Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (915)

Search Parameters:
Keywords = DFT simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 (registering DOI) - 2 Aug 2025
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

35 pages, 7970 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
16 pages, 3282 KiB  
Article
First-Principles Study on Periodic Pt2Fe Alloy Surface Models for Highly Efficient CO Poisoning Resistance
by Junmei Wang, Qingkun Tian, Harry E. Ruda, Li Chen, Maoyou Yang and Yujun Song
Nanomaterials 2025, 15(15), 1185; https://doi.org/10.3390/nano15151185 (registering DOI) - 1 Aug 2025
Abstract
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in [...] Read more.
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in Pt-Fe alloys across varying Pt/Fe ratios. Our simulations reveal a strong tendency for Pt atoms to segregate to the surface layer while Fe atoms enrich the sub-surface region. Crucially, the calculations predict the stability of a periodic Pt2Fe alloy surface model, characterized by specific defect structures, at low platinum content and low annealing temperatures. Electronic structure analysis indicates that forming this Pt2Fe surface alloy lowers the d-band center of Pt atoms, weakening CO adsorption and thereby enhancing resistance to CO poisoning. Although defect-induced strains can modulate the d-band center, crystal orbital Hamilton population (COHP) analysis confirms that such strains generally strengthen Pt-CO interactions. Therefore, the theoretical design of Pt2Fe alloy surfaces and controlling defect density are predicted to be effective strategies for enhancing catalyst resistance to CO poisoning. This work highlights the advantages of periodic Pt2Fe surface models for anti-CO poisoning and provides computational guidance for designing efficient Pt-based electrocatalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

30 pages, 3715 KiB  
Article
The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study
by Aurelian Dobriţescu, Adriana Samide, Nicoleta Cioateră, Oana Camelia Mic, Cătălina Ionescu, Irina Dăbuleanu, Cristian Tigae, Cezar Ionuţ Spînu and Bogdan Oprea
Molecules 2025, 30(15), 3141; https://doi.org/10.3390/molecules30153141 - 26 Jul 2025
Viewed by 395
Abstract
Experimental and theoretical studies were applied to investigate the adsorption properties of testagen (KEDG) peptide on copper surfaces in sodium chloride solution and, implicitly, its inhibition efficiency (IE) on metal corrosion. The tetrapeptide synthesized from the amino acids lysine (Lys), glutamic acid (Glu), [...] Read more.
Experimental and theoretical studies were applied to investigate the adsorption properties of testagen (KEDG) peptide on copper surfaces in sodium chloride solution and, implicitly, its inhibition efficiency (IE) on metal corrosion. The tetrapeptide synthesized from the amino acids lysine (Lys), glutamic acid (Glu), aspartic acid (Asp), and glycine (Gly), named as H-Lys-Glu-Asp-Gly-OH, achieved an inhibition efficiency of around 86% calculated from electrochemical measurements, making KEDG a promising new copper corrosion inhibitor. The experimental data were best fitted to the Freundlich adsorption isotherm. The standard free energy of adsorption (ΔGadso) reached the value of −30.86 kJ mol−1, which revealed a mixed action mechanism of tetrapeptide, namely, chemical and physical spontaneous adsorption. The copper surface characterization was performed using optical microscopy and SEM/EDS analysis. In the KEDG presence, post-corrosion, SEM images showed a network surface morphology including microdeposits with an acicular appearance, and EDS analysis highlighted an upper surface layer consisting of KEDG, sodium chloride, and copper corrosion compounds. The computational study based on DFT and Monte Carlo simulation confirmed the experimental results and concluded that the spontaneous adsorption equilibrium establishment was the consequence of the contribution of noncovalent (electrostatic, van der Waals) interactions and covalent bonds. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

11 pages, 7608 KiB  
Article
A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4
by Naiara Leticia Marana, Eleonora Ascrizzi, Fabrizio Silveri, Mauro Francesco Sgroi, Lorenzo Maschio and Anna Maria Ferrari
Materials 2025, 18(15), 3515; https://doi.org/10.3390/ma18153515 - 26 Jul 2025
Viewed by 336
Abstract
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is [...] Read more.
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is relevant given the widespread application of these materials in Li–S solid-state batteries, where Li2S functions not only as a cathode material but also as a protective layer for the lithium anode. Understanding the interfacial structure and how compositional variations influence its chemical and mechanical stability is therefore crucial. Our results demonstrate that the LPS/Li2S interface remains stable regardless of the compositional ratio. However, when the content of both materials is low, the Raman-active vibrational mode associated with the [PS4]3− tetrahedral cluster dominates the interface spectrum, effectively obscuring the characteristic peaks of Li2S and other interfacial features. Only when sufficient amounts of both LPS and Li2S are present does the coupling between their vibrational modes become sufficiently pronounced to alter the Raman profile and reveal distinct interfacial fingerprints. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 217
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

