Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = DPSIR indicators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3559 KB  
Article
How Does Food Accessibility Shape the City Food Landscape? Socio-Economic Inequalities in the Metropolitan Region of Rome
by Davide Marino, Daniela Bernaschi and Francesca Benedetta Felici
Land 2026, 15(2), 214; https://doi.org/10.3390/land15020214 (registering DOI) - 26 Jan 2026
Abstract
Food insecurity is not merely an outcome of individual deprivation but a place-based expression of how urban food systems operate within unequal socio-spatial contexts. Using the Drivers–Pressures–State–Impacts–Responses (DPSIR) framework as a policy-relevant analytical lens, this study examines the Metropolitan Region of Rome to [...] Read more.
Food insecurity is not merely an outcome of individual deprivation but a place-based expression of how urban food systems operate within unequal socio-spatial contexts. Using the Drivers–Pressures–State–Impacts–Responses (DPSIR) framework as a policy-relevant analytical lens, this study examines the Metropolitan Region of Rome to show how structural inequalities and uneven food infrastructures shape exposure to food-related risks. The results show that vulnerability is amplified by food price inflation, the rising cost of a healthy diet, and spatial gaps in retail provision—captured through the combined presence of food deserts and food blackouts—disproportionately affecting peripheral municipalities. State indicators, including the Food Insecurity Experience Scale (FIES), the Food Affordability Index (FAI), and the spatial distribution of FEAD beneficiaries, reveal a markedly uneven geography of food poverty, mirroring a higher prevalence of overweight, obesity, and diabetes. These spatial configurations point to obesogenic environments in which constrained affordability and limited accessibility restrict the capacity to maintain healthy diets, generating hidden social and health costs that disproportionately burden peripheral areas. Overall, food insecurity in Rome follows a pronounced centre–periphery gradient rooted in structural and institutional arrangements rather than incidental variation. Addressing this condition requires place-based, justice-oriented interventions that strengthen food infrastructures, improve coordination across governance scales, and place food security at the core of an integrated metropolitan Food Policy. Full article
17 pages, 2331 KB  
Review
Pathways for SDG 6 in Japan: Challenges and Policy Directions for a Nature-Positive Water Future
by Qinxue Wang, Tomohiro Okadera, Satoshi Kameyama and Xinyi Huang
Sustainability 2026, 18(2), 994; https://doi.org/10.3390/su18020994 - 19 Jan 2026
Viewed by 422
Abstract
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators [...] Read more.
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators show that coverage of safely managed drinking water and sanitation services is nearly 99%, and domestic statistics report high compliance rates for BOD/COD-based environmental standards in rivers, lakes, and coastal waters. Conversely, the “second half” of SDG 6 reveals persistent gaps: ambient water quality (6.3.2) remains at 57% (2023 data), while water stress (6.4.2) is at approximately 21.6%. Furthermore, SDG 6.6.1 shows that 3% of water basins are experiencing rapid changes in surface water area (2020 data), with ecosystems increasingly threatened by hypoxia in enclosed bays and climate-induced vulnerabilities. Drawing on global comparisons, this review synthesizes Japan’s progress toward SDG 6, elucidates the structural drivers for remaining gaps, and proposes policy pathways for a nature-positive water future. Using national statistics (1970–2023) and the DPSIR framework, our analysis confirms that improvements in BOD/COD compliance plateaued around 2002, reinforcing concerns that point-source measures alone are insufficient to address diffuse pollution, groundwater nitrate contamination, and emerging contaminants like PFAS. We propose six strategic directions: (1) climate-resilient water systems leveraging groundwater; (2) smart infrastructure renewal; (3) advanced treatment for emerging contaminants; (4) basin-scale IWRM enhancing transboundary cooperation; (5) data transparency and citizen engagement; and (6) scaled nature-based solutions (NbS) integrated with green–gray infrastructure. The paper concludes by outlining priorities to close the gaps in SDG 6.3 and 6.6, advancing Japan toward a sustainable, nature-positive water cycle. Full article
Show Figures

