h postoperatively. Secondary outcomes included the need for rescue analgesia, procedural duration, length of hospitalization, and patient satisfaction. Results: Patients in the PECS II group reported significantly lower NRS scores at all time points (mean intraoperative score: 2.1 ± 1.2 vs. 5.7 ± 1.6, p < 0.001; at 1 h: 2.5 ± 1.5 vs. 6.1 ± 1.7, p < 0.001). Rescue analgesia (metamizole sodium) was required in only four PECS II patients (7.5%) vs. 100% in the control group within 1 h. Hospital stay and procedural time were also modestly reduced in the PECS II group. Patient satisfaction scores were significantly higher in the intervention group. Conclusions: The ultrasound-guided PECS II block significantly reduces perioperative pain and the need for additional analgesia during CIED implantation, offering an effective, safe, and opioid-sparing alternative to conventional local infiltration. Its integration into clinical protocols for device implantation may enhance procedural comfort and recovery. Full article
(This article belongs to the Special Issue Regional and Local Anesthesia for Enhancing Recovery After Surgery)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 478
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

11 pages, 654 KiB  
Case Report
Clinical and Genetic Management of a Patient with Rubinstein–Taybi Syndrome Type 1: A Case Report
by Victor Santos, Pedro Souza, Talyta Campos, Hiane Winterly, Thaís Vieira, Marc Gigonzac, Alex Honda, Irene Pinto, Raffael Zatarin, Fernando Azevedo, Anna Nascimento, Cláudio da Silva and Aparecido da Cruz
Genes 2025, 16(8), 910; https://doi.org/10.3390/genes16080910 - 29 Jul 2025
Viewed by 262
Abstract
Rubinstein–Taybi Syndrome type 1 (RSTS1) is an uncommon autosomal dominant genetic disorder associated with neurodevelopmental impairments and multiple congenital anomalies, with an incidence of 1:100,000–125,000 live births. The syndrome, caused by de novo mutations in the CREBBP gene, is characterized by phenotypic variability, [...] Read more.
Rubinstein–Taybi Syndrome type 1 (RSTS1) is an uncommon autosomal dominant genetic disorder associated with neurodevelopmental impairments and multiple congenital anomalies, with an incidence of 1:100,000–125,000 live births. The syndrome, caused by de novo mutations in the CREBBP gene, is characterized by phenotypic variability, including intellectual disability, facial dysmorphisms, and systemic abnormalities. The current case report describes a 15-year-old Brazilian female diagnosed with RSTS1 through whole-exome sequencing, which identified a de novo heterozygous missense mutation in the CREBBP gene (NM_004380.3; c.4393G > C; p.Gly1465Arg), classified as pathogenic. The patient’s clinical presentation included facial dysmorphisms, skeletal abnormalities, neurodevelopmental delay, psychiatric conditions, and other systemic manifestations. A comprehensive genetic counseling process facilitated the differential diagnosis and management strategies, emphasizing the importance of early and precise diagnosis for improving clinical outcomes. This report contributes to the growing knowledge of the genotype–phenotype correlations in RSTS1, aiding in the understanding and management of this uncommon condition. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Graphical abstract

36 pages, 3201 KiB  
Review
Botulinum Toxin Effects on Biochemical Biomarkers Related to Inflammation-Associated Head and Neck Chronic Conditions: A Systematic Review of Preclinical Research
by Ines Novo Pereira, Giancarlo De la Torre Canales, Sara Durão, Rawand Shado, Ana Cristina Braga, André Mariz Almeida, Haidar Hassan, Ana Cristina Manso and Ricardo Faria-Almeida
Toxins 2025, 17(8), 377; https://doi.org/10.3390/toxins17080377 - 29 Jul 2025
Viewed by 402
Abstract
Current research reported that the number of clinical studies found for botulinum toxin (BoNT) key effects on biochemical biomarkers in head and neck chronic conditions linked to inflammation was very low. There are no systematic reviews of animal studies on this topic, and [...] Read more.
Current research reported that the number of clinical studies found for botulinum toxin (BoNT) key effects on biochemical biomarkers in head and neck chronic conditions linked to inflammation was very low. There are no systematic reviews of animal studies on this topic, and hence our review aimed to evaluate the quality of the preclinical evidence. We searched PubMed, Scopus, and Web of Science databases, and registries up to 29 January 2024. There were 22 eligible records, and data were available for 11 randomised controlled trials. There were concerns about the risk of bias and great variations of data obtained regarding chronic conditions, which included mostly trigeminal neuralgia. The leading biomarkers were proinflammatory cytokines (IL-1β, TNF-α) and synaptosomal-associated protein-25 (SNAP25), followed by neuron activation marker c-Fos and calcitonin gene-related peptide (CGRP). Overall, data found that BoNT significantly altered the under/over-expression of biomarkers evoked by the investigated disease models and had no effect when the levels of these biomarkers were not changed by the induced chronic conditions in animals. However, there were some mixed results and exceptions, and the certainty evidence found was very low to low. Although the sample sizes detected significant effect size (p < 0.05), most studies are based on male inferior animals, which may limit the recommendations for clinical trials. This study is registered on PROSPERO (CRD42023432411). Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

11 pages, 996 KiB  
Article
The Prognostic Value of Non-Invasive Ventilation in Patients with Acute Heart Failure
by Pietro Scicchitano, Assunta Cinelli, Gaetano Citarelli, Anna Livrieri, Cosimo Campanella, Micaela De Palo, Pasquale Caldarola, Marco Matteo Ciccone and Francesco Massari
Biomedicines 2025, 13(8), 1844; https://doi.org/10.3390/biomedicines13081844 - 29 Jul 2025
Viewed by 294
Abstract
Objectives: Patients with acute heart failure (AHF) often receive initial non-invasive ventilation (NIV). This study aimed to evaluate the prognostic role of NIV in patients hospitalized for AHF. Methods: This was a retrospective cohort study. We enrolled patients admitted to our cardiac intensive [...] Read more.
Objectives: Patients with acute heart failure (AHF) often receive initial non-invasive ventilation (NIV). This study aimed to evaluate the prognostic role of NIV in patients hospitalized for AHF. Methods: This was a retrospective cohort study. We enrolled patients admitted to our cardiac intensive care unit with a diagnosis of AHF. Anthropometric, clinical, pharmacological, and instrumental assessments were collected. Both in-hospital and 180-day post-discharge mortality were evaluated. Results: Among 200 patients (mean age 81 ± 9 years; 52% male), NIV was applied in 80 cases (40%). These patients had more severe NYHA functional class, a higher prevalence of de novo AHF, required higher diuretic doses, and had longer hospital stays. In multivariate analysis, NIV remained significantly associated with length of stay (LOS) (r = 0.26; p = 0.0004). In-hospital mortality was 5% overall and significantly higher in the NIV group compared to non-NIV patients (10% vs. 1.6%, p < 0.001). At 180 days, mortality was also significantly higher in the NIV group [hazard ratio (HR) 1.84; 95% confidence interval (CI): 1.18–2.85; p = 0.006]. After adjusting for age, BNP, CRP, arterial blood gas parameters, renal function, and LVEF, NIV remained an independent predictor of 180-day mortality (HR 1.61; 95% CI: 1.01–2.54; p = 0.04). Conclusions: Patients with AHF who required NIV exhibited more severe disease and longer hospital stays. NIV use was independently associated with both in-hospital and post-discharge mortality, suggesting its potential role as a prognostic marker in AHF. Full article
Show Figures

Graphical abstract

8 pages, 1197 KiB  
Case Report
A Case of Infantile Epileptic Spasms Syndrome with the SPTBN1 Mutation and Review of βII-Spectrin Variants
by Han Na Jang, Juyeon Ryu, Seung Soo Kim and Jin-Hwa Moon
Genes 2025, 16(8), 904; https://doi.org/10.3390/genes16080904 - 29 Jul 2025
Viewed by 327
Abstract
Background: Spectrin proteins are critical cytoskeleton components that maintain cellular structure and mediate intracellular transport. Pathogenic variants in SPTBN1, encoding βII-spectrin, have been associated with various neurodevelopmental disorders, including developmental delay, intellectual disability, autism spectrum disorder, and epilepsy. Here we report [...] Read more.
Background: Spectrin proteins are critical cytoskeleton components that maintain cellular structure and mediate intracellular transport. Pathogenic variants in SPTBN1, encoding βII-spectrin, have been associated with various neurodevelopmental disorders, including developmental delay, intellectual disability, autism spectrum disorder, and epilepsy. Here we report a Korean infant with infantile epileptic spasms syndrome (IESS) and an SPTBN1 mutation and provide a review of this mutation. Methods: The genomic data of the patient were analyzed by whole exome sequencing. A comprehensive literature review was conducted to identify and analyze all reported SPTBN1 variants, resulting in a dataset of 60 unique mutations associated with neurodevelopmental phenotypes. Case Presentation: A 10-month-old Korean female presented with IESS associated with a de novo heterozygous SPTBN1 mutation (c.785A>T; p.Asp262Val). The patient exhibited global developmental delay, microcephaly, hypotonia, spasticity, and MRI findings of diffuse cerebral atrophy and corpus callosum hypoplasia. Electroencephalography revealed hypsarrhythmia, confirming the diagnosis of IESS. Seizures persisted despite initial treatment with vigabatrin and steroids. Genetic analysis identified a likely pathogenic variant within the calponin homology 2 (CH2) domain of SPTBN1. Conclusions: This is the first report of an association between IESS and an SPTBN1 CH2 domain mutation in a Korean infant. This finding expands the clinical spectrum of SPTBN1-related disorders and suggests domain-specific effects may critically influence phenotypic severity. Further functional studies are warranted to elucidate the pathogenic mechanisms of domain-specific variants. Full article
(This article belongs to the Special Issue Genetics of Neuropsychiatric Disorders)
Show Figures

Figure 1

Back to TopTop