Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (139)

Search Parameters:
Keywords = DEE28

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2748 KiB  
Article
Clinical Efficacy of Er,Cr:YSGG Laser for Deepithelialization of Free Gingival Grafts in Gingival Recession Treatment: A Randomized, Split-Mouth Clinical Trial
by Artur Banyś, Jakub Fiegler-Rudol, Zuzanna Grzech-Leśniak, Rafał Wiench, Jacek Matys, Jamil A. Shibli and Kinga Grzech-Leśniak
J. Clin. Med. 2025, 14(15), 5335; https://doi.org/10.3390/jcm14155335 - 29 Jul 2025
Viewed by 225
Abstract
Bcakground: The deepithelialized free gingival graft (DGG) technique provides high-quality connective tissue grafts (CTGs) with predictable outcomes for recession coverage. This study evaluates a novel method of free gingival graft (FGG) deepithelialization using an Er,Cr:YSGG laser (LDEE) for treating multiple gingival recessions. [...] Read more.
Bcakground: The deepithelialized free gingival graft (DGG) technique provides high-quality connective tissue grafts (CTGs) with predictable outcomes for recession coverage. This study evaluates a novel method of free gingival graft (FGG) deepithelialization using an Er,Cr:YSGG laser (LDEE) for treating multiple gingival recessions. Methods: A split-mouth study was conducted on 46 (n = 46) recessions in nine patients (23 per test and control group). Sites were randomized. Full-thickness palatal grafts were harvested with a scalpel. In the test group (LDEE), deepithelialization was performed extraorally using an Er,Cr:YSGG laser (2780 nm; 2.5 W, 83.3 mJ, 30 Hz, 600 µm tip). In the control group (DEE), a 15c scalpel was used. All CTGs were applied using the modified coronally advanced tunnel (TUN) technique. Clinical parameters—recession depth (RD), keratinized tissue width (KT), gingival thickness (GT), pocket depth (PD), clinical attachment loss (CAL), pink esthetic score (PES), approximal plaque index (API), mean root coverage (MRC), and complete root coverage (CRC)—were assessed at baseline (T0), 3 months (T1), and 6 months (T2). Results: Both LDEE and DEE groups showed significant improvements in RD, KT, GT, PD, and CAL over time (p < 0.001). At T1 and T2, KT was significantly higher in the LDEE group (T1: 3.73 ± 0.72 mm; T2: 3.98 ± 0.76 mm) compared to the DEE group (T1: 3.21 ± 0.61 mm; T2: 3.44 ± 0.74 mm; p < 0.05). Other parameters (RD, GT, PD, CAL) showed no statistically significant intergroup differences at any time point (p > 0.05). After 6 months, MRC was 95% and CRC 82.6% for LDEE, compared to 94.8% and 82.6% for DEE (p > 0.05). PES scores were similar between groups at all time points (p > 0.05). Conclusions: Both laser- and scalpel-deepithelialized grafts effectively treated gingival recessions. LDEE combined with TUN resulted in significantly greater KT width compared to DEE + TUN. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