Figure 1

21 pages, 4974 KB  
Article
Research on the Coupling and Coordinated Evolution of Cultivated Land Use Efficiency and Ecological Safety: A Case Study of Jilin Province (2000–2023)
by Shengxi Wang, Hailing Jiang, Ran Li, Hailin Yu, Xihao Sun and Xinhui Feng
Agriculture 2026, 16(1), 94; https://doi.org/10.3390/agriculture16010094 - 31 Dec 2025
Viewed by 340
Abstract
With increasing emphasis on ecological conservation and food security, cultivated land issues have become more prominent. This study focuses on Jilin Province and uses nine prefecture-level administrative units and prefectures as the basic analytical units. Using continuous data for 2000–2023, this study analyzes [...] Read more.
With increasing emphasis on ecological conservation and food security, cultivated land issues have become more prominent. This study focuses on Jilin Province and uses nine prefecture-level administrative units and prefectures as the basic analytical units. Using continuous data for 2000–2023, this study analyzes the spatiotemporal evolution of cultivated land use efficiency (CLUE). By 2023, most regions had achieved ecological safety (ES), examined through their coupling and coordination. The Super-Efficiency SBM-DEA model and the Malmquist–Luenberger (ML) index were used to evaluate the static and dynamic changes in CLUE. A DPSIR–PLS-SEM integrated framework was applied to identify causal mechanisms influencing ES, while the TOPSIS method was employed to assess overall evolutionary trends. In addition, the coupling coordination degree (CCD) model combined with kernel density estimation (KDE) was used to characterize the interaction between CLUE and ES and their spatial evolution. Results indicated the following: (1) From 2000 to 2023, overall CLUE in Jilin Province showed an upward trend with fluctuations, while regional disparities narrowed and spatial distribution became more balanced. (2) The composite ES index increased from 0.3009 to 0.7900, accompanied by a marked expansion of areas classified as secure. (3) The CCD improved from a basic level to a high-quality coordination level, indicating enhanced synergistic development. Higher coordination was observed in central and eastern regions, whereas western and peripheral areas lagged. This study integrates multi-dimensional modeling approaches to systematically assess the coupled dynamics on cultivated land use efficiency and ecological safety, providing insights for land management and policy formulation. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Graphical abstract

28 pages, 4088 KB  
Article
Research on the Evaluation Method of Urban Water Resources Resilience Based on the DPSIR Model: A Case Study of Dalian City
by Mengmeng Gao, Nan Yang, Yi Wang and Qiong Liu
Water 2026, 18(1), 72; https://doi.org/10.3390/w18010072 - 26 Dec 2025
Viewed by 370
Abstract
Under global climate change and urbanization, enhancing urban water resources resilience (WRR) is crucial. As a typical water-scarce city, Dalian in China faces significant challenges in water security. However, systematic assessments of WRR that integrate spatial and temporal dimensions remain limited. This study [...] Read more.
Under global climate change and urbanization, enhancing urban water resources resilience (WRR) is crucial. As a typical water-scarce city, Dalian in China faces significant challenges in water security. However, systematic assessments of WRR that integrate spatial and temporal dimensions remain limited. This study develops a novel evaluation framework integrating the Driving Force-Pressure-State-Impact-Response (DPSIR) model with the resilience process encompassing the pre-disturbance, during-disturbance, and post-disturbance to quantify the spatiotemporal evolution of WRR in Dalian from 2010 to 2022. The comprehensive Water Resources Resilience Index (WRRI) was calculated using the entropy weight method. The Geodetector and an obstacle degree model were used to identify key driving factors and obstacles. Results indicate an average WRRI of 0.47 with significant fluctuations. Spatially, resilience displayed a “high in the south, low in the north” pattern, with most areas at low-to-moderately low levels. Socio-economic factors such as water resources development and utilization rate, water use per 10,000 yuan of GDP, and proportion of the tertiary industry in GDP, along with natural factors like per capita water resources, were identified as the primary drivers. Obstacle factors varied spatially, reflecting distinct water management challenges across different counties. This study highlights the importance of integrating the resilience process into WRR evaluation and provides a scientific basis for developing targeted strategies to enhance urban water security and sustainable resource management. Full article
Show Figures

