Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = Cu-Cr-Zr-alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 400
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

18 pages, 9592 KiB  
Article
Tribo-Mechanical Characteristics of Modified Cu-Cr-Zr Resistance Spot Welding Electrode with Nickel
by Ahmad Mostafa, Reham Alhdayat and Rasheed Abdullah
Crystals 2025, 15(6), 560; https://doi.org/10.3390/cryst15060560 - 13 Jun 2025
Viewed by 2011
Abstract
This study investigates the tribo-mechanical properties of a modified Cu-Cr-Zr alloy with nickel addition, aimed at enhancing its suitability as a resistance spot welding (RSW) electrode material. Two alloy compositions, designated as Sample A (Cu-0.871%Cr-0.156%Zr) and Sample B (modified with 8.94% Ni), were [...] Read more.
This study investigates the tribo-mechanical properties of a modified Cu-Cr-Zr alloy with nickel addition, aimed at enhancing its suitability as a resistance spot welding (RSW) electrode material. Two alloy compositions, designated as Sample A (Cu-0.871%Cr-0.156%Zr) and Sample B (modified with 8.94% Ni), were prepared. Microstructural examination revealed a coarse, mixed equiaxed–columnar grain structure in Sample A, while Sample B exhibited a refined dendritic morphology of about 50 μm PDAS, due to nickel-induced solute partitioning, improving microhardness from 72.763 HV to 83.981 HV. The wear behavior was evaluated using a pin-on-disc tribometer with a full factorial design, assessing the effects of rotational speed, load, and time on mass loss and surface roughness. Sample A exhibited increased mass loss and roughness with higher loads and speeds, indicating severe wear. In contrast, Sample B showed reduced mass loss and roughness at higher loads, suggesting a polishing effect from plastic deformation. Design of experiments analysis identified load as the dominant factor for mass loss in Sample A, with speed primarily affecting roughness, while in Sample B, load negatively influenced both responses, with speed–time interactions being significant. These findings highlight the nickel-modified alloy’s superior wear resistance and hardness, making it a promising candidate for RSW electrodes in high-production environments. Full article
(This article belongs to the Special Issue Advances in Metal Matrix Composites (Second Edition))
Show Figures

Figure 1

23 pages, 7536 KiB  
Review
A Review of Studies on the Influence of Rare-Earth Elements on the Microstructures and Properties of Copper and Copper Alloys and Relevant Applications
by Jin-Song Liu, Wen-Xin Yu, Da-Yong Chen, Song-Wei Wang, Hong-Wu Song and Shi-Hong Zhang
Metals 2025, 15(5), 536; https://doi.org/10.3390/met15050536 - 12 May 2025
Cited by 1 | Viewed by 802
Abstract
The rapid advancements in electronics, electric vehicles, and green technologies have imposed increasingly stringent demands on copper-based materials. These requirements include high thermal and electricity conductivity, corrosion resistance, and strength properties at both room temperature and high temperatures. Rare-earth elements are excellent microalloying [...] Read more.
The rapid advancements in electronics, electric vehicles, and green technologies have imposed increasingly stringent demands on copper-based materials. These requirements include high thermal and electricity conductivity, corrosion resistance, and strength properties at both room temperature and high temperatures. Rare-earth elements are excellent microalloying agents due to their typical metallic properties and highly active chemical characteristics; these properties and characteristics enable them to react with almost all elements except noble gases. The addition of rare-earth elements to copper and copper alloys can have several beneficial effects, such as impurity removal, purification, enhancement of the metallographic structure, and improved corrosion resistance. These effects can also raise the heat treatment temperature and enhance plastic processing, thereby further improving the overall properties of copper alloys. This review examines the influence of rare-earth elements (REEs) on copper and its alloys, along with their diverse industrial applications. It was found that elements such as La, Ce, Y, and Nd are commonly added to enhance properties like electrical conductivity, strength, corrosion resistance, purity, and hot workability in alloys such as pure copper, Cu-Ni-Si, Cu-Cr-Zr, and Cu-Fe-P. The review will lay a foundation and provide novel method for the development of advanced copper alloy. Full article
Show Figures