26 pages, 3712 KiB  
Article
Production and Optimisation of Oxygenated Biofuel Blend Components via the Ethanolysis of Lignocellulosic Biomass: A Response Surface Methodology
by Mohamad A. Nahil, Omar Aboelazayem, Scott Wiseman, Neel Herar, Valerie Dupont, Ali Alazzawi, Alison S. Tomlin and Andrew B. Ross
Energies 2025, 18(11), 2985; https://doi.org/10.3390/en18112985 - 5 Jun 2025
Viewed by 453
Abstract
In this study, a response surface methodology (RSM) using a central composite design (CCD) was implemented to investigate the influence of process variables on ethyl levulinate (EL) production from the ethanolysis of waste corn cob samples, using sulphuric acid as a catalyst. The [...] Read more.
In this study, a response surface methodology (RSM) using a central composite design (CCD) was implemented to investigate the influence of process variables on ethyl levulinate (EL) production from the ethanolysis of waste corn cob samples, using sulphuric acid as a catalyst. The effects of four independent variables, namely, the temperature (A), the corn cob content (B), corn cob/H2SO4 mass ratio (C) and the reaction time (D) on the yields of EL (Y1), diethyl ether (DEE) (Y2) and solid residue (Y3) were explored. Using multiple regression analysis, the experimental results were fitted to quadratic polynomial models. The predicted yields based on the fitted models were well within the experimental uncertainties. Optimum conditions for maximising the EL yield were found to be 176 °C, 14.6 wt. %, 21:1 and 6.75 h for A to D, respectively. A moderate-to-high EL yield (29.2%) from corn cob was achieved in optimised conditions, a result comparable to those obtained from model C6 carbohydrate compounds. Side products were also produced, including diethyl ether, furfural, levulinic acid, 5-hydroxymethyl furfural, ethyl acetate, ethyl formate and water. Total unknown losses of only 5.69% were reported after material balancing. The results suggest that lignocellulosic waste such as corn cob can be used as a potential feedstock for the production of ethyl levulinate by direct acid-catalysed ethanolysis, but that the treatment of side products will need to be considered. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 2805 KiB  
Article
Evaluation of Antibacterial, Antifungal, Antiviral, and Anticancer Potential of Extract from the Fern Dryopteris erythrosora
by Kamila Górka, Marcin Koleśnik, Kinga Salwa, Mateusz Kwaśnik and Konrad Kubiński
Int. J. Mol. Sci. 2025, 26(11), 5182; https://doi.org/10.3390/ijms26115182 - 28 May 2025
Viewed by 967
Abstract
Plant extracts are increasingly being investigated due to their high content of pharmacologically active substances. The primary focus is placed on angiosperms, while pteridophytes are less popular, although their medicinal properties have been recognized for centuries. In this study, we uncover some biological [...] Read more.
Plant extracts are increasingly being investigated due to their high content of pharmacologically active substances. The primary focus is placed on angiosperms, while pteridophytes are less popular, although their medicinal properties have been recognized for centuries. In this study, we uncover some biological properties of the extract from Dryopteris erythrosora (DEE), a fern traditionally used for liver treatment in Asia, which has not been widely explored in this context before. This study involved the determination of the total content of polyphenols and flavonoids as well as the evaluation of the antioxidant potential of DEE. Its antimicrobial activity was tested against selected bacteria. The MIC values ranged from 1.25 to 0.375 mg/mL. DEE showed no inhibitory effect against a representative fungus, Candida albicans. Additionally, this study demonstrated its excellent anticancer activity against AGS, MCF-7, and SW-480 cancer cells, with IC50 values of 19.44, 76.90, and 24.97 μg/mL, respectively. A study on human herpesvirus type 1 (HHV-1) revealed that the DEE had no antiviral activity. The safety of DEE was confirmed with the use of sheep erythrocytes and VERO cells. Since D. erythrosora is a rich source of compounds with antibacterial and anticancer properties, it can complement the arsenal of natural therapeutics. Full article
Show Figures

Figure 1

15 pages, 6551 KiB  
Article
Effects of Chitosan on Drug Load and Release for Cisplatin–Hydroxyapatite–Gelatin Composite Microspheres
by Meng-Ying Wu, I-Fang Kao and Shiow-Kang Yen
Polymers 2025, 17(11), 1485; https://doi.org/10.3390/polym17111485 - 27 May 2025
Viewed by 573
Abstract
Cisplatin, a widely used chemotherapeutic agent, is limited by its poor bioavailability, rapid systemic clearance, and severe side effects. To overcome these limitations, hydroxyapatite–gelatin composite microspheres were developed to improve drug entrapment efficiency (DEE) and provide sustained drug release. Various formulations were prepared [...] Read more.
Cisplatin, a widely used chemotherapeutic agent, is limited by its poor bioavailability, rapid systemic clearance, and severe side effects. To overcome these limitations, hydroxyapatite–gelatin composite microspheres were developed to improve drug entrapment efficiency (DEE) and provide sustained drug release. Various formulations were prepared by incorporating chitosan either by mixing once or through a sequential coating strategy. By adjusting the loading procedure, the DEE increased from 58% to 99%. The composite microsphere effectively controlled the total drug release duration, extending it from one month to over 5 months. Moreover, the MTT assay demonstrated that all samples effectively inhibited cell growth, with cell viability reduced to less than 20% after 2 weeks of experimentation. These findings demonstrate that the sequential chitosan coating method offers superior drug entrapment and prolonged release compared to mixing chitosan once, exhibiting its potential as a sustained drug delivery system for cancer treatment. Full article
(This article belongs to the Special Issue Polymer Composites for Biomedical Applications)
Show Figures

