Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = Cu3(CO3)2(OH)2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1750 KB  
Article
Mineral-Based Synthesis of CuFe2O4 Nanoparticles via Co-Precipitation and Microwave Techniques Using Leached Copper Solutions from Mined Minerals
by Carolina Venegas Abarzúa, Mauricio J. Morel, Gabriela Sandoval-Hevia, Thangavel Kavinkumar, Natarajan Chidhambaram, Sathish Kumar Kamaraj, Nagarajan Dineshbabu and Arun Thirumurugan
Minerals 2025, 15(8), 819; https://doi.org/10.3390/min15080819 - 1 Aug 2025
Viewed by 324
Abstract
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) [...] Read more.
Environmental sustainability and responsible resource utilization are critical global challenges. In this work, we present a sustainable and circular-economy-based approach for synthesizing CuFe2O4 nanoparticles by directly utilizing copper oxide minerals sourced from Chilean mining operations. Copper sulfate (CuSO4) was extracted from these minerals through acid leaching and used as a precursor for nanoparticle synthesis via both chemical co-precipitation and microwave-assisted methods. The influence of different precipitating agents—NaOH, Na2CO3, and NaF—was systematically evaluated. XRD and FESEM analyses revealed that NaOH produced the most phase-pure and well-dispersed nanoparticles, while NaF resulted in secondary phase formation. The microwave-assisted method further improved particle uniformity and reduced agglomeration due to rapid and homogeneous heating. Electrochemical characterization was conducted to assess the suitability of the synthesized CuFe2O4 for supercapacitor applications. Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurements confirmed pseudocapacitive behavior, with a specific capacitance of up to 1000 F/g at 2 A/g. These findings highlight the potential of CuFe2O4 as a low-cost, high-performance electrode material for energy storage. This study underscores the feasibility of converting primary mined minerals into functional nanomaterials while promoting sustainable mineral valorization. The approach can be extended to other critical metals and mineral residues, including tailings, supporting the broader goals of a circular economy and environmental remediation. Full article
Show Figures

Figure 1

17 pages, 3073 KB  
Article
Synthesis, Characterization, and Anticancer Activity of 3-Chlorothiophene-2-carboxylic Acid Transition Metal Complexes
by Baiquan Hu, Qianqian Kang, Xianggao Meng, Hao Yin, Xingzhi Yang, Yanting Yang and Mei Luo
Inorganics 2025, 13(7), 238; https://doi.org/10.3390/inorganics13070238 - 11 Jul 2025
Viewed by 759
Abstract
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py [...] Read more.
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py = pyridine), [{Ni(L)2(OH2)4}2{Ni(L)(OH2)5}]L•5H2O (3), and [{Co(L)2(OH2)4}2{Co(L)(OH2)5}]L•5H2O (4). All four compounds were identified by elemental analysis and ESI mass spectrometry, and subsequently characterized by IR spectroscopy, UV-visible diffuse reflectance spectroscopy, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography, and cyclic voltammetry. X-ray analyses revealed that complexes 1 and 2 exhibit a centrosymmetric pseudo-octahedral coordination geometry; the copper (II) and cobalt (II) metal ions, respectively, are located at the crystallographic center of inversion. The coordination sphere of the copper (II) complex is axially elongated in accordance with the Jahn–Teller effect. Intriguingly, for charge neutrality, compounds 3 and 4 crystallized as three independent mononuclear octahedrally coordinated metal centers, which are two [ML2(OH2)4] complex molecules and one [ML(OH2)5]+ complex cation (M = NiII and CoII, respectively), with the ligand anion L serving as the counter ion. The anticancer activities of these complexes were systematically assessed on human leukemia K562 cells, lung cancer A549 cells, liver cancer HepG2 cells, breast cancer MDA-MB-231 cells, and colon cancer SW480 cells. Among them, complex 4 shows significant inhibitory effects on leukemia K562 cells and colon cancer SW480 cells. Full article
Show Figures

