water-logo

Journal Browser

Journal Browser

From Theory to Practice: Implementing Resilience, Adaptation and Drivers of Change Frameworks in Water Basin Management

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Resources Management, Policy and Governance".

Deadline for manuscript submissions: closed (31 December 2025) | Viewed by 586

Special Issue Editors


E-Mail Website
Guest Editor
Centre for Environmental Governance, University of Canberra, Bruce, ACT 2617, Australia
Interests: ecological economics; environmental governance; water and sustainability
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
Centre for Environmental Governance, University of Canberra, Bruce, ACT 2617, Australia
Interests: climate change adaptation; science–policy–practice interfaces; environmental governance; sustainability transitions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Water basins are currently facing unprecedented challenges caused by climate change, resource development pressures, and socio-economic transitions. While the concepts of resilience, adaptation, and drivers of change (RAD) have gained theoretical attention in water research, studies on the nexus between them and their practical implementation in management frameworks remain limited. This Special Issue specifically focuses on bridging the gap between theory and practice in water basin governance. We welcome contributions that demonstrate how RAD concepts can be integrated and operationalized through management tools, governance reforms, decision-support systems, and on-ground implementation strategies. Papers should move beyond conceptual discussions to provide evidence-based approaches, practical case studies, evaluation metrics, and implementation pathways that enable water managers and policymakers to embed RAD thinking into everyday practice. By emphasizing real-world applications across diverse global contexts, this Special Issue aims to accelerate the transition from theoretical RAD frameworks to actionable management approaches that enhance the sustainability and resilience of water basins in the face of increasing uncertainty.

Dr. Leonie J. Pearson
Guest Editor

Dr. Josephine Mummery
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • resilience implementation
  • adaptive management
  • practical applications
  • water governance
  • social-ecological systems
  • management tools
  • operational frameworks
  • decision-support
  • policy reform
  • evaluation metrics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 1715 KB  
Article
From Identification to Guiding Action: A Systematic Heuristic to Prioritise Drivers of Change for Water Management
by Jo Mummery and Leonie J. Pearson
Water 2026, 18(2), 278; https://doi.org/10.3390/w18020278 - 21 Jan 2026
Abstract
Global water management faces a critical challenge: whilst scholarly consensus recognises that multiple, interacting drivers fundamentally shape water availability and management capacity, operational governance frameworks fail to systematically incorporate this understanding. This disconnect is particularly acute in public good contexts where incomplete knowledge, [...] Read more.
Global water management faces a critical challenge: whilst scholarly consensus recognises that multiple, interacting drivers fundamentally shape water availability and management capacity, operational governance frameworks fail to systematically incorporate this understanding. This disconnect is particularly acute in public good contexts where incomplete knowledge, diverse stakeholder values, and statutory planning mandates create distinct challenges. Using Australia’s Murray–Darling Basin as a pilot case, this research develops and demonstrates a rapid, policy-relevant heuristic for identifying, prioritising, and incorporating drivers of change in complex socio-ecological water systems. Through structured participatory deliberation with 70 experts spanning research, policy, industry, and community sectors across three sequential workshops and 15 semi-structured interviews, we systematically identified key drivers across environmental, governance, economic, social, and legacy dimensions. A risk and sensitivity assessment framework enabled prioritisation based on impact, vulnerability, and urgency. Climate change, drought, water quality events, and cumulative impacts emerged as the highest-priority future drivers, with climate change acting as a threat multiplier, whilst governance drivers show declining relative significance. Using these methodological innovations, we synthesise the I-PLAN heuristic: five interdependent dimensions (Integrative Knowledge, Prioritisation for Management, Linkages between Drivers, Adaptive Agendas, and Normative Collaboration) that provide water planners with a transferable, operational tool for driver identification and bridging to planning and management in data-sparse contexts. Full article
Show Figures

Figure 1

28 pages, 4088 KB  
Article
Research on the Evaluation Method of Urban Water Resources Resilience Based on the DPSIR Model: A Case Study of Dalian City
by Mengmeng Gao, Nan Yang, Yi Wang and Qiong Liu
Water 2026, 18(1), 72; https://doi.org/10.3390/w18010072 - 26 Dec 2025
Viewed by 359
Abstract
Under global climate change and urbanization, enhancing urban water resources resilience (WRR) is crucial. As a typical water-scarce city, Dalian in China faces significant challenges in water security. However, systematic assessments of WRR that integrate spatial and temporal dimensions remain limited. This study [...] Read more.
Under global climate change and urbanization, enhancing urban water resources resilience (WRR) is crucial. As a typical water-scarce city, Dalian in China faces significant challenges in water security. However, systematic assessments of WRR that integrate spatial and temporal dimensions remain limited. This study develops a novel evaluation framework integrating the Driving Force-Pressure-State-Impact-Response (DPSIR) model with the resilience process encompassing the pre-disturbance, during-disturbance, and post-disturbance to quantify the spatiotemporal evolution of WRR in Dalian from 2010 to 2022. The comprehensive Water Resources Resilience Index (WRRI) was calculated using the entropy weight method. The Geodetector and an obstacle degree model were used to identify key driving factors and obstacles. Results indicate an average WRRI of 0.47 with significant fluctuations. Spatially, resilience displayed a “high in the south, low in the north” pattern, with most areas at low-to-moderately low levels. Socio-economic factors such as water resources development and utilization rate, water use per 10,000 yuan of GDP, and proportion of the tertiary industry in GDP, along with natural factors like per capita water resources, were identified as the primary drivers. Obstacle factors varied spatially, reflecting distinct water management challenges across different counties. This study highlights the importance of integrating the resilience process into WRR evaluation and provides a scientific basis for developing targeted strategies to enhance urban water security and sustainable resource management. Full article
Show Figures

Figure 1

Back to TopTop