Figure 1

15 pages, 3368 KiB  
Systematic Review
AMPA Receptor Modulation Through Medium-Chain Triglycerides and Decanoic Acid Supports Nutritional Intervention in Pediatric Epilepsy
by Raffaele Falsaperla, Vincenzo Sortino, Miguel Angel Soler, Michela Spatuzza, Sara Fortuna and Vincenzo Salpietro
Nutrients 2025, 17(11), 1805; https://doi.org/10.3390/nu17111805 - 26 May 2025
Viewed by 656
Abstract
Background: Developmental epileptic encephalopathies (DEEs) are often associated with variably severe cognitive and motor impairment and frequent refractory epilepsy, with many children not achieving adequate seizure control via standard antiepileptic medications. The classic ketogenic diet (KD) has proven effective in reducing seizure frequency [...] Read more.
Background: Developmental epileptic encephalopathies (DEEs) are often associated with variably severe cognitive and motor impairment and frequent refractory epilepsy, with many children not achieving adequate seizure control via standard antiepileptic medications. The classic ketogenic diet (KD) has proven effective in reducing seizure frequency and/or severity in a category of DEEs and in certain refractory epilepsies of infancy. However, its multifaceted mechanisms, e.g., epigenetic modulation, anti-inflammatory and antioxidative effects, and direct neuronal excitability changes, are balanced by a high burden and low long-term adherence. Medium-chain triglycerides (MCTs), particularly decanoic acid (C10:0), have gained attention in recent years for their potential direct inhibitory action on AMPA receptors, contributing to seizure reduction. Methods: A systematic review was conducted, including articles from January 2000 to January 2025, to explore the potential role of medium-chain triglyceride (MCT) add-on to classic KD and as MCT supplementation in free diets in the management of pediatric drug-resistant epilepsy (DRE). Results: Selected studies show how the action of MCTs, and decanoic acid in particular, is via negative modulation of AMPA receptors, with a positive impact on epileptic seizures. Conclusions: This review discusses the complexities of implementing and sustaining KD in children and presents recent pre-clinical and clinical evidence, including trials where MCTs (often enriched in decanoic acid) serve as an add-on therapy in both ketogenic and free/unrestricted diets. The summarized findings reinforce the therapeutic potential of MCTs, highlighting both the beneficial seizure outcomes and the hurdles that remain to be addressed through future research. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

16 pages, 8392 KiB  
Article
Ethanol Dehydration Pathways on NASICON-Type A0.33M2(PO4)3 ((A = Dy, Y, Yb); M = Ti, Zr) Catalysts: The Role of Hydroxyl Group Proton Mobility in Selectivity Control
by Anna I. Zhukova, Alina D. Sazonova, Andrey N. Kharlanov, Elena A. Asabina, Vladimir I. Pet’kov, Vladislav A. Sedov, Vasiliy D. Prokhin, Diana A. Osaulenko, Yuri A. Fionov, Irina I. Mikhalenko, Elena A. Fionova and Dmitry Yu. Zhukov
Catalysts 2025, 15(6), 515; https://doi.org/10.3390/catal15060515 - 23 May 2025
Viewed by 646
Abstract
NASICON-type titanium and zirconium phosphates doped with rare-earth cations, A0.33M2(PO4)3 (M = Ti, Zr; A = Dy, Y, Yb), were synthesized using the sol–gel method and investigated as catalysts for ethanol dehydration at 300–400 °C. The [...] Read more.
NASICON-type titanium and zirconium phosphates doped with rare-earth cations, A0.33M2(PO4)3 (M = Ti, Zr; A = Dy, Y, Yb), were synthesized using the sol–gel method and investigated as catalysts for ethanol dehydration at 300–400 °C. The catalysts were characterized via XRD, SEM, BET, and FTIR spectroscopy. The relationships between the catalyst composition, acidity and the dehydration activity were evaluated. Diethyl ether (DEE) formation is promoted by the presence of the zirconium phosphates (ZrP), while the presence of titanium phosphate (TiP) catalyzes the formation of both ethylene and diethyl ether (DEE). The application of Fourier-transform infrared (FTIR) spectroscopy to the analysis of adsorbed C6H6 has revealed the presence of hydroxyl groups exhibiting varying degrees of proton-donating mobility. This finding has enabled the correlation of the structure of the active sites with the process’s selectivity. The results underscore the key function of OH-group localization and framework geometry in the control of form-selective reactions. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