17 pages, 1633 KiB  
Article
Iodinated Salicylhydrazone Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Enzymatic Activity, Molecular Modeling, and ADMET Profiling
by Seema K. Bhagwat, Fabiola Hernandez-Rosas, Abraham Vidal-Limon, J. Oscar C. Jimenez-Halla, Balasaheb K. Ghotekar, Vivek D. Bobade, Enrique Delgado-Alvarado, Sachin V. Patil and Tushar Janardan Pawar
Chemistry 2025, 7(4), 117; https://doi.org/10.3390/chemistry7040117 - 23 Jul 2025
Viewed by 267
Abstract
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g [...] Read more.
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g, 4i, and 4j exhibited potent enzyme inhibition, with IC50 values ranging from 14.86 to 18.05 µM—substantially better than acarbose (IC50 = 45.78 µM). Molecular docking and 500 ns molecular dynamics simulations revealed stable enzyme–ligand complexes driven by π–π stacking, halogen bonding, and hydrophobic interactions. Density Functional Theory (DFT) calculations and molecular electrostatic potential (MEP) maps highlighted key electronic factors, while ADMET analysis confirmed favorable drug-like properties and reduced nephrotoxicity. Structure–activity relationship (SAR) analysis emphasized the importance of halogenation and aromaticity in enhancing bioactivity. Full article
Show Figures

Graphical abstract

15 pages, 2806 KiB  
Article
Ni-MOF/g-C3N4 S-Scheme Heterojunction for Efficient Photocatalytic CO2 Reduction
by Muhammad Sabir, Mahmoud Sayed, Iram Riaz, Guogen Qiu, Muhammad Tahir, Khuloud A. Alibrahim and Wang Wang
Materials 2025, 18(14), 3419; https://doi.org/10.3390/ma18143419 - 21 Jul 2025
Viewed by 444
Abstract
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) [...] Read more.
The rapid recombination of photoinduced charge carriers in semiconductors remains a significant challenge for their practical application in photocatalysis. This study presents the design of a step-scheme (S-scheme) heterojunction composed of carbon nitride (g-C3N4) and nickel-based metal–organic framework (Ni-MOF) to achieve enhanced charge separation. The establishment of an S-scheme charge transfer configuration at the interface of the Ni-MOF/g-C3N4 heterostructure plays a pivotal role in enabling efficient charge carrier separation, and hence, high CO2 photoreduction efficiency with a CO evolution rate of 1014.6 µmol g−1 h−1 and selectivity of 95% under simulated solar illumination. CO evolution represents an approximately 3.7-fold enhancement compared to pristine Ni-MOF. Density functional theory (DFT) calculations, supported by in situ irradiated X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experimental results, confirmed the establishment of a well-defined and strongly bonded interface, which improves the charge transfer and separation following the S-scheme mechanism. This study sheds light on MOF-based S-scheme heterojunctions as fruitful and selective alternatives for practical CO2 photoreduction. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

28 pages, 8123 KiB  
Article
Human Metabolism of Sirolimus Revisited
by Baharak Davari, Touraj Shokati, Alexandra M. Ward, Vu Nguyen, Jost Klawitter, Jelena Klawitter and Uwe Christians
Metabolites 2025, 15(7), 489; https://doi.org/10.3390/metabo15070489 - 20 Jul 2025
Viewed by 485
Abstract
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and [...] Read more.
Background: Sirolimus (SRL, rapamycin) is a clinically important mTOR inhibitor used in immunosuppression, oncology, and cardiovascular drug-eluting devices. Despite its long-standing FDA approval, the human metabolic profile of SRL remains incompletely characterized. SRL is primarily metabolized by CYP3A enzymes in the liver and intestine, but the diversity, pharmacokinetics, and biological activity of its metabolites have been poorly explored due to the lack of structurally identified standards. Methods: To investigate SRL metabolism, we incubated SRL with pooled human liver microsomes (HLM) and isolated the resulting metabolites. Structural characterization was performed using high-resolution mass spectrometry (HRMS) and ion trap MSn. We also applied Density Functional Theory (DFT) calculations to assess the energetic favorability of metabolic transformations and conducted molecular dynamics (MD) simulations to model metabolite interactions within the CYP3A4 active site. Results: We identified 21 unique SRL metabolites, classified into five major structural groups: O-demethylated, hydroxylated, didemethylated, di-hydroxylated, and mixed hydroxylated/demethylated derivatives. DFT analyses indicated that certain demethylation and hydroxylation reactions were energetically preferred, correlating with metabolite abundance. MD simulations further validated these findings by demonstrating the favorable orientation and accessibility of key sites within the CYP3A4 binding pocket. Conclusions: This study provides a comprehensive structural map of SRL metabolism, offering mechanistic insights into the formation of its metabolites. Our integrated approach of experimental and computational analyses lays the groundwork for future investigations into the pharmacodynamic and toxicodynamic effects of SRL metabolites on the mTOR pathway. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

23 pages, 6122 KiB  
Article
Theoretical DFT Analysis of a Polyacrylamide/Amylose Copolymer for the Removal of Cd(II), Hg(II), and Pb(II) from Aqueous Solutions
by Joaquin Hernandez-Fernandez, Yuly Maldonado-Morales, Rafael Gonzalez-Cuello, Ángel Villabona-Ortíz and Rodrigo Ortega-Toro
Polymers 2025, 17(14), 1943; https://doi.org/10.3390/polym17141943 - 16 Jul 2025
Viewed by 330
Abstract
This study theoretically investigates the potential of a polyacrylamide copolymerized with amylose, a primary component of starch, to evaluate its efficiency in removing heavy metals from industrial wastewater. This material concept seeks to combine the high adsorption capacity of polyacrylamide with the low [...] Read more.
This study theoretically investigates the potential of a polyacrylamide copolymerized with amylose, a primary component of starch, to evaluate its efficiency in removing heavy metals from industrial wastewater. This material concept seeks to combine the high adsorption capacity of polyacrylamide with the low cost and biodegradability of starch, ultimately aiming to offer an economical, efficient, and sustainable alternative for wastewater treatment. To this end, a computational model based on density functional theory (DFT) was developed, utilizing the B3LYP functional with the 6-311++G(d,p) basis set, a widely recognized combination that strikes a balance between accuracy and computational cost. The interactions between an acrylamide-amylose (AM/Amy) polymer matrix, as well as the individual polymers (AM and Amy), and the metal ions Pb, Hg, and Cd in their hexahydrated form (M·6H2O) were analyzed. This modeling approach, where M represents any of these metals, simulates a realistic aqueous environment around the metal ion. Molecular geometries were optimized, and key parameters such as total energy, dipole moment, frontier molecular orbital (HOMO-LUMO) energy levels, and Density of States (DOS) graphs were calculated to characterize the stability and electronic reactivity of the molecules. The results indicate that this proposed copolymer, through its favorable electronic properties, exhibits a high adsorption capacity for metal ions such as Pb and Cd, positioning it as a promising material for environmental applications. Full article
(This article belongs to the Special Issue Functional Polymer Materials for Efficient Adsorption of Pollutants)
Show Figures

Figure 1

16 pages, 3376 KiB  
Article
Evidence of the Differences Between Human and Bovine Serum Albumin Through the Interaction with Coumarin-343: Experimental (ICD) and Theoretical Studies (DFT and Molecular Docking)
by Carmen Regina de Souza, Maurício Ikeda Yoguim, Nathalia Mariana Pavan, Nelson Henrique Morgon, Valdecir Farias Ximenes and Aguinaldo Robinson de Souza
Biophysica 2025, 5(3), 27; https://doi.org/10.3390/biophysica5030027 - 15 Jul 2025
Viewed by 226
Abstract
Coumarins are known for interacting with proteins and exhibiting diverse biological activities. This study investigates the interaction between coumarin-343 (C343) and human (HSA) and bovine (BSA) serum albumins. Fluorescence spectroscopy and theoretical simulations, including density functional theory (DFT) and molecular docking, were used [...] Read more.
Coumarins are known for interacting with proteins and exhibiting diverse biological activities. This study investigates the interaction between coumarin-343 (C343) and human (HSA) and bovine (BSA) serum albumins. Fluorescence spectroscopy and theoretical simulations, including density functional theory (DFT) and molecular docking, were used to analyze the ligand–protein complex formation. The fluorescence quenching data revealed that C343 binds to both proteins, with binding constants of 2.1 × 105 mol·L−1 (HSA) and 6.5 × 105 mol·L−1 (BSA), following a 1:1 stoichiometry. Binding site markers identified drug site I (DS1), located in subdomain IIA, as the preferential binding region for both proteins. Computational results supported these findings, showing high affinity for DS1, with binding energies of −69.02 kcal·mol−1 (HSA) and −67.22 kcal·mol−1 (BSA). While complex formation was confirmed for both proteins, differences emerged in the induced circular dichroism (ICD) signals. HSA displayed a distinct ICD profile compared to BSA in both intensity and absorption maximum. Molecular Docking revealed that the C343 conformation differed between HSA and BSA, explaining the variation in ICD signals. These results highlight the importance of protein structure in modulating ligand interactions and spectral responses. Full article
Show Figures

Figure 1

34 pages, 2170 KiB  
Article
In Silico Evaluation of Quinolone–Triazole and Conazole–Triazole Hybrids as Promising Antimicrobial and Anticancer Agents
by Humaera Noor Suha, Mansour H. Almatarneh, Raymond A. Poirier and Kabir M. Uddin
Int. J. Mol. Sci. 2025, 26(14), 6752; https://doi.org/10.3390/ijms26146752 - 14 Jul 2025
Viewed by 280
Abstract
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that [...] Read more.
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that target resistant infections through unique mechanisms. This study used computational approaches to investigate twenty quinolone–triazole and conazole–triazole hybrid derivatives as antimicrobial and anticancer agents (120) with nine reference drugs. By studying their interactions with 6 bacterial DNA gyrase and 10 cancer-inducing target proteins (E. faecalis, M. tuberculosis, S. aureus, E. coli, M. smegmatis, P. aeruginosa and EGFR, MPO, VEGFR, CDK6, MMP1, Bcl-2, LSD1, HDAC6, Aromatase, ALOX15) and comparing them with established drugs such as ampicillin, cefatrizine, fluconazole, gemcitabine, itraconazole, ribavirin, rufinamide, streptomycin, and tazobactam, compounds 15 and 16 emerged as noteworthy antimicrobial and anticancer agents, respectively. In molecular dynamics simulations, compounds 15 and 16 had the strongest binding at −10.6 kcal mol−1 and −12.0 kcal mol−1 with the crucial 5CDQ and 2Z3Y proteins, respectively, exceeded drug-likeness criteria, and displayed extraordinary stability within the enzyme’s pocket over varied temperatures (300–320 K). In addition, we used density functional theory (DFT) to calculate dipole moments and molecular orbital characteristics and analyze the thermodynamic stability of putative antimicrobial and anticancer derivatives. This finding reveals a well-defined, possibly therapeutic relationship, supported by theoretical and future in vitro and in vivo studies. Compounds 15 and 16, thus, emerged as intriguing contenders in the fight against infectious diseases and cancer. Full article
(This article belongs to the Special Issue Peptide Self-Assembly)
Show Figures

Figure 1

10 pages, 3162 KiB  
Article
High-Sensitivity, Low Detection Limit, and Fast Ammonia Detection of Ag-NiFe2O4 Nanocomposite and DFT Study
by Xianfeng Hao, Yuehang Sun, Zongwei Liu, Gongao Jiao and Dongzhi Zhang
Nanomaterials 2025, 15(14), 1088; https://doi.org/10.3390/nano15141088 - 14 Jul 2025
Viewed by 273
Abstract
Ammonia (NH3) is one of the characteristic gases used to detect food spoilage. In this study, the 10 wt% Ag-NiFe2O4 nanocomposite was synthesized via the hydrothermal method. Characterization results from SEM, XRD, and XPS analyzed the microstructure, elemental [...] Read more.
Ammonia (NH3) is one of the characteristic gases used to detect food spoilage. In this study, the 10 wt% Ag-NiFe2O4 nanocomposite was synthesized via the hydrothermal method. Characterization results from SEM, XRD, and XPS analyzed the microstructure, elemental composition, and crystal lattice features of the composite, confirming its successful fabrication. Under the optimal working temperature of 280 °C, the composite exhibited excellent gas-sensing properties towards NH3. The 10 wt% Ag-NiFe2O4 sensor demonstrates rapid response and recovery, as well as high sensitivity, towards 30 ppm NH3, with response and recovery times of merely 3 s and 9 s, respectively, and a response value of 4.59. The detection limit is as low as 0.1 ppm, meeting the standards for food safety detection. Additionally, the sensor exhibits good short-term repeatability and long-term stability. Additionally, density functional theory (DFT) simulations were conducted to investigate the gas-sensing advantages of the Ag-NiFe2O4 composite by analyzing the electron density and density of states, thereby providing theoretical guidance for experimental testing. This study facilitates the rapid detection of food spoilage and promotes the development of portable food safety detection devices. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Gas and Humidity Sensors: Second Edition)
Show Figures

Figure 1

15 pages, 2184 KiB  
Article
First-Principles Study on Interfacial Triboelectrification Between Water and Halogen-Functionalized Polymer Surfaces
by Taili Tian, Bo Zhao, Yimin Wang, Shifan Huang, Xiangcheng Ju and Yuyan Fan
Lubricants 2025, 13(7), 303; https://doi.org/10.3390/lubricants13070303 - 11 Jul 2025
Viewed by 370
Abstract
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical [...] Read more.
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical processes. Recently, with the rise of triboelectric nanogenerator (TENG) technology, solid–liquid contact electrification has demonstrated vast application potential, sparking considerable interest in its underlying mechanisms. Emerging experimental evidence indicates that at water–polymer CE interfaces, the process involves not only traditional ion adsorption but also electron transfer. Halogen-containing functional groups in the solid material significantly enhance the CE effect. To elucidate the microscopic mechanism of water–polymer CE, this study employed first-principles density functional theory (DFT) calculations, simulating the interfacial electrification process using unit cell models of water contacting polymers. We systematically and quantitatively investigated the charge transfer characteristics at interfaces between water and three representative polymers with similar backbones but different halogen-functionalized (F, Cl) side chains: fluorinated ethylene propylene (FEP), polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE), focusing on evaluating halogen’s influence and mechanism on interfacial electron transfer. The results reveal that electron transfer is primarily governed by the energy levels of the polymer’s lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). Halogen functional groups modulate the material’s electron-donating/accepting capabilities by altering these frontier orbital energy levels. Consequently, we propose that the critical strategy for polymer chemical modification resides in lowering the LUMO energy level of electron-accepting materials. This study provides a novel theoretical insight into the charge transfer mechanism at solid–liquid interfaces, offers guidance for designing high-performance TENG interfacial materials, and holds significant importance for both the fundamental theory and the development of advanced energy devices. Full article
Show Figures

Figure 1

26 pages, 5689 KiB  
Article
Insights into the Adsorption of Carbon Dioxide in Zeolites ITQ-29 and 5A Based on Kinetic Measurements and Molecular Simulations
by Magdy Abdelghany Elsayed, Shixue Zhou, Xiaohui Zhao, Gumawa Windu Manggada, Zhongyuan Chen, Fang Wang and Zhijuan Tang
Nanomaterials 2025, 15(14), 1077; https://doi.org/10.3390/nano15141077 - 11 Jul 2025
Viewed by 427
Abstract
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type [...] Read more.
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type zeolites. The CO2 adsorption isotherms measured in zeolite 5A are best described by the Toth model. Thermodynamic analysis indicates that the adsorption process is spontaneous and exothermic, with an enthalpy change of −44.04 kJ/mol, an entropy change of −115.23 J/(mol·K), and Gibbs free energy values ranging from −9.68 to −1.03 kJ/mol over the temperature range of 298–373 K. The isosteric heat of CO2 adsorption decreases from 40.35 to 21.75 kJ/mol with increasing coverage, reflecting heterogeneous interactions at Ca2+ and Na+ sites. The adsorption kinetics follow a pseudo-first-order model, with an activation energy of 2.24 kJ/mol, confirming a physisorption mechanism. The intraparticle diffusion model indicates that internal diffusion is the rate-limiting step, supported by a significant reduction in the diffusion rate. The DFT calculations demonstrated that CO2 exhibited a −35 kJ/mol more negative adsorption energy in zeolite 5A than in zeolite ITQ-29, attributable to strong interactions with Ca2+/Na+ cations in 5A that were absent in the pure silica ITQ-29 framework. The molecular dynamics simulations based on molecular force fields indicate that CO2 diffuses more rapidly in ITQ-29, with a diffusion coefficient measuring 2.54 × 10−9 m2/s at 298 K, whereas it was 1.02 × 10−9 m2/s in zeolite 5A under identical conditions. The activation energy for molecular diffusion reaches 5.54 kJ/mol in zeolite 5A, exceeding the 4.12 kJ/mol value in ITQ-29 by 33%, which accounts for the slower diffusion kinetics in zeolite 5A. There is good agreement between experimental measurements and molecular simulation results for zeolite 5A across the studied temperature and pressure ranges. This confirms the accuracy and reliability of the selected simulation parameters and allows for the study of zeolite ITQ under similar simulation conditions. This research provides insights into CO2 adsorption energetics and diffusion within LTA-type zeolite frameworks, supporting the rational design of high-performance adsorbents for industrial gas separation. Full article
Show Figures

Figure 1

Back to TopTop