Figure 1

26 pages, 3522 KB  
Article
Evaluation of Mine Land Ecological Resilience: Application of the Vague Sets Model Under the Nature-Based Solutions Framework
by Lu Feng, Jing Xie and Yuxian Ke
Sustainability 2026, 18(1), 164; https://doi.org/10.3390/su18010164 - 23 Dec 2025
Viewed by 283
Abstract
To achieve a scientific evaluation of land ecological resilience in mining areas and promote the green transformation and sustainable development of the mining industry, this study is based on the core concept of Nature-based Solutions (NbS), coupling the “Driving force–Pressure–State–Impact–Response” (DPSIR) framework, and [...] Read more.
To achieve a scientific evaluation of land ecological resilience in mining areas and promote the green transformation and sustainable development of the mining industry, this study is based on the core concept of Nature-based Solutions (NbS), coupling the “Driving force–Pressure–State–Impact–Response” (DPSIR) framework, and constructs an evaluation system for mine land ecological resilience (MLER) focusing on sustainability. This system covers multiple aspects, including natural ecology, socio-economics, and policy management, comprising 21 secondary indicators that comprehensively respond to NbS’ fundamental principles of “nature-guided, multi-party collaboration, and long-term adaptation.” In terms of evaluation methodology, this study proposes a combined weighting model that integrates AHP-CRITIC game theory with Vague sets. First, subjective expert experience and objective data variance are balanced through combined weighting. Based on game theory, the optimal combination coefficients were determined (α1 = 0.624, α2 = 0.376) to reconcile subjective and objective preferences. Subsequently, the three-dimensional interval structure of Vague sets is utilized to effectively accommodate fuzzy information and data gaps. By characterizing the restoration process through interval membership, the model enhances the representational capacity of the evaluation results regarding complex ecological information. Empirical research conducted in the mining areas of Gan Xian, Xing Guo, Yu Du, and Xun Wu in Jiangxi Province effectively identified differences in resilience levels: the resilience of the Xing Guo mining area was classified as I, Gan Xian and Yu Du as II, and Xun Wu as IV. These results are fundamentally consistent with the AHP-Fuzzy Comprehensive Evaluation method, verifying the robustness and reliability of the model. The NbS-guided evaluation system and model constructed in this study provide scientific tools for identifying differences in the sustainability of MLER and key constraints, promoting the transformation of restoration models from “engineering-driven” to “nature-driven, long-term adaptation” in the context of NbS in China. Full article
(This article belongs to the Special Issue Sustainable Solutions for Land Reclamation and Post-mining Land Uses)
Show Figures

Figure 1

30 pages, 12727 KB  
Article
Regionalized Assessment of Urban Lake Ecosystem Health in China: A Novel Framework Integrating Hybrid Weighting and Adaptive Indicators
by Xi Weng, Dongdong Gao, Xiaogang Tian, Tianshan Zeng, Hongle Shi, Wanping Zhang, Mingkun Guo, Rong Su and Hanxiao Zeng
Sustainability 2025, 17(24), 11381; https://doi.org/10.3390/su172411381 - 18 Dec 2025
Viewed by 520
Abstract
Urban lakes are essential for ecological balance and urban development. This study developed a comprehensive framework to evaluate the ecosystem health of urban lakes in China. Nineteen representative lakes from four lake zones were examined using three decades of remote-sensing data combined with [...] Read more.
Urban lakes are essential for ecological balance and urban development. This study developed a comprehensive framework to evaluate the ecosystem health of urban lakes in China. Nineteen representative lakes from four lake zones were examined using three decades of remote-sensing data combined with hydrological, water-quality, and aquatic–biological investigations. An extended DPSIR model guided the selection of 52 indicators, and a hierarchical weighting scheme was used: the analytic hierarchy process determined criterion-level weights, while principal component analysis with Softmax normalization was used for indicator-level weights. The established index system was applied to Xuanwu Lake and Erhai Lake, and an obstacle-degree model was used to identify key ecological constraints from 2010 to 2020. Results showed that urban lakes in the Yunnan–Guizhou Plateau and Eastern Plain zones were mainly constrained by eutrophication and intensive urbanization, with state- and impact-related indicators contributing most to the health index. The framework captured the decline of Xuanwu Lake, driven by poor water exchange and external nutrient loading, and its subsequent improvement following governance interventions, as well as the post-2014 degradation of Erhai Lake driven by climate-induced hydrological stress and non-point source pollution, providing a practical tool for diagnosing constraints and supporting adaptive, region-specific lake management. Full article
Show Figures