47 pages, 488 KiB  
Review
Autism Spectrum Disorder and Epilepsy: Pathogenetic Mechanisms and Therapeutic Implications
by Alessandra Giliberti, Adele Maria Frisina, Stefania Giustiniano, Ylenia Carbonaro, Michele Roccella and Rosaria Nardello
J. Clin. Med. 2025, 14(7), 2431; https://doi.org/10.3390/jcm14072431 - 2 Apr 2025
Viewed by 2887
Abstract
The co-occurrence of autism spectrum disorder (ASD) and epilepsy is a complex neurological condition that presents significant challenges for both patients and clinicians. ASD is a group of complex developmental disorders characterized by the following: (1) Social communication difficulties: challenges in understanding and [...] Read more.
The co-occurrence of autism spectrum disorder (ASD) and epilepsy is a complex neurological condition that presents significant challenges for both patients and clinicians. ASD is a group of complex developmental disorders characterized by the following: (1) Social communication difficulties: challenges in understanding and responding to social cues, initiating and maintaining conversations, and developing and maintaining relationships. (2) Repetitive behaviors: engaging in repetitive actions, such as hand-flapping, rocking, or lining up objects. (3) Restricted interests: focusing intensely on specific topics or activities, often to the exclusion of other interests. (4) Sensory sensitivities: over- or under-sensitivity to sensory input, such as sounds, touch, tastes, smells, or sights. These challenges can significantly impact individuals’ daily lives and require specialized support and interventions. Early diagnosis and intervention can significantly improve the quality of life for individuals with ASD and their families. Epilepsy is a chronic brain disorder characterized by recurrent unprovoked (≥2) seizures that occur >24 h apart. Single seizures are not considered epileptic seizures. Epilepsy is often idiopathic, but various brain disorders, such as malformations, strokes, and tumors, can cause symptomatic epilepsy. While these two conditions were once considered distinct, growing evidence suggests a substantial overlap in their underlying neurobiology. The prevalence of epilepsy in individuals with ASD is significantly higher than in the general population. This review will explore the epidemiology of this comorbidity, delve into the potential mechanisms linking ASD and epilepsy, and discuss the implications for diagnosis, treatment, and management. Full article
(This article belongs to the Special Issue Advances in Child Neurology)
20 pages, 3861 KiB  
Article
Different Routes for the Hierarchization of *BEA Zeolite, Followed by Impregnation with Niobium and Application in Ethanol and 1-Propanol Dehydration
by Deborah da Silva Valadares, Willian Henrique Ribeiro de Carvalho, Ana Lívia Fernandes Fonseca, Guilherme de França Machado, Matheus Ramos Silva, Pablo Teles Aragão Campos, José Alves Dias and Sílvia Cláudia Loureiro Dias
Catalysts 2025, 15(4), 340; https://doi.org/10.3390/catal15040340 - 31 Mar 2025
Viewed by 534
Abstract
This study examined the hierarchical structuring of *BEA zeolite using two distinct approaches: double aluminum removal with solid ammonium hexafluorosilicate (2x-AHFS) and a solution of 0.2 M sodium hydroxide followed by 0.5 M hydrochloric acid (T-NaOH). Additionally, niobium pentoxide (Nb2O5 [...] Read more.
This study examined the hierarchical structuring of *BEA zeolite using two distinct approaches: double aluminum removal with solid ammonium hexafluorosilicate (2x-AHFS) and a solution of 0.2 M sodium hydroxide followed by 0.5 M hydrochloric acid (T-NaOH). Additionally, niobium pentoxide (Nb2O5) was impregnated at different loadings (5, 10, 15, and 20 wt.%) onto the hierarchized materials. Both treatments increased the SiO2/Al2O3 ratio and produced crystals with domains of about the same size. The hierarchization methods generated secondary mesopores and reduced the micropores in the treated HB zeolite. The solid-state NMR analysis by 27Al and 29Si indicated that the 2x-AHFS treatment increased the hydrophobic character of the zeolite, while the treatment with NaOH/HCl resulted in a less hydrophobic material. A balanced quantity of Brønsted and Lewis sites was observed for all treated zeolites. Thus, these combined physicochemical characteristics of the new catalysts may explain their superior performance in the dehydration reactions. In the case of ethanol dehydration at 230 °C, the 20 wt.% Nb2O5 supported on the T-NaOH catalyst produced an 84% conversion and 86% selectivity for ethylene (EE), with 14% diethyl ether (DEE) as the only products. Conversely, in the 1-propanol dehydration reaction, the 20 wt.% Nb2O5 supported on 2x-AHFS achieved 99% conversion, producing 99% propene. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 4186 KiB  
Article
PEGylated Liposomes of Disulfiram and Paclitaxel: A Promising Chemotherapeutic Combination Against Chemoresistant Breast Cancer
by Ammar Said Suliman, Sahrish Rehmani, Benjamin Small, Kate Butcher, Mouhamad Khoder, Vinodh Kannappan, Weiguang Wang, Abdelbary Elhissi and Mohammad Najlah
Pharmaceuticals 2025, 18(4), 487; https://doi.org/10.3390/ph18040487 - 28 Mar 2025
Viewed by 749
Abstract
Background: Steric stabilization of liposomes using PEGylation has been used widely in pharmaceutical research to overcome the limitations of conventional liposomes and to extend circulation time. PEGylation tended to improve the physicochemical stability and reverse the chemoresistance in multidrug-resistant (MDR) breast cancer cell [...] Read more.
Background: Steric stabilization of liposomes using PEGylation has been used widely in pharmaceutical research to overcome the limitations of conventional liposomes and to extend circulation time. PEGylation tended to improve the physicochemical stability and reverse the chemoresistance in multidrug-resistant (MDR) breast cancer cell lines. In this study, PEGylated formulations of disulfiram (DS) and paclitaxel (PAC) were developed using the ethanol-based proliposome technology. Methods: PEGylated liposomal formulations of disulfiram (DS) and paclitaxel (PAC) were developed using the ethanol-based proliposome approach combined with high-pressure homogenization (HPH). The liposomes were characterized for particle size, polydispersity index (PDI), zeta potential, drug loading efficiency (DLE%), and drug entrapment efficiency (DEE%). Cytotoxicity studies were performed on sensitive (MCF7, MDA-MB-231) and chemoresistant (MDA-MB-231PAC10) breast cancer cell lines using the MTT assay to assess the anti-ancer potential of the formulations. Synergistic cytotoxic effects of DS and PAC co-delivery were also evaluated. Results: There was no significant difference in drug loading (DLE%) and drug entrapment efficiency (EE%) between conventional liposomes and the developed PEGylated vesicles. DS demonstrated higher loading in liposomes than PAC, and a greater cytotoxic effect on both sensitive (MCF7 and MDA-MB-231) and chemoresistant (MDA-MB-231PAC10) human breast cancer cell lines. For both DS- and PAC-loaded liposomes, PEGylation did not compromise the cytotoxic effect on both sensitive and chemoresistant cells. Interestingly, the combination of DS- and PAC-loaded PEGylated liposomes had significantly higher cytotoxic effect and lower IC50 than that of each drug alone. Conclusions: Overall, PEGylated liposomal formulation of DS and PAC acted synergistically to reverse the multidrug resistance in breast cancer cells and could serve as a promising system for delivery of PAC and DS simultaneously in one formulation using an alcohol-based proliposome formulation. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