Graphical abstract

14 pages, 1557 KB  
Article
Lignin Extracted from Green Coconut Waste Impregnated with Sodium Octanoate for Removal of Cu2+ in Aqueous Solution
by Jéssyca E. S. Pereira, Eduardo L. Barros Neto, Lindemberg J. N. Duarte, Ruan L. S. Ferreira, Ricardo P. F. Melo and Paula F. P. Nascimento
Processes 2025, 13(5), 1590; https://doi.org/10.3390/pr13051590 - 20 May 2025
Viewed by 755
Abstract
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly [...] Read more.
Investigating viable processes for the use of lignocellulosic biomass in clean fuels and high-value-added chemical products is essential for sustainable development. Large amounts of lignin are available every year as by-products of the paper and biorefinery industries, causing a series of problems, particularly environmental ones. Its structure and composition make lignin compatible with the concept of sustainability, since it can be used to produce new chemical products with high added value. As such, this study aims to extract lignin from green coconut fiber (LIG), with the subsequent impregnation of a sodium-octanoate-based surfactant (LIG-SUR), and determine its applicability as an adsorbent for removing copper ions from synthetic waste. To this end, the green coconut fiber lignocellulosic biomass was initially subjected to alkaline pre-treatment with 2% (w/v) sodium hydroxide in an autoclave. Next, the surface of the lignin was modified by impregnating it with sodium octanoate, synthesized from the reaction of octanoic acid and NaOH. The physical and chemical traits of the lignin were studied before and after surfactant impregnation, as well as after copper ion adsorption. The lignin was analyzed by X-ray fluorescence (XRF), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The adsorption tests were carried out using lignin pre-treated with surfactant in a batch system, where the effects of pH and adsorbent concentration were investigated. XRF and SEM analyses confirmed surfactant impregnation, with Na2O partially replaced by CuO after Cu2+ adsorption. FTIR analysis revealed shifts in O–H, C–H, C=O, and C=C bands, indicating electrostatic interactions with lignin. Adsorption kinetics followed the pseudo-second-order model, suggesting chemisorption, with equilibrium reached in approximately 10 and 60 min for LIG-SUR and LIG, respectively. The Langmuir model best described the isotherm data, indicating monolayer adsorption. LIG-SUR removed 91.57% of Cu2+ and reached a maximum capacity of 30.7 mg·g−1 at 25 °C and a pH of 6. The results of this research showed that pre-treatment with NaOH, followed by impregnation with surfactant, significantly increased the adsorption capacity of copper ions in solution. This technique is a viable and sustainable alternative to the traditional adsorbents used to treat liquid waste. In addition, by using green coconut fiber lignin more efficiently, the research contributes to adding value to this material and strengthening practices in line with the circular economy and environmental preservation. Full article
(This article belongs to the Special Issue Emerging Technologies in Solid Waste Recycling and Reuse)
Show Figures

Figure 1

18 pages, 5259 KB  
Article
Synergistic Cu-Pd Nanocatalysts on MOF-Derived N-Doped Carbon for Selective Hydrogenolysis of Lignin to Aromatic Monomers
by Wenjun Lei, Yan Fu, Shipeng Gu, Shuaishuai Qiu and Jie Chang
Catalysts 2025, 15(5), 455; https://doi.org/10.3390/catal15050455 - 7 May 2025
Viewed by 617
Abstract
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, [...] Read more.
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, and activating the material with NaOH solution. The SNCB framework was decorated with Cu-Pd bimetallic nanoparticles, exhibiting outstanding catalytic activity in the hydrogenolytic depolymerization of organosolv lignin. The Cu-Pd@SNCB catalyst exhibited remarkable activity, attributed to the hierarchical porous structure of SNCB that facilitated metal nanoparticle dispersion and reactant accessibility. The synergistic effect between Cu as the reactive site for reactant adsorption and Pd as the reactive site for H2 adsorption enhanced the catalytic activity of the catalyst. Systematically optimized conditions (2 MPa H2, 270 °C, 3 h) yielded 43.02 wt% phenolic monomers, with 4-(3-hydroxypropyl)-2,6-dimethoxyphenol dominating the product profile at 46.3% selectivity. The catalyst and its reaction products were analyzed using advanced characterization techniques, including XPS, XRD, TEM, SEM, BET, GC-MS, GPC, 2D HSQC NMR, and FT-IR, to elucidate the reaction mechanism. The mechanism proceeds through: (1) nucleophilic substitution of the β-O-4 hydroxyl group by MeOH, followed by (2) simultaneous hydrogenolytic cleavage of Cβ-O and Cα-O bonds mediated by Cu-Pd@SNCB under H2 atmosphere, which selectively produces 4-(3-hydroxypropyl)-2,6-dimethoxyphenol and 4-propyl-2,6-dimethoxyphenol. This study proposes a bimetallic synergistic mechanism, offering a general blueprint for developing selective lignin valorization catalysts. Full article
(This article belongs to the Special Issue Catalytic Conversion and Utilization of Biomass)
Show Figures