Figure 1

25 pages, 16617 KiB  
Article
Interface Optimization, Microstructural Characterization, and Mechanical Performance of CuCrZr/GH4169 Multi-Material Structures Manufactured via LPBF-LDED Integrated Additive Manufacturing
by Di Wang, Jiale Lv, Zhenyu Liu, Linqing Liu, Yang Wei, Cheng Chang, Wei Zhou, Yingjie Zhang and Changjun Han
Materials 2025, 18(10), 2206; https://doi.org/10.3390/ma18102206 - 10 May 2025
Viewed by 611
Abstract
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each [...] Read more.
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) process having its limitations. This study employed an LPBF-LDED integrated additive manufacturing (LLIAM) approach to fabricate CuCrZr/GH4169 components. CuCrZr segments were first produced by LPBF, followed by LDED deposition of GH4169 layers using optimized laser parameters. The microstructure, composition, and mechanical properties of the fabricated components were analyzed. Results show a sound metallurgical bond at the CuCrZr/GH4169 interface with minimal porosity and cracks (typical defects at the interface), achieved by exceeding a threshold laser energy density. Elemental interdiffusion forms a 100–200 μm transition zone, with a smooth hardness gradient (97 HV0.2 to 240 HV0.2). Optimized specimens exhibit tensile failure in the CuCrZr region (234 MPa), confirming robust interfacial bonding. These findings demonstrate LLIAM’s feasibility for CuCrZr/GH4169 and underscore the importance of balancing thermal conductivity and mechanical strength in multi-material components. These findings provide guidance for manufacturing aerospace components with both high thermal conductivity and high strength. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

26 pages, 3351 KiB  
Article
Explainable AI and Feature Engineering for Machine-Learning-Driven Predictions of the Properties of Cu-Cr-Zr Alloys: A Hyperparameter Tuning and Model Stacking Approach
by Mohammed A. Atiea, Reham Reda, Sabbah Ataya and Mervat Ibrahim
Processes 2025, 13(5), 1451; https://doi.org/10.3390/pr13051451 - 9 May 2025
Viewed by 678
Abstract
High-performance copper alloys are crucial for integrated circuit lead frames due to their high density, multifunctionality, and low cost. High-performance copper alloys typically address the competing issues of high strength and high electrical conductivity through alloying and processing control methods. However, the traditional [...] Read more.
High-performance copper alloys are crucial for integrated circuit lead frames due to their high density, multifunctionality, and low cost. High-performance copper alloys typically address the competing issues of high strength and high electrical conductivity through alloying and processing control methods. However, the traditional methods for developing these alloys are time-consuming, expensive, and complex processes. This study utilizes Explainable AI by employing machine learning (ML) and deep learning (DL) techniques to predict the hardness (HRC) and electrical conductivity (mS/m) based on the alloy composition, including Cr, Zr, Ce, and La, and the processing parameters, namely the aging time, of Cu-Cr-Zr alloys. A comprehensive dataset of 47 experimental Cu-Cr-Zr alloy samples, derived from prior experimental studies, was analyzed using feature engineering, correlation analysis, and explainability methods such as SHapley Additive exPlanations (SHAP). Various ML models, including ensemble methods like XGBoost, CatBoost, and AdaBoost, were evaluated for their predictive performance. The feature importance analysis revealed that the aging time and Zr content significantly influence the hardness, followed by Ce content, while Cr and La contents reveal a weak contribution to hardness values. Electrical conductivity is predominantly controlled by aging time, with a weak negative influence of the alloying elements. These findings align well with metallurgical principles, where microstructural refinement and precipitation behavior dictate the hardness and conductivity of Cu-Cr-Zr alloys. Hyperparameter tuning and model stacking further enhanced the predictive accuracy, with the final stacked models achieving R2 scores of 0.8762 for hardness within a training time of 1.739 s and 0.8132 for electrical conductivity within a training time of 1.091 s. These findings demonstrate the effectiveness of ML-driven approaches in material property predictions, providing valuable insights for material design and property processing parameter optimization. Full article
(This article belongs to the Special Issue Heat Processing, Surface and Coatings Technology of Metal Materials)
Show Figures