15 pages, 818 KiB  
Article
DeeWaNA: An Unsupervised Network Representation Learning Framework Integrating Deepwalk and Neighborhood Aggregation for Node Classification
by Xin Xu, Xinya Lu and Jianan Wang
Entropy 2025, 27(3), 322; https://doi.org/10.3390/e27030322 - 20 Mar 2025
Viewed by 469
Abstract
This paper introduces DeeWaNA, an unsupervised network representation learning framework that unifies random walk strategies and neighborhood aggregation mechanisms to improve node classification performance. Unlike existing methods that treat these two paradigms separately, our approach integrates them into a cohesive model, addressing limitations [...] Read more.
This paper introduces DeeWaNA, an unsupervised network representation learning framework that unifies random walk strategies and neighborhood aggregation mechanisms to improve node classification performance. Unlike existing methods that treat these two paradigms separately, our approach integrates them into a cohesive model, addressing limitations in structural feature extraction and neighborhood relationship modeling. DeeWaNA first leverages DeepWalk to capture global structural information and then employs an attention-based weighting mechanism to refine neighborhood relationships through a novel distance metric. Finally, a weighted aggregation operator fuses these representations into a unified low-dimensional space. By bridging the gap between random-walk-based and neural-network-based techniques, our framework enhances representation quality and improves classification accuracy. Extensive evaluations on real-world networks demonstrate that DeeWaNA outperforms four widely used unsupervised network representation learning methods, underscoring its effectiveness and broader applicability. Full article
Show Figures