Figure 1

17 pages, 10878 KB  
Article
Selective Precipitation of REE-Rich Aluminum Phosphate with Low Lithium Losses from Lithium Enriched Slag Leachate
by Vladimír Marcinov, Dušan Oráč, Jakub Klimko, Zita Takáčová, Jana Pirošková and Ondřej Jankovský
Materials 2024, 17(20), 5113; https://doi.org/10.3390/ma17205113 - 19 Oct 2024
Viewed by 1477
Abstract
Currently, recycling of spent lithium-ion batteries is carried out using mechanical, pyrometallurgical and hydrometallurgical methods and their combination. The aim of this article is to study a part of the pyro-hydrometallurgical processing of spent lithium-ion batteries which includes lithium slag hydrometallurgical treatment and [...] Read more.
Currently, recycling of spent lithium-ion batteries is carried out using mechanical, pyrometallurgical and hydrometallurgical methods and their combination. The aim of this article is to study a part of the pyro-hydrometallurgical processing of spent lithium-ion batteries which includes lithium slag hydrometallurgical treatment and refining of the obtained leachate. Leaching was realized via dry digestion, which is an effective method capable of transferring over 99% of the present metals, such as Li, Al, Co, Cu, and others, to the leachate. In this work, the influence of three types of precipitation agents (NaOH, NH4OH, Na3PO4) on the precipitation efficiency of Al and Li losses was investigated. It was found that the precipitation of aluminum with NaOH can result in the co-precipitation of lithium, causing total lithium losses up to 40%. As a suitable precipitating agent for complete Al removal from Li leachate with a minimal loss of lithium (less than 2%), crystalline Na3PO4 was determined under the following conditions: pH = 3, 400 rpm, 10 min, room temperature. Analysis confirmed that, in addition to aluminum, the precipitate also contains the REEs La (3.4%), Ce (2.5%), Y (1.3%), Nd (1%), and Pr (0.3%). The selective recovery of these elements will be the subject of further study. Full article
Show Figures

Graphical abstract

19 pages, 9210 KB  
Article
Influence of Metal Ions on the Structural Complexity of Mixed-Ligand Divalent Coordination Polymers
by Fang-Ju Cheng, Kai-Min Wang, Chia-Yi Lee, Song-Wei Wang, Kedar Bahadur Thapa, Manivannan Govindaraj and Jhy-Der Chen
Chemistry 2024, 6(5), 1020-1038; https://doi.org/10.3390/chemistry6050059 - 14 Sep 2024
Cited by 1 | Viewed by 1652
Abstract
The reactions of the angular ligand 4,4′-oxybis(N-(pyridin-3-yl)benzamide) (L1) and 1,4-naphthalenedicarboxylic acid (1,4-H2NDC) with divalent metal salts yielded three distinct coordination polymers (CPs): {[Zn2(L1)(1,4-NDC)2]·MeOH}n, 1, {[Cu(L [...] Read more.
The reactions of the angular ligand 4,4′-oxybis(N-(pyridin-3-yl)benzamide) (L1) and 1,4-naphthalenedicarboxylic acid (1,4-H2NDC) with divalent metal salts yielded three distinct coordination polymers (CPs): {[Zn2(L1)(1,4-NDC)2]·MeOH}n, 1, {[Cu(L1)(1,4-NDC)(H2O)]·3H2O}n, 2, and {[Cd(L1)(1,4-NDC)]·2H2O}n, 3. Complex 1 features a 2-fold interpenetrated 3D framework with the (412·63)-pcu topology, while complex 2 reveals a 1D triple-strained helical chain and complex 3 displays a 3-fold interpenetrated 3D framework with (66)-dia topology. Additionally, the reactions of the flexible ligand N,N′-bis(3-methylpyridyl) adipoamide (L2) afforded {[Co4(L2)0.5(1,4-NDC)3(H2O)33-OH)2]·EtOH·2H2O}n, 4, {[Zn2(L2)(1,4-NDC)2]·2CH3OH}n, 5, and [Cd(L2)(adipic)(H2O)]n (H2adipic = adipic acid), 6, exhibiting a self-catenated 3D framework with the (420·68)-8T32 topology, a 2D layer with the (413·62) − (4,4)IIb topology, and a 2D layer with the (44·62)-sql topology, respectively. The structural diversity observed in complexes 16 highlights the pivotal influence of the metal center on the degree of entanglement in CPs within mixed-ligand systems. The thermal stability and luminescent properties of complexes 13, 4, and 6 are also discussed. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

23 pages, 3244 KB  
Article
Ternary Phenolate-Based Thiosemicarbazone Complexes of Copper(II): Magnetostructural Properties, Spectroscopic Features and Marked Selective Antiproliferative Activity against Cancer Cells
by Iman K. Al-Salmi and Musa S. Shongwe
Molecules 2024, 29(2), 431; https://doi.org/10.3390/molecules29020431 - 16 Jan 2024
Cited by 2 | Viewed by 1870
Abstract
The new diprotic ligand 3,5-di-tert-butylsalicylaldehyde 4-ethyl-3-thiosemicarbazone, abbreviated H2(3,5-t-Bu2)-sal4eT, exists as the thio-keto tautomer and adopts the E-configuration with respect to the imine double bond, as evidenced by single-crystal X-ray analysis and corroborated by spectroscopic [...] Read more.
The new diprotic ligand 3,5-di-tert-butylsalicylaldehyde 4-ethyl-3-thiosemicarbazone, abbreviated H2(3,5-t-Bu2)-sal4eT, exists as the thio-keto tautomer and adopts the E-configuration with respect to the imine double bond, as evidenced by single-crystal X-ray analysis and corroborated by spectroscopic characterisation. Upon treatment with Cu(OAc)2·H2O in the presence of either 2,9-dimethyl-1,10-phenanthroline (2,9-Me2-phen) or 1,10-phenanthroline (phen) as a co-ligand in MeOH, this thiosemicarbazone undergoes conformational transformation (relative donor-atom orientations: syn,anti → syn,syn) concomitantly with tautomerisation and double deprotonation to afford the ternary copper(II) complexes [Cu{(3,5-t-Bu2)-sal4eT}(2,9-Me2-phen)] (1) and [Cu2{3,5-t-Bu2)-sal4eT}2(phen)] (2). Crystallographic elucidation has revealed that complex 1 is a centrosymmetric dimer of mononuclear copper(II) complex molecules brought about by intermolecular H-bonding. The coordination geometry at the copper(II) centre is best described as distorted square pyramidal in accordance with the trigonality index (τ = 0.14). The co-ligand adopts an axial–equatorial coordination mode; hence, there is a disparity between its two Cu–N coordinate bonds arising from weakening of the apical one as a consequence of the tetragonal distortion. The axial X-band ESR spectrum of complex 1 is consistent with retention of this structure in solution. Complex 2 is a centrosymmetric dimer of dinuclear copper(II) complex molecules exhibiting intermolecular H-bonding and π-π-stacking interactions. The two copper(II) centres, which are 4.8067(18) Å apart and bridged by the thio-enolate nitrogen of the quadridentate thiosemicarbazonate ligand, display two different coordination geometries, one distorted square planar (τ4 = 0.082) and the other distorted square pyramidal (τ5 = 0.33). Such dinuclear copper(II) thiosemicarbazone complexes, which are crystallographically characterised, are extremely rare. In vitro, complexes 1 and 2 outperform cisplatin as antiproliferative agents in terms of potency and selectivity towards HeLa and MCF-7 cancer cell lines. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

20 pages, 9272 KB  
Article
Increasing Al-Pair Abundance in SSZ-13 Zeolite via Zeolite Synthesis in the Presence of Alkaline Earth Metal Hydroxide Produces Hydrothermally Stable Co-, Cu- and Pd-SSZ-13 Materials
by Konstantin Khivantsev, Miroslaw A. Derewinski, Libor Kovarik, Mark Bowden, Xiaohong Shari Li, Nicholas R. Jaegers, Daria Boglaienko, Xavier I. Pereira-Hernandez, Carolyn Pearce, Yong Wang and Janos Szanyi
Catalysts 2024, 14(1), 56; https://doi.org/10.3390/catal14010056 - 12 Jan 2024
Cited by 3 | Viewed by 2858
Abstract
Replacing alkaline for alkaline-earth metal hydroxide in the synthesis gel during the synthesis of siliceous SSZ-13 zeolite (Si/Al~10) yields SSZ-13 with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of isolated divalent M(II) ions than the conventional one: this is the [...] Read more.
Replacing alkaline for alkaline-earth metal hydroxide in the synthesis gel during the synthesis of siliceous SSZ-13 zeolite (Si/Al~10) yields SSZ-13 with novel, advantageous properties. Its NH4-form ion-exchanges higher amount of isolated divalent M(II) ions than the conventional one: this is the consequence of an increased number of Al pairs in the structure induced by the +2 charge of Sr(II) cations in the synthesis gel that force two charge-compensating AlO4 motives to reside closer together. We characterize the +2 state of Co(II) ions in these materials with infra-red spectroscopy and X-ray absorption spectroscopy measurements and show their utility for NOx pollutant adsorption from ambient air: the ones derived from SSZ-13 with higher Al pair content contain more isolated cobalt(II) and, thus, perform better as ambient-air NOx adsorbers. Notably, Co(II)/SSZ-13 with an increased number of Al pairs is significantly more hydrothermally stable than its NaOH-derived analogue. Loading Pd(II) into Co-SSZ-13(Sr) produces an active NOx adsorber (PNA) material that can be used for NOx adsorption from simulated diesel engine exhaust. The critical issue for these applications is hydrothermal stability of Pd-zeolites. Pd/SSZ-13 synthesized in the presence of Sr(OH)2 does not lose its PNA capacity after extremely harsh aging at 850 and 900 °C (10 h in 10% H2O/air flow) and loses only ~55% capacity after hydrothermal aging at 930 °C. This can be extended to other divalent metals for catalytic applications, such as copper: we show that Cu/SSZ-13 catalyst can survive hydrothermal aging at 920 °C without losing its catalytic properties, metal dispersion and crystalline structure. Thus, we provide a new, simple, and scalable strategy for making remarkably (hydro)thermally stable metal-zeolite materials/catalysts with a number of useful applications. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials II)
Show Figures

Figure 1

18 pages, 10866 KB  
Article
Mineral-like Synthetic Compounds Stabilized under Hydrothermal Conditions: X-ray Diffraction Study and Comparative Crystal Chemistry
by Galina Kiriukhina, Olga Yakubovich, Polina Verchenko, Anatoly Volkov, Larisa Shvanskaya, Olga Dimitrova and Sergey Simonov
Minerals 2024, 14(1), 46; https://doi.org/10.3390/min14010046 - 29 Dec 2023
Cited by 1 | Viewed by 1837
Abstract
Under hydrothermal conditions emulating natural hydrothermalites, three oxo-salts with sodium and transition metal cations were obtained in the form of single crystals. Their compositions and crystal structures were studied using scanning electron microscopy, microprobe X-ray spectral analysis, and X-ray single-crystal diffraction. The sodium [...] Read more.
Under hydrothermal conditions emulating natural hydrothermalites, three oxo-salts with sodium and transition metal cations were obtained in the form of single crystals. Their compositions and crystal structures were studied using scanning electron microscopy, microprobe X-ray spectral analysis, and X-ray single-crystal diffraction. The sodium cobalt silicate, i.e., Na2CoSiO4, a structural analog of the mineral liberite, is well known as an ionic conductor. Its crystal structure consists of a framework derived from β-tridymite, built using the Co- and Si-centered tetrahedra sharing vertices. The sodium oxocuprate phosphate chloride Na2Cu3O(Cu0.8Na0.2)(PO4)2Cl belongs to a group of compounds, including fumarolic minerals, characterized by the presence of oxo-centered pyroxene-like chains in their structures. The crystal structure of mineralogically probable sodium vanadium phosphate hydroxide (Na3V(OH)(HPO4)(PO4)) is based on chains built using octahedra centered by magnetically active V3+. Magnetic susceptibility measurements indicate an antiferromagnetic arrangement of V3+ ions and no transition to an ordered state up to 2 K. Full article
Show Figures

Graphical abstract

14 pages, 2813 KB  
Article
Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) in Aqueous Medium over Fe-Doped-Poly(heptazine imide) Photocatalysts: Unveiling the Bad Role of Hydroxyl Radical Generation on the Catalytic Performance
by José B. G. Filho, Ingrid F. Silva, Mamdouh Alafandi and Jabor Rabeah
Molecules 2023, 28(24), 8077; https://doi.org/10.3390/molecules28248077 - 14 Dec 2023
Cited by 4 | Viewed by 2311
Abstract
5-hydroxymethylfurfural (HMF) oxidation in aqueous media using visible photocatalysis is a green and sustainable route for the valorization of lignocellulosic biomass derivatives. Several semiconductors have already been applied for this purpose; however, the use of Poly(heptazine imides), which has high crystallinity and a [...] Read more.
5-hydroxymethylfurfural (HMF) oxidation in aqueous media using visible photocatalysis is a green and sustainable route for the valorization of lignocellulosic biomass derivatives. Several semiconductors have already been applied for this purpose; however, the use of Poly(heptazine imides), which has high crystallinity and a special cation exchange property that allows the replacement of the cation held between the layers of C3N4 structure by transition metal ions (TM), remains scarce. In this study, PHI(Na) was synthesized using a melamine/NaCl method and used as precursor to prepare metal (Fe, Co, Ni, or Cu)-doped PHI catalysts. The catalysts were tested for selective oxidation of HMF to 2,5-diformylfuran (DFF) in water and O2 atmosphere under blue LED radiation. The catalytic results revealed that the 0.1 wt% PHI(Fe) catalyst is the most efficient photocatalyst while higher Fe loading (1 and 2 wt%) favors the formation of Fe3+ clusters, which are responsible for the drop in HMF oxidation. Moreover, the 0.1 wt% PHI(Fe) photocatalyst has strong oxidative power due to its efficiency in H2O2 production, thus boosting the generation of nonselective hydroxyl radicals (OH) via different pathways that can destroy HMF. We found that using 50 mM, the highest DFF production rate (393 μmol·h−1·g−1) was obtained in an aqueous medium under visible light radiation. Full article
Show Figures

Figure 1

12 pages, 6678 KB  
Article
Zero- to One-Dimensional Zn24 Supraclusters: Synthesis, Structures and Detection Wavelength
by Yating Chen, Zhonghang Chen, Jiming Wang, Xuandi Ma, Linyu Yuan, Shuhua Zhang and Fushun Tang
Nanomaterials 2023, 13(23), 3058; https://doi.org/10.3390/nano13233058 - 30 Nov 2023
Cited by 1 | Viewed by 1594
Abstract
A zinc supracluster [Zn24(ATZ)18(AcO)30(H2O)1.5]·(H2O)3.5 (Zn24), and a 1D zinc supracluster chain {[Zn24(ATZ)18(AcO)30(C2H5OH)2(H2O)3 [...] Read more.
A zinc supracluster [Zn24(ATZ)18(AcO)30(H2O)1.5]·(H2O)3.5 (Zn24), and a 1D zinc supracluster chain {[Zn24(ATZ)18(AcO)30(C2H5OH)2(H2O)3]·(H2O)2.5}n (1-D⊂Zn24) with molecular diameters of 2 nm were synthesized under regulatory solvothermal conditions or the micro bottle method. In an N,N-dimethylformamide solution of Zn24, Fe3+, Ni2+, Cu2+, Cr2+ and Co2+ ions exhibited fluorescence-quenching effects, while the rare earth ions Ce3+, Dy3+, Er3+, Eu3+, Gd3+, Ho3+, La3+, Nd3+, Sm3+, and Tb3+showed no obvious fluorescence quenching. In ethanol solution, the Zn24 supracluster can be used to selectively detect Ce3+ ions with excellent efficiency (limit of detection (LOD) = 8.51 × 10−7 mol/L). The Zn24 supracluster can also detect wavelengths between 302 and 332 nm using the intensity of the emitted light. Full article
Show Figures

Figure 1

19 pages, 3342 KB  
Article
Designing and Exploration of the Biological Potentials of Novel Centrosymmetric Heteroleptic Copper(II) Carboxylates
by Viola, Niaz Muhammad, Awal Noor, Muhammad Sirajuddin, Maciej Kubicki, Shahnaz Rahim, Abdus Samad, Shaukat Shujah, Abdul Wadood and Saqib Ali
Pharmaceuticals 2023, 16(10), 1462; https://doi.org/10.3390/ph16101462 - 14 Oct 2023
Cited by 5 | Viewed by 1699
Abstract
Copper(II) complexes with a general formula [Cu2(3,4-F2C6H3CH2COO)4(L)2], where L = 2-methylpyridine (1) and 3-methylpyridine (2), are reported here. The FTIR spectra of the complexes confirmed [...] Read more.
Copper(II) complexes with a general formula [Cu2(3,4-F2C6H3CH2COO)4(L)2], where L = 2-methylpyridine (1) and 3-methylpyridine (2), are reported here. The FTIR spectra of the complexes confirmed the bridging bidentate coordination mode of the carboxylate ligand. The low (475 and 449 cm−1) and strong (727 & 725 cm−1) intensity bands in the FTIR spectra, due to Cu-N stretches and pyridyl ring vibrations, confirmed coordination of the 2-/3-methyl pyridine co-ligands in complexes 1 and 2, respectively. A binuclear paddlewheel structural arrangement with a square pyramidal geometry was confirmed for copper atoms in the complexes via single-crystal X-ray analysis. The DPPH, OH radical, and α-amylase enzyme inhibition assays showed higher activities for the complexes than for the free ligand acid. The binding constant (Kb = 1.32 × 105 for 1 and 5.33 × 105 for 2) calculated via UV-VIS absorption measurements and docking scores (−6.59 for 1 and −7.43 for 2) calculated via molecular docking showed higher SS-DNA binding potential for 2 compared to 1. Viscosity measurement also reflected higher DNA binding ability for 2 than 1. Both complexes 1 and 2 (docking scores of −7.43 and −6.95, respectively) were found to be more active inhibitors than the free ligand acid (docking score of −5.5159) against the target α-amylase protein. This in silico study has shown that the herein reported compounds follow the rules of drug-likeness and exhibit good potential for bioavailability. Full article
Show Figures

Figure 1

18 pages, 5638 KB  
Article
Selective Recovery of Copper from the Mixed Metals Leach Liquor of E-Waste Materials by Ion-Exchange: Batch and Column Study
by Emmanuel A. Ajiboye, V. Aishvarya and Jochen Petersen
Minerals 2023, 13(10), 1285; https://doi.org/10.3390/min13101285 - 30 Sep 2023
Cited by 4 | Viewed by 2261
Abstract
Recovery of metals from e-waste forms a major focus of circular economy thinking and aligns well with the Sustainable Development Goals (SDG). While hydrometallurgical extraction from electronic printed circuit boards (PCBs) is well established, the separation of metals from the leach liquors, which [...] Read more.
Recovery of metals from e-waste forms a major focus of circular economy thinking and aligns well with the Sustainable Development Goals (SDG). While hydrometallurgical extraction from electronic printed circuit boards (PCBs) is well established, the separation of metals from the leach liquors, which are complex mixtures, remains a challenge. To achieve selective separation, ion exchange resins with chelating functional groups were employed in the present study. Batch and column studies for selective recovery of Cu2+ from a given mixed metals leach solution were conducted using Dowex M4195 resin, and both the adsorption isotherm and kinetics were studied. The process involves three major steps: selective recovery of Cu2+ by M4195 at low pH and elution with H2SO4; sorption of Ni2+ from the raffinate by Dowex M4195 at pH 2 and removal of Fe3+ from raffinate. The batch experimental results showed appreciable and selective recovery of copper (51.1%) at pH 0.7 and 40.0% Ni2+ was sorbed from raffinate at pH 2.0 with co-adsorption of Fe3+ as impurity. The batch adsorption data could be fitted with both Langmuir and Freundlich isotherms and exhibited pseudo-second-order kinetics. Column studies agreed with the Yoon–Nelson model and indicated that Cu2+ break-through time in the column decreased with an increase in flowrate from 3.0 to 10.0 min/mL and decreased in sorption capacity, while it was delayed with increased bed heights from 20 to 30 mm. Complete elution of Ni2+ was obtained with 2.0 M H2SO4 after selective elution of trace impurities with dilute HCl. Iron in the raffinate was removed via the addition of Ca (OH)2 at pH 4.0 leaving Zn-Al in the solution. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 5880 KB  
Article
Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors
by Oleksandr Grytsenko, Ludmila Dulebova, Emil Spišák and Petro Pukach
Polymers 2023, 15(10), 2259; https://doi.org/10.3390/polym15102259 - 10 May 2023
Cited by 1 | Viewed by 2278
Abstract
This paper presents research results on the properties of composite materials based on cross-linked grafted copolymers of 2-hydroxyethylmethacrylate (HEMA) with polyvinylpyrrolidone (PVP) and their hydrogels filled with finely dispersed metal powders (Zn, Co, Cu). Metal-filled pHEMA-gr-PVP copolymers in the dry state were studied [...] Read more.
This paper presents research results on the properties of composite materials based on cross-linked grafted copolymers of 2-hydroxyethylmethacrylate (HEMA) with polyvinylpyrrolidone (PVP) and their hydrogels filled with finely dispersed metal powders (Zn, Co, Cu). Metal-filled pHEMA-gr-PVP copolymers in the dry state were studied for surface hardness and swelling ability, which was characterized by swelling kinetics curves and water content. Copolymers swollen in water to an equilibrium state were studied for hardness, elasticity, and plasticity. The heat resistance of dry composites was evaluated by the Vicat softening temperature. As a result, materials with a wide range of predetermined properties were obtained, including physico-mechanical properties (surface hardness 240 ÷ 330 MPa, hardness number 0.06 ÷ 2.8 MPa, elasticity number 75 ÷ 90%), electrical properties (specific volume resistance 102 ÷ 108 Ω⋅m), thermophysical properties (Vicat heat resistance 87 ÷ 122 °C), and sorption (swelling degree 0.7 ÷ 1.6 g (H2O)/g (polymer)) at room temperature. Resistance to the destruction of the polymer matrix was confirmed by the results concerning its behavior in aggressive media such as solutions of alkalis and acids (HCl, H2SO4, NaOH), as well as some solvents (ethanol, acetone, benzene, toluene). The obtained composites are characterized by electrical conductivity, which can be adjusted within wide limits depending on the nature and content of the metal filler. The specific electrical resistance of metal-filled pHEMA-gr-PVP copolymers is sensitive to changes in moisture (with a moisture increase from 0 to 50%, ρV decreases from 108 to 102 Ω⋅m), temperature (with a temperature change from 20 °C to 175 °C, ρV of dry samples decreases by 4.5 times), pH medium (within pH from 2 to 9, the range of ρV change is from 2 to 170 kΩ⋅m), load (with a change in compressive stress from 0 kPa to 140 kPa, ρV of swollen composites decreases by 2–4 times), and the presence of low molecular weight substances, which is proven by the example involving ethanol and ammonium hydroxide. The established dependencies of the electrical conductivity of metal-filled pHEMA-gr-PVP copolymers and their hydrogels on various factors, in combination with high strength, elastic properties, sorption capacity, and resistance to aggressive media, suggest the potential for further research as a platform for the manufacture of sensors for various purposes. Full article
Show Figures

Figure 1

20 pages, 5422 KB  
Article
Synergetic Photocatalytic Peroxymonosulfate Oxidation of Benzotriazole by Copper Ferrite Spinel: Factors and Mechanism Analysis
by Masoumeh Golshan, Na Tian, Gcina Mamba and Babak Kakavandi
Toxics 2023, 11(5), 429; https://doi.org/10.3390/toxics11050429 - 4 May 2023
Cited by 16 | Viewed by 2361
Abstract
The development of oxidation processes with the efficient generation of powerful radicals is the most interesting and thought-provoking dimension of peroxymonosulfate (PMS) activation. This study reports the successful preparation of a magnetic spinel of CuFe2O4 using a facile, non-toxic, and [...] Read more.
The development of oxidation processes with the efficient generation of powerful radicals is the most interesting and thought-provoking dimension of peroxymonosulfate (PMS) activation. This study reports the successful preparation of a magnetic spinel of CuFe2O4 using a facile, non-toxic, and cost-efficient co-precipitation method. The prepared material exhibited a synergetic effect with photocatalytic PMS oxidation, which was effective in degrading the recalcitrant benzotriazole (BTA). Moreover, central composite design (CCD) analysis confirmed that the highest BTA degradation rate reached 81.4% after 70 min of irradiation time under the optimum operating conditions of CuFe2O4 = 0.4 g L−1, PMS = 2 mM, and BTA = 20 mg L−1. Furthermore, the active species capture experiments conducted in this study revealed the influence of various species, including OH, SO4•−, O2•−, and h+ in the CuFe2O4/UV/PMS system. The results showed that SO4•− played a predominant role in BTA photodegradation. The combination of photocatalysis and PMS activation enhanced the consumption of metal ions in the redox cycle reactions, thus minimizing metal ion leaching. Additionally, this maintained the reusability of the catalyst with reasonable mineralization efficiency, which reached more than 40% total organic carbon removal after four batch experiments. The presence of common inorganic anions was found to have a retardant effect on BTA oxidation, with the order of retardation following: HCO3 > Cl > NO3 > SO42−. Overall, this work demonstrated a simple and environmentally benign strategy to exploit the synergy between the photocatalytic activity of CuFe2O4 and PMS activation for the treatment of wastewater contaminated with widely used industrial chemicals such as BTA. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes and Biodegradability)
Show Figures

Figure 1

Back to TopTop