Figure 1

20 pages, 5677 KB  
Article
Evaluating Ecological Shifts in Mining Areas Using the DPSIR Model: A Case Study from the Xiaoxing’an Mountains Metallogenic Belt, China
by Fengshan Jiang, Fuquan Mu, Xuewen Cui, Ge Qu, Bing Wang and Yan Yan
Sustainability 2025, 17(23), 10766; https://doi.org/10.3390/su172310766 - 1 Dec 2025
Viewed by 327
Abstract
Mineral resource exploitation poses substantial pressure on regional ecological environments. The Xiaoxing’anling mineral belt—a critical ecological functional area and a major mineral-rich zone in China—exemplifies such environmental vulnerability. Conducting a scientific assessment of ecological changes in mining-affected regions is essential for balancing resource [...] Read more.
Mineral resource exploitation poses substantial pressure on regional ecological environments. The Xiaoxing’anling mineral belt—a critical ecological functional area and a major mineral-rich zone in China—exemplifies such environmental vulnerability. Conducting a scientific assessment of ecological changes in mining-affected regions is essential for balancing resource development and environmental protection. Based on the DPSIR (Driver-Pressure-State-Impact-Response) model, this study developed a comprehensive indicator system tailored for evaluating ecological changes in mining areas. Using the Xiaoxing’anling mineral belt in Heilongjiang Province as a case study, we integrated remote sensing, geographic information, statistical yearbooks, and field survey data, and applied an objective weighting method to quantitatively assess ecological changes from 2010 to 2020. The results indicate the following: (1) Ecological evolution exhibits significant spatiotemporal heterogeneity, with persistently high ecological pressure in the eastern region leading to continued environmental degradation. (2) Socioeconomic transformation driven by new energy development has weakened the overall development driver, though Yichun City remains a core driver due to its super-large mineral deposits. (3) Ecological impacts demonstrate a spatial spillover effect, extending to urban residential areas, while ecological response measures lag severely and are misaligned with pressure distribution—nature reserves have become high-value response zones rather than the actual mining sites. (4) The comprehensive ecological restoration index is on a downward trend. The measures currently adopted by society to improve the ecology of mining areas, such as using greener mining methods and increasing vegetation coverage, are unable to counteract the adverse effects of previous mining activities. This study identifies passive and lagging responses as the key bottlenecks impeding ecological recovery. We emphasize that future management strategies must shift from passive remediation to proactive intervention, and propose clear spatial and institutional directions for sustainable governance in mining areas. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