Figure 1

20 pages, 925 KiB  
Article
Research on an Event Extraction Framework Based on Two-Step Prompt Learning for Chinese Policy
by Hui Ding, Huayue Gu and Pei Cao
Appl. Sci. 2025, 15(6), 3378; https://doi.org/10.3390/app15063378 - 19 Mar 2025
Viewed by 532
Abstract
The Chinese government releases a large number of enterprise-friendly policy documents every year, but due to the dispersed policy release channels and complex document parsing, enterprises need to invest a lot of human and material resources to analyze them, which results in many [...] Read more.
The Chinese government releases a large number of enterprise-friendly policy documents every year, but due to the dispersed policy release channels and complex document parsing, enterprises need to invest a lot of human and material resources to analyze them, which results in many enterprises missing the opportunity to file. To solve this problem, this paper proposes a two-step cue learning-based event extraction framework (TPEE), which learns to recognize the role start and stop markers in the text by two prompts, and introduces a dynamic weighting mechanism to enhance the information interaction between roles. In the experiments, TPEE shows strong generalization ability on the publicly available financial dataset DuEE-Fin, and improves the F1-scores in argument recognition and classification tasks by 0.84% and 0.74%, respectively. In addition, based on the policy dataset DEE-Policy constructed by the authors, TPEE achieves F1-scores of 73.92% and 72.81% in the argument recognition and classification tasks, respectively, which are improved by 2.14% and 2.26% compared to the baseline model. The results show that the TPEE framework performs well in event extraction in the policy domain and provides technical support for enterprises to obtain policy information efficiently. Full article
Show Figures

Figure 1

17 pages, 811 KiB  
Article
Effects of Age, Maturation, and Sex on Trunk Muscle Performance in Elementary and Secondary School Students: ISQUIOS Program
by María Teresa Martínez-Romero, Francisco Javier Robles-Palazón, Mark De Ste Croix and Pilar Sainz de Baranda
Appl. Sci. 2025, 15(4), 2066; https://doi.org/10.3390/app15042066 - 16 Feb 2025
Viewed by 760
Abstract
Physical education students participated in this study to explore maturity status (MAT), chronological age (CA), and sex-specific trunk muscle endurance differences. Method: Static and dynamic trunk endurance were assessed using five field-based tests. The main results show differences in all trunk endurance tests [...] Read more.
Physical education students participated in this study to explore maturity status (MAT), chronological age (CA), and sex-specific trunk muscle endurance differences. Method: Static and dynamic trunk endurance were assessed using five field-based tests. The main results show differences in all trunk endurance tests according to CA and MAT, with greater performance being found at an at older CA or higher MAT. With respect to CA and sex, differences were only found in the DEE test and from the age of 14 onwards, where boys performed better than girls. In addition, interactions were also found between sex and MAT, where boys classified as having circa- and post-peak height velocity performed better than girls in all tests. Physical fitness appears to be particularly sensitive to MAT, so it is important to consider biological maturation when assessing physical fitness rather than the CA factor commonly used in international fitness batteries for children and adolescents. Full article
Show Figures

Figure 1

17 pages, 3718 KiB  
Article
Modeling the Carbothermal Chlorination Mechanism of Titanium Dioxide in Molten Salt Using a Deep Neural Network Potential
by Enhao Zhang, Xiumin Chen, Jie Zhou, Huapeng Wu, Yunmin Chen, Haiguang Huang, Jianjun Li and Qian Yang
Materials 2025, 18(3), 659; https://doi.org/10.3390/ma18030659 - 2 Feb 2025
Viewed by 1064
Abstract
The molten salt chlorination method is one of the two main methods for producing titanium tetrachloride, an important intermediate product in the titanium industry. To effectively improve chlorination efficiency and reduce unnecessary waste salt generation, it is necessary to understand the mechanism of [...] Read more.
The molten salt chlorination method is one of the two main methods for producing titanium tetrachloride, an important intermediate product in the titanium industry. To effectively improve chlorination efficiency and reduce unnecessary waste salt generation, it is necessary to understand the mechanism of the molten salt chlorination reaction, and consequently this paper conducted studies on the carbon chlorination reaction mechanism in molten salts by combining ab initio molecular dynamics (AIMD) and deep potential molecular dynamics (DeePMD) methods. The use of DeePMD allowed for simulations on a larger spatial and longer time scale, overcoming the limitations of AIMD in fully observing complex reaction processes. The results comprehensively revealed the mechanism of titanium dioxide transforming into titanium tetrachloride. In addition, the presence form and conversion pathways of chlorine in the system were elucidated, and it was observed that chloride ions derived from NaCl can chlorinate titanium dioxide to yield titanium tetrachloride, which was validated through experimental studies. Self-diffusion coefficients of chloride ions in pure NaCl which were acquired by DeePMD showed good agreement with the experimental data. Full article
Show Figures