Figure 1

13 pages, 6208 KiB  
Article
Evaluation of Laser Powder Bed Fusion-Fabricated 316L/CuCrZr Bimetal Joint
by Wengang Zhai, Guanchun Li and Wei Zhou
Materials 2025, 18(7), 1434; https://doi.org/10.3390/ma18071434 - 24 Mar 2025
Viewed by 611
Abstract
While a tensile test revealing joint fracture at the base material may indicate good joint quality under certain circumstances, this conclusion might overlook the importance of examining the joint interface because exceptions can occur when one side is significantly softer. This study investigates [...] Read more.
While a tensile test revealing joint fracture at the base material may indicate good joint quality under certain circumstances, this conclusion might overlook the importance of examining the joint interface because exceptions can occur when one side is significantly softer. This study investigates the fabrication of a 316L/CuCrZr bimetal structure using the laser powder bed fusion (LPBF) process. Cracks were observed at the joint interface. The microhardness measured approximately 200 HV at the cracked interface and 100 HV on the CuCrZr side. Tensile testing showed that fractures occurred on the CuCrZr side, despite the presence of cracks at the bonding interface of the 316L/CuCrZr bimetal joint. Spheroids of 316L and Cu were found at the interface due to the Fe-Cu immiscibility system. This immiscibility was the main reason for the formation of cracks. This highlights the need for a thorough microstructural examination of the bonding to ensure a comprehensive quality assessment. The LPBF-fabricated 316L/CuCrZr bimetal joint exhibits a yield strength of 203.0 MPa, a UTS of 287.5 MPa, and an elongation of 15.3%. Full article
(This article belongs to the Special Issue Laser and Multi-Energy Field Processing of High-Performance Materials)
Show Figures

Figure 1

17 pages, 11771 KiB  
Article
Microstructure of CuCrZrV and ODS(Y2O3)-Cu Alloys After Neutron Irradiation at 150, 350, and 450 °C to 2.5 dpa
by Michael Klimenkov, Carsten Bonnekoh, Ute Jaentsch, Michael Rieth, Hans-Christian Schneider, Dmitry Terentyev, Koray Iroc and Wouter Van Renterghem
Materials 2025, 18(7), 1401; https://doi.org/10.3390/ma18071401 - 21 Mar 2025
Viewed by 406
Abstract
In this study, the results of transmission electron microscopy (TEM) examinations of neutron-irradiated (2.5 dpa at 150 °C, 350 °C, and 450 °C) CuCrZrV and ODS(Y2O3)-Cu alloys are presented. These materials were developed for application as heat sink materials [...] Read more.
In this study, the results of transmission electron microscopy (TEM) examinations of neutron-irradiated (2.5 dpa at 150 °C, 350 °C, and 450 °C) CuCrZrV and ODS(Y2O3)-Cu alloys are presented. These materials were developed for application as heat sink materials in fusion technology. This study includes TEM imaging and quantitative analysis of neutron radiation-induced defects such as dislocation loops and voids as well as the determination of the conditions for their formation. It was found that dislocation loops of a0½⟨110⟩ type form in both alloys at all irradiation temperatures. The formation of voids in CuCrZrV alloy is effectively suppressed. The neutron irradiation causes a redistribution of Cr, Zr, and V in the CuCrZrV alloy. A particular focus was on the investigation of the distribution of the transmutation products Ni and Zn. Ni tends to segregate at the Cr-rich clusters and forms a shell around them, while Zn is evenly distributed. Full article
(This article belongs to the Special Issue Mechanical Behavior and Radiation Response of Materials)
Show Figures