28 pages, 7846 KB  
Article
Resilience Assessment and Evolution Characteristics of Urban Earthquakes in the Sichuan–Yunnan Region Based on the DPSIR Model
by Haijun Li, Hongtao Liu, Yaowen Zhang, Jiubo Dong and Yixin Pang
Sustainability 2025, 17(23), 10618; https://doi.org/10.3390/su172310618 - 26 Nov 2025
Viewed by 606
Abstract
The Sichuan–Yunnan region, a primary seismic-prone zone on the Qinghai–Tibet Plateau, has experienced heightened seismic exposure due to rapid urbanisation. In order to address the issue of disaster risks and to promote sustainable urban development, this study establishes an integrated urban seismic resilience [...] Read more.
The Sichuan–Yunnan region, a primary seismic-prone zone on the Qinghai–Tibet Plateau, has experienced heightened seismic exposure due to rapid urbanisation. In order to address the issue of disaster risks and to promote sustainable urban development, this study establishes an integrated urban seismic resilience evaluation framework based on the DPSIR (Driving–Pressure–State–Impact–Response) model. The CRITIC–AHP combined weighting method was utilised to determine indicator weights, and data from 37 prefecture-level cities (2010, 2015, 2020) were analysed to reveal spatial–temporal evolution patterns and correlations. The results demonstrate a consistent improvement in regional seismic resilience, with the overall index increasing from 0.501 in 2010 to 0.526 in 2020. Sichuan exhibited a “decline-then-rise” trend (0.570 to 0.566 to 0.585), while Yunnan demonstrated continuous growth (0.517 to 0.557). The spatial pattern underwent an evolution from “west–low, central–eastern–high” to “south–high, north–low”, with over half of the cities attaining relatively high resilience by 2020. Chengdu and Kunming have been identified as dual high-resilience cores, diffusing resilience outward to neighbouring regions. In contrast, mountainous areas such as Garze and Aba have been found to exhibit low resilience levels, primarily due to high seismic stress and limited socioeconomic capacity. Subsystem analysis has revealed divergent resilience pathways across provinces, while spatial autocorrelation has demonstrated fluctuating global Moran’s I values and temporary local clustering. This research provides a scientific foundation for seismic disaster mitigation and offers a transferable analytical framework for enhancing urban resilience in earthquake-prone regions globally. Full article
Show Figures

Figure 1

23 pages, 2326 KB  
Article
Risk Assessment and Management of Potential Invasive Alien Species: A Study on Cenchrus purpureus in the Gaoligong Mountains
by Jiaqi Zhao, Zhuo Cheng, Congli Xu and Chunlin Long
Land 2025, 14(11), 2211; https://doi.org/10.3390/land14112211 - 7 Nov 2025
Viewed by 618
Abstract
This study investigated Cenchrus purpureus in the southern part of the Gaoligong Mountains and quantified its invasion risk using an integrated approach. We combined the Drivers–Pressures–State–Impacts–Responses (DPSIR) model, Analytic Hierarchy Process (AHP), Structural Equation Modeling (SEM), and Traditional Ecological Knowledge (TEK). We adopted [...] Read more.
This study investigated Cenchrus purpureus in the southern part of the Gaoligong Mountains and quantified its invasion risk using an integrated approach. We combined the Drivers–Pressures–State–Impacts–Responses (DPSIR) model, Analytic Hierarchy Process (AHP), Structural Equation Modeling (SEM), and Traditional Ecological Knowledge (TEK). We adopted non-random sampling techniques to conduct a survey on the cognition, hazards, utilization and management of C. purpureus among 402 respondents from 25 villages. Our results classify C. purpureus as a medium-risk species (Level II). We identified a central socio-ecological dilemma: while 36.1% of communities use it for fodder, 54% report that it causes soil degradation, signaling potential long-term agricultural losses. SEM analysis confirmed that the willingness to manage the invasion is directly influenced by these usage patterns and risk perceptions. The traditional ecological knowledge of Cenchrus purpureus was highly consistent with scientific assessment, validating its use as an early warning indicator. Therefore, our study validates a multidisciplinary framework that integrates models (DPSIR, AHP, SEM) with traditional knowledge for a holistic assessment of C. purpureus invasion. This approach offers a replicable strategy for ecosystem management in global biodiversity hotspots in the mountainous regions. Full article
(This article belongs to the Topic Ecological Protection and Modern Agricultural Development)
Show Figures

Figure 1

17 pages, 678 KB  
Review
Toward Sustainable Wetland Management: A Literature Review of Global Wetland Vulnerability Assessment Techniques in the Context of Rising Pressures
by Assia Abdenour, Mohamed Sinan and Brahim Lekhlif
Sustainability 2025, 17(17), 7962; https://doi.org/10.3390/su17177962 - 4 Sep 2025
Viewed by 2197
Abstract
Wetlands are natural ecosystems of great ecological and economic value. They provide undeniable ecosystem services that contribute to promoting sustainable development. Exposed to different pressures, these limnic ecosystems are particularly vulnerable to climate change. Thus, assessing wetland vulnerability is of utmost importance. Based [...] Read more.
Wetlands are natural ecosystems of great ecological and economic value. They provide undeniable ecosystem services that contribute to promoting sustainable development. Exposed to different pressures, these limnic ecosystems are particularly vulnerable to climate change. Thus, assessing wetland vulnerability is of utmost importance. Based on a systematic selection of relevant peer-reviewed studies, this paper helps to develop a general vision of the methods used to assess wetland vulnerability in different contexts, emphasizing the use of advanced computational approaches. Hence, an overview of different cases of wetlands all across the five continents and of different types of habitats is presented. Whether the wetland is permanently or seasonally flooded, coastal, or tropical, this study enables the analysis of diverse, already established vulnerability evaluation index systems. Some of these indices were computed using geographic information systems (GISs), artificial intelligence (AI), machine learning (ML), spatial principal component analysis (SPCA) and driver–pressure–state–impact–response (DPSIR) as evaluation models. Indeed, given the adoption of different methods, diverse models, and analytical approaches under different scenarios, the vulnerability assessment process should be seen as an iterative rather than a definitive process. An accurate wetland vulnerability assessment is essential for ensuring the sustainability of wetland ecosystems and for informing effective conservation and management strategies. Full article
Show Figures

Figure 1

32 pages, 4487 KB  
Article
Urban Pluvial Flood Resilience Evolution and Dynamic Assessment Based on the DPSIR Model: A Case Study of Kunming City, Southwest China
by Meimei Yuan, Wanfu Li, Tao Li and Jun Zhang
Water 2025, 17(17), 2581; https://doi.org/10.3390/w17172581 - 1 Sep 2025
Cited by 1 | Viewed by 1948
Abstract
The increasing frequency of extreme weather events and rapid urbanization has exacerbated pluvial flood risks, underscoring the urgent need to strengthen the assessment of pluvial flood resilience in China’s southwestern mountainous regions. Kunming—a plateau basin city—was selected as a case study, and an [...] Read more.
The increasing frequency of extreme weather events and rapid urbanization has exacerbated pluvial flood risks, underscoring the urgent need to strengthen the assessment of pluvial flood resilience in China’s southwestern mountainous regions. Kunming—a plateau basin city—was selected as a case study, and an urban pluvial flood resilience assessment system was developed based on the DPSIR model. The analytic hierarchy process (AHP), entropy method, and game theory-informed combination weighting were applied to determine indicator weights, while the extension cloud model was utilized to quantitatively assess resilience evolution from 2013 to 2022. The results reveal that: (1) Kunming’s pluvial flood resilience experienced a clear three-stage evolution—initial construction (Level II), resilience enhancement (Level III), and resilience reinforcement (Level IV)—reflecting a transition from rudimentary resilience to advanced adaptive capacity; (2) the ranking of primary indicator weights is as follows: Driving Forces > Pressure > State > Response > Impact, with Flood Disaster Risk (P6), Flood Disaster Early Warning Capability (R1), and Topographic and Geomorphological Characteristics (P7) identified as key influencing factors; (3) marked disparities exist across the five dimensions: the Driving Forces dimension demonstrates increasing economic support; the Pressure dimension reflects structural vulnerabilities and climate variability; the State and Impact dimensions advance incrementally through policy implementation; and the Response dimension has substantially improved due to smart city technologies, although persistent gaps in inter-agency emergency coordination remain. This research offers a scientific basis for enhancing pluvial flood resilience in southwestern mountainous cities. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

25 pages, 2973 KB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Cited by 1 | Viewed by 1384
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

32 pages, 2702 KB  
Article
Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective
by Leian Zhang, Junwu Wang, Miaomiao Zhang and Jingyi Guo
Buildings 2025, 15(15), 2732; https://doi.org/10.3390/buildings15152732 - 2 Aug 2025
Cited by 1 | Viewed by 1094
Abstract
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and [...] Read more.
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and systematically evaluate the safety vulnerability of subway station construction. This paper takes the Chengdu subway project as an example, and establishes a metro station construction safety vulnerability evaluation index system based on the driving forces–pressures–state–impacts–responses (DPSIR) theory with 5 first-level indexes and 23 second-level indexes, and adopts the fuzzy hierarchical analysis method (FAHP) to calculate the subjective weights, and the improved Harris Hawks optimization–projection pursuit method (HHO-PPM) to determine the objective weights, combined with game theory to calculate the comprehensive weights of the indicators, and finally uses the improved cloud model of Bayesian feedback to determine the vulnerability level of subway station construction safety. The study found that the combined empowerment–improvement cloud model assessment method is reliable, and the case study verifies that the vulnerability level of the project is “very low risk”, and the investigations of safety hazards and the pressure of surrounding traffic are the key influencing factors, allowing for the proposal of more scientific and effective management strategies for the construction of subway stations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 5120 KB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 814
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

27 pages, 2926 KB  
Article
Research on Resilience Evaluation and Prediction of Urban Ecosystems in Plateau and Mountainous Area: Case Study of Kunming City
by Hui Li, Fucheng Liang, Jiaheng Du, Yang Liu, Junzhi Wang, Qing Xu, Liang Tang, Xinran Zhou, Han Sheng, Yueying Chen, Kaiyan Liu, Yuqing Li, Yanming Chen and Mengran Li
Sustainability 2025, 17(12), 5515; https://doi.org/10.3390/su17125515 - 15 Jun 2025
Cited by 1 | Viewed by 1322
Abstract
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience [...] Read more.
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience (UER) assessment model based on the DPSIR (Driving forces, Pressures, States, Impacts, and Responses) framework. A total of 25 indicators were selected via questionnaire surveys, covering five dimensions: driving forces such as natural population growth, annual GDP growth, urbanization level, urban population density, and resident consumption price growth; pressures including per capita farmland, per capita urban construction land, land reclamation and cultivation rate, proportion of natural disaster-stricken areas, and unit GDP energy consumption; states measured by Evenness Index (EI), Shannon Diversity Index (SHDI), Aggregation Index (AI), Interspersion and Juxtaposition Index (IJI), Landscape Shape Index (LSI), and Normalized Vegetation Index (NDVI); impacts involving per capita GDP, economic density, per capita disposable income growth, per capita green space area, and per capita water resources; and responses including proportion of natural reserve areas, proportion of environmental protection investment to GDP, overall utilization of industrial solid waste, and afforestation area. Based on remote sensing and other data, indicator values were calculated for 2006, 2011, and 2016. The entire-array polygon indicator method was used to visualize indicator interactions and derive composite resilience index values, all of which remained below 0.25—indicating a persistent low-resilience state, marked by sustained economic growth, frequent natural disasters, and declining ecological self-recovery capacity. Forecasting results suggest that, under current development trajectories, Kunming’s UER will remain low over the next decade. This study is the first to integrate the DPSIR framework, entire-array polygon indicator method, and Grey System Forecasting Model into the evaluation and prediction of urban ecosystem resilience in plateau-mountainous cities. The findings highlight the ecosystem’s inherent capacities for self-organization, adaptation, learning, and innovation and reveal its nested, multi-scalar resilience structure. The DPSIR-based framework not only reflects the complex human–nature interactions in urban systems but also identifies key drivers and enables the prediction of future resilience patterns—providing valuable insights for sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable and Resilient Regional Development: A Spatial Perspective)
Show Figures

Figure 1

Back to TopTop