Figure 1

15 pages, 3401 KiB  
Article
The Development of a Novel Aluminosilicate Catalyst Fabricated via a 3D Printing Mold for Biodiesel Production at Room Temperature
by Selene Díaz-González, Karina Elvira Rodríguez and Laura Díaz
Appl. Sci. 2025, 15(3), 1094; https://doi.org/10.3390/app15031094 - 22 Jan 2025
Viewed by 954
Abstract
Biodiesel production has gained attention as a sustainable alternative to fossil fuels, but challenges related to catalyst recovery and energy consumption remain. In this study, a novel lithium-impregnated aluminosilicate catalyst (LiSA) was developed using a 3D-printed mold, providing precise control over its structure [...] Read more.
Biodiesel production has gained attention as a sustainable alternative to fossil fuels, but challenges related to catalyst recovery and energy consumption remain. In this study, a novel lithium-impregnated aluminosilicate catalyst (LiSA) was developed using a 3D-printed mold, providing precise control over its structure to optimize performance. The structured catalyst featured a cylindrical shape with multiple circular channels, enhancing fluid dynamics and reactant interaction in a fixed-bed reactor. Catalyst characterization by SEM, TGA, XRD, and ICP-MS confirmed high thermal stability and uniform pore distribution. Jatropha curcas oil was used as feedstock, with diethyl ether (DEE) acting as a cosolvent to improve methanol solubility and enable transesterification at room temperature. The process achieved a high fatty acid methyl ester (FAME) yield, averaging 97.1% over 508 min of continuous operation, demonstrating the catalyst’s stability and sustained activity. By reducing mass transfer limitations and energy demands, this approach highlights the potential of 3D-printed catalysts to advance sustainable biodiesel production, offering a scalable and efficient pathway for green energy technologies. Full article
(This article belongs to the Special Issue Industrial Chemical Engineering and Organic Chemical Technology)
Show Figures

Figure 1

20 pages, 3401 KiB  
Article
Significant Research on Sustainable Oxygenated Fuel for Compression Ignition Engines with Controlled Emissions and Optimum Performance Prediction Using Artificial Neural Network
by Javed Syed
Sustainability 2025, 17(2), 788; https://doi.org/10.3390/su17020788 - 20 Jan 2025
Cited by 1 | Viewed by 1191
Abstract
The present work compares the performance and emissions of a compression ignition (CI) engine using dual-mode LPG at varying flow rates and an oxygenated biodiesel mix (B20). The experimental investigation is carried out on LPG flow rates (0.1, 0.3, and 0.5 kg/h) and [...] Read more.
The present work compares the performance and emissions of a compression ignition (CI) engine using dual-mode LPG at varying flow rates and an oxygenated biodiesel mix (B20). The experimental investigation is carried out on LPG flow rates (0.1, 0.3, and 0.5 kg/h) and replacing the diesel with oxygenated B20, affecting engine performance and emissions under various load circumstances while maintaining engine speed. The study demonstrates the potential of the artificial neural network (ANN) in accurately forecasting the performance and emission characteristics of the engine across different operating conditions. The ANN model’s high accuracy in correlating experimental results with predicted outcomes underscores its potential as a dependable instrument for optimizing fuel parameters. The results show that LPG and oxygenated B20 balance engine performance and emissions, making CI engine functionality sustainable. A biodiesel blend containing diethyl ether (B20 + 2%DEE) exhibits slightly reduced brake thermal efficiency (BTE) at lower brake power (BP); however, it demonstrates advantages at higher BP, with diethyl ether contributing to improved ignition quality. The analysis indicates that the average NOx emissions for B20 + 2%DEE at flow rates of 0.1 kg/h, 0.3 kg/h, and 0.5 kg/h are 29.33%, 28.89%, 48.05%, and 37.48%, respectively. Consequently, selecting appropriate fuel and regulating the LPG flow rate is critical for enhancing thermal efficiency in a dual-fuel engine. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop