Future Prospects of Additive Manufacturing

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D3: 3D Printing and Additive Manufacturing".

Deadline for manuscript submissions: closed (20 April 2025) | Viewed by 14245

Special Issue Editors


E-Mail Website
Guest Editor
Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
Interests: additive manufacturing; metals and alloys; metal-matrix composite; microstructure and mechanical property
Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
Interests: additive manufacturing; 3D printing; cold spraying; digital light processing; selective laser melting; high velocity imaging; numerical simulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Engineering, The University of Western Australia, Crawley, Perth, WA 6009, Australia
Interests: additive manufacturing; laser powder bed fusion; sintering; titanium alloys; nickel superalloys; aluminum alloys; corrosion behavior; surface treatment; porous structure; mechanical property; microstructure

E-Mail Website
Guest Editor
Department of Production Engineering, KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden
Interests: additive manufacturing (AM); metal matrix composites; metals and alloys; shape memory alloys
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
Interests: selective laser melting; additive manufacturing; porous structures; metal 3D printing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Manufacturing has always been an industry driven by innovation and technological evolution. In the last four decades, additive manufacturing has revolutionized the manufacturing industry by rapidly prototyping geometrically complex parts without costly tooling or long lead times. Today, it is fair to say that understanding the future of additive manufacturing is key to getting to grips with the latest trends in manufacturing.

This Special Issue aims to explore the prospects of various additive manufacturing techniques, as well as their innovative applications in aerospace, marine, automobile, healthcare, sustainability, and more. The main focus is on novel techniques and materials for additive manufacturing, microstructure evolution and properties of additively manufactured components, process optimization, machine learning assistance, online monitoring and feedback, multi-scale and multi-physics simulations, topology optimization, industrial-scale additive manufacturing, etc. We look forward to receiving your contributions to the Special Issue of Future Prospect of Additive Manufacturing with original research work, review articles, and short communications.

Dr. Haiyang Fan
Dr. Shuo Yin
Dr. Jincheng Wang
Dr. Sasan Dadbakhsh
Dr. Changjun Han
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dedicated materials for additive manufacturing
  • post-processing technologies
  • topological design for additive manufacturing
  • multi-scale and multi-physics simulations
  • online real-time quality monitoring in additive manufacturing
  • 3D bioprinting
  • hybrid additive manufacturing
  • multi-material additive manufacturing
  • field-assisted additive manufacturing
  • novel applications of additive manufacturing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 4009 KiB  
Article
Applying Acoustic Signals to Monitor Hybrid Electrical Discharge-Turning with Artificial Neural Networks
by Mehdi Soleymani and Mohammadjafar Hadad
Micromachines 2025, 16(3), 274; https://doi.org/10.3390/mi16030274 - 27 Feb 2025
Viewed by 397
Abstract
Artificial intelligence (AI) models have demonstrated their capabilities across various fields by performing tasks that are currently handled by humans. However, the training of these models faces several limitations, such as the need for sufficient data. This study proposes the use of acoustic [...] Read more.
Artificial intelligence (AI) models have demonstrated their capabilities across various fields by performing tasks that are currently handled by humans. However, the training of these models faces several limitations, such as the need for sufficient data. This study proposes the use of acoustic signals as training data as this method offers a simpler way to obtain a large dataset compared to traditional approaches. Acoustic signals contain valuable information about the process behavior. We investigated the ability of extracting useful features from acoustic data expecting to predict labels separately by a multilabel classifier rather than as a multiclass classifier. This study focuses on electrical discharge turning (EDT) as a hybrid process of electrical discharge machining (EDM) and turning, an intricate process with multiple influencing parameters. The sounds generated during EDT were recorded and used as training data. The sounds underwent preprocessing to examine the effects of the parameters used for feature extraction prior to feeding the data into the ANN model. The parameters investigated included sample rate, length of the FFT window, hop length, and the number of mel-frequency cepstral coefficients (MFCC). The study aimed to determine the optimal preprocessing parameters considering the highest precision, recall, and F1 scores. The results revealed that instead of using the default set values in the python packages, it is necessary to investigate the preprocessing parameters to find the optimal values for the maximum classification performance. The promising results of the multi-label classification model depicted that it is possible to detect various aspects of a process simultaneously receiving single data, which is very beneficial in monitoring. The results also indicated that the highest prediction scores could be achieved by setting the sample rate, length of the FFT window, hop length, and number of MFCC to 4500 Hz, 1024, 256, and 80, respectively. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