Figure 1

14 pages, 4098 KiB  
Article
Thermal Stability and Irradiation Resistance of (CrFeTiTa)70W30 and VFeTiTaW High Entropy Alloys
by André Pereira, Ricardo Martins, Bernardo Monteiro, José B. Correia, Andrei Galatanu, Norberto Catarino, Petra J. Belec and Marta Dias
Materials 2025, 18(5), 1030; https://doi.org/10.3390/ma18051030 - 26 Feb 2025
Viewed by 585
Abstract
Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor’s divertor, which supports high thermal flux. [...] Read more.
Nuclear fusion is a promising energy source. The International Thermonuclear Experimental Reactor aims to study the feasibility of tokamak-type reactors and test technologies and materials for commercial use. One major challenge is developing materials for the reactor’s divertor, which supports high thermal flux. Tungsten was chosen as the plasma-facing material, while a CuCrZr alloy will be used in the cooling pipes. However, the gradient between the working temperatures of these materials requires the use of a thermal barrier interlayer between them. To this end, refractory high-entropy (CrFeTiTa)70W30 and VFeTiTaW alloys were prepared by mechanical alloying and sintering, and their thermal and irradiation resistance was evaluated. Both alloys showed phase growth after annealing at 1100 °C for 8 days, being more pronounced for higher temperatures (1300 °C and 1500 °C). The VFeTiTaW alloy presented greater phase growth, suggesting lower microstructural stability, however, no new phases were formed. Both (as-sintered) alloys were irradiated with Ar+ (150 keV) with a fluence of 2.4 × 1020 at/m2, as well as He+ (10 keV) and D+ (5 keV) both with a fluence of 5 × 1021 at/m2. The morphology of the surface of both samples was analyzed before and after irradiation showing no severe morphologic changes, indicating high irradiation resistance. Additionally, the VFeTiTaW alloy presented a lower deuterium retention (8.58%) when compared to (CrFeTiTa)70W30 alloy (14.41%). Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

18 pages, 6329 KiB  
Review
Oxidation Behavior of Nanocrystalline Alloys
by Yashaswini Karanth, Saurabh Sharma, Kris Darling, Haitham El Kadiri and Kiran Solanki
Materials 2024, 17(23), 5842; https://doi.org/10.3390/ma17235842 - 28 Nov 2024
Cited by 3 | Viewed by 1169
Abstract
Thermo-mechanically stabilized nanocrystalline (NC) alloys are increasingly valued for their enhanced mechanical strength and high-temperature stability, achieved through thermodynamic and kinetic stabilization methods. However, their fine-grained structure also increases susceptibility to internal oxidation due to higher atomic diffusivity associated with a greater volume [...] Read more.
Thermo-mechanically stabilized nanocrystalline (NC) alloys are increasingly valued for their enhanced mechanical strength and high-temperature stability, achieved through thermodynamic and kinetic stabilization methods. However, their fine-grained structure also increases susceptibility to internal oxidation due to higher atomic diffusivity associated with a greater volume fraction of grain boundaries (GBs). By incorporating solutes that form protective oxides, or the so-called thermally growing oxides (TGO), this vulnerability can be mitigated. The TGO scale acts as a diffusion barrier for oxygen that slows down the oxidation kinetics and prevents internal oxidation that impairs the structural integrity of the metal. This review examines advancements in oxidation-resistant NC alloys, focusing on the interplay between grain size and alloy chemistry. We explore how grain refinement influences diffusion coefficients, particularly the enhanced GB diffusion of Ni and Cr in Ni-Cr-based alloys, which improves oxidation resistance in NC variants like Ni-Cr and Cu-Cr compared to coarse-grained counterparts. We also analyze the role of third elements as oxygen scavengers and the impact of reactive elements such as Hf, Zr, and Y in NiAl alloys, which can slow down diffusion through early establishment of protective TGO layers and enhance oxidation resistance. The concomitant effect of grain size refinement, modifications in alloy stoichiometry, and enhanced atomic diffusion is shown to manifest via drastic reductions in oxidative mass gain, and visualization of the stable, protective oxide scales is delivered through characterization techniques such as TEM, SEM, and EDS. A brief overview is provided regarding stress effects and the role of induced stress in driving oxide scale spallation, which can negatively impact oxidation kinetics. Lastly, we propose future research directions aimed at developing micro-structurally stable NC alloys through multi-solute strategies and surface modification techniques, targeting robust materials for high-stress applications with improved oxidation resistance. Full article
Show Figures

Graphical abstract

9 pages, 4300 KiB  
Article
Preparation and Properties of Thick Tungsten Coating Electrodeposited from Na2WO4-WO3-KCl-NaF Molten Salt System
by Yusha Li, Xiaoxu Dong, Qing Liu, Yajie You, Zeyu Gao and Yingchun Zhang
Coatings 2024, 14(11), 1471; https://doi.org/10.3390/coatings14111471 - 20 Nov 2024
Viewed by 972
Abstract
The pulsed current electrodeposition method was employed for the first time to achieve tungsten coating with a thickness of 433.72 μm on a CuCrZr alloy from Na2WO4-WO3-KCl-NaF molten salt. The microstructure of the coating was observed and [...] Read more.
The pulsed current electrodeposition method was employed for the first time to achieve tungsten coating with a thickness of 433.72 μm on a CuCrZr alloy from Na2WO4-WO3-KCl-NaF molten salt. The microstructure of the coating was observed and the coating density, porosity, hardness, bonding strength, residual stress and oxygen content were tested. The results revealed that the tungsten coating exhibited desirable characteristics such as high density, absence of impurities, excellent adhesion to the matrix (53.16 MPa), residual compressive stress as surface stress, and good stability and durability. Moreover, this thick tungsten coating possesses high density and hardness, low oxygen content and porosity. This offers a novel solution to solve the challenging issue of the connection between tungsten material and heat sink material. Full article
Show Figures

Figure 1

20 pages, 31298 KiB  
Article
Additive Manufacturing and Precipitation Hardening of Low-Alloyed Copper Alloys Containing Chromium and Hafnium
by Julia Dölling, Samira Gruber, Felix Kovermann, Lukas Stepien, Elmar Beeh, Elena Lopez, Christoph Leyens, Hans-Günther Wobker and Andreas Zilly
Metals 2024, 14(11), 1304; https://doi.org/10.3390/met14111304 - 19 Nov 2024
Viewed by 1435
Abstract
Copper alloys with chromium and hafnium offer the possibility of precipitation hardening and combine enhanced strength with high electrical and thermal conductivities. The production process, which starts with raw materials, involves powder production by gas atomization and leads to additive manufacturing by laser [...] Read more.
Copper alloys with chromium and hafnium offer the possibility of precipitation hardening and combine enhanced strength with high electrical and thermal conductivities. The production process, which starts with raw materials, involves powder production by gas atomization and leads to additive manufacturing by laser powder bed fusion with different parameter sets. The aim is to utilize precipitation reactions afterwards in CuHf0.7Cr0.35 during temperature exposure for further property optimization. This research focuses on the low-alloyed copper alloy with hafnium and chromium, compares this with conventionally manufactured specimens, and relates the alloy to additively manufactured specimens of other benchmark alloys such as CuCr1Zr. Measurements of hardness and electrical conductivity are accompanied by metallographic investigations to understand the behavior of CuHf0.7Cr0.35 manufactured by generative methods. In the as-built condition, melting traces remain visible in the microstructure, and hardness values of 101 HV and an electrical conductivity of 17.5 MS/m are reached. Solution annealing completely recrystallizes the microstructure, and the following quenching holds further alloying elements in supersaturated solid solution, resulting in 73 HV and 16.5 MS/m. Subsequent target-oriented precipitation reactions enable peak values of about 190 HV and 42 MS/m. Future research will assess mechanical and physical properties at elevated temperatures and evaluate possible applications. Full article
Show Figures

Figure 1

6 pages, 1273 KiB  
Proceeding Paper
Development of Aluminum and Copper Alloys for Electric Automotive Engines—From the Research Work at the University of Dunaújváros
by Judit Pázmán
Eng. Proc. 2024, 79(1), 89; https://doi.org/10.3390/engproc2024079089 - 13 Nov 2024
Cited by 2 | Viewed by 730
Abstract
In the project work, CES EDUPACK material selection software and Arc melter 500 arc remelting equipment were used to select good-performance materials and produce a sample. First, aluminum alloys were considered due to their low weight; alloys Al7075, Al6082, and EN AW 6022 [...] Read more.
In the project work, CES EDUPACK material selection software and Arc melter 500 arc remelting equipment were used to select good-performance materials and produce a sample. First, aluminum alloys were considered due to their low weight; alloys Al7075, Al6082, and EN AW 6022 in different states were examined for maximum hardness and electrical conductivity, and then the Cu–Cr–Zr alloy was analyzed. The test results showed that for the EN AW 6082 alloy, the specimens heat-treated at 480 °C for 2 h + 175 °C for 2 h following the ECAP (equal channel angular pressing) A route or C route technique gave the best hardness–electrical conductivity pair. In the case of the EN AW 7075 alloy, the artificially aged sample after 4× ECAP forming showed the maximum values. In the case of EN AW 6022, which according to the Ashby chart may be the best alloy for the value pair sought, this alloy was fabricated, resulting in only as-cast samples being analyzed. Of the Cu alloys, the Cu–0.49–0.21Zr alloy after heat treatment at 450 °C for 1 h gives the most favorable hardness–conductivity. Full article
(This article belongs to the Proceedings of The Sustainable Mobility and Transportation Symposium 2024)
Show Figures

Figure 1

10 pages, 2185 KiB  
Article
Predictive Analysis of Mechanical Properties in Cu-Ti Alloys: A Comprehensive Machine Learning Approach
by Mihail Kolev
Modelling 2024, 5(3), 901-910; https://doi.org/10.3390/modelling5030047 - 30 Jul 2024
Cited by 3 | Viewed by 1722
Abstract
A machine learning-based approach is presented for predicting the mechanical properties of Cu-Ti alloys utilizing a dataset of various features, including compositional elements and processing parameters. The features encompass chemical composition elements such as Cu, Al, Ce, Cr, Fe, Mg, Ti, and Zr, [...] Read more.
A machine learning-based approach is presented for predicting the mechanical properties of Cu-Ti alloys utilizing a dataset of various features, including compositional elements and processing parameters. The features encompass chemical composition elements such as Cu, Al, Ce, Cr, Fe, Mg, Ti, and Zr, as well as various thermo-mechanical processing parameters. This dataset, comprising more than 1000 data points, was selected from a larger collection of various Cu-based alloys. The dataset was divided into training, validation, and test sets, with a Random Forest Regressor model being trained and optimized using GridSearchCV. The model’s performance was evaluated based on the R2 score. The results demonstrate high predictive accuracy, with R2 scores of 0.9929, 0.9851, and 0.9937 for the training, validation, and testing sets, respectively. The Random Forest model was compared with other machine learning models and showed better results in terms of predictive accuracy. A feature importance analysis of the mechanical characteristics was conducted, further clarifying the influence of each feature. The correlation heatmap further elucidates the relationships among the features, offering insights into the effects of alloy composition and processing on mechanical properties. This study underscores the potential of machine learning in advancing the development and optimization of Cu-Ti alloys, providing a valuable tool for materials scientists and engineers. Full article
Show Figures

Figure 1

12 pages, 3903 KiB  
Article
Mechanical Properties and Interfacial Characterization of Additive-Manufactured CuZrCr/CoCrMo Multi-Metals Fabricated by Powder Bed Fusion Using Pulsed Wave Laser
by Hao Zhang, Xiang Jin, Zhongmin Xiao and Liming Yao
Micromachines 2024, 15(6), 765; https://doi.org/10.3390/mi15060765 - 7 Jun 2024
Cited by 3 | Viewed by 1257
Abstract
In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that [...] Read more.
In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that process parameters and laser scanning strategies had a significant influence on the mechanical properties and interface characteristics. Samples fabricated with an EV ≤ 20 J/mm3 showed little tensile ductility. As the volumetric energy density (EV) increased to a range between 40 J/mm3 and 100 J/mm3, the samples achieved the desired mechanical properties, with a strong interface combining the alloys. However, an excessive energy density could result in cracks due to thermal stress. Laser remelting significantly improved the interface properties, especially when the EV was below 40 J/mm3. Variances in the EV showed little influence on the hardness at the CuZrCr end, while the hardness at the interface and the CoCrMo end showed an increasing and decreasing trend with an increase in the EV, respectively. Interface characterization showed that when the EV was greater than 43 J/mm3, the main defects in the L-PBF CoCrMo samples were thermal cracks, which gradually changed to pores with a lack of fusion when the EV decreased. This study provides theoretical and technical support for the manufacturing of multi-metal parts using L-PBF technology. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

18 pages, 14266 KiB  
Article
Microstructure and Phase Composition of Novel Crossover Al-Zn-Mg-Cu-Zr-Y(Er) Alloys with Equal Zn/Mg/Cu Ratio and Cr Addition
by Maria V. Glavatskikh, Ruslan Yu. Barkov, Leonid E. Gorlov, Maxim G. Khomutov and Andrey V. Pozdniakov
Metals 2024, 14(5), 547; https://doi.org/10.3390/met14050547 - 6 May 2024
Cited by 10 | Viewed by 2442
Abstract
The effect of 0.2%Cr addition on the structure, phase composition, and mechanical properties of the novel cast and wrought Al-2.5Zn-2.5Mg-2.5Cu-0.2Zr-Er(Y) alloys were investigated in detail. Chromium is distributed between primary crystals (5.7–6.8%) of the intermetallic phase and the aluminum solid solution (0.2%) (Al). [...] Read more.
The effect of 0.2%Cr addition on the structure, phase composition, and mechanical properties of the novel cast and wrought Al-2.5Zn-2.5Mg-2.5Cu-0.2Zr-Er(Y) alloys were investigated in detail. Chromium is distributed between primary crystals (5.7–6.8%) of the intermetallic phase and the aluminum solid solution (0.2%) (Al). The primary crystals contain for the main part Cr, Ti, Er(Y). The experimental phase composition is in good correlation with the thermodynamic computation data. The micron-sized solidification origin phases (Al8Cu4Er(or Y) and Mg2Si) and supersaturated (Al) with nano-sized Al3(Zr,Ti) and E (Al18Mg3Cr2) precipitates are presented in the microstructure of the novel alloys after solution treatment. The nucleation of η (MgZn2) (0.5%), S (Al2CuMg) (0.4%), and T (Al,Zn,Mg,Cu) (8.8%) phase precipitates at 180 °C, providing the achievement of a maximum hardness of 135 HV in the Al2.5Zn2.5Mg2.5CuYCr alloy. The corrosion potential of the novel alloy is similar to the Ecor of the referenced alloy, but the corrosion current density (0.68–0.98 µA/sm2) is still significantly lower due to the formation of E (Al18Mg3Cr2) precipitates and S phase precipitates of the aging origin, in addition to the T phase. The formation of E (Al18Mg3Cr2) precipitates under the solution treatment provides a lower proportion of recrystallized grains (2.5–5% vs. 22.4–25.1%) and higher hardness (110 HV vs. 85–95 HV) in the Cr-rich alloys compared to the referenced alloys. Solution treated, hot and cold rolled, recrystallized, water quenched and aged at 210 °C alloys demonstrate an excellent microstructure stability and tensile properties: YS = 299–300 MPa, UTS = 406–414 MPa, and El. = 9–12.3%. Full article
Show Figures

Figure 1

Back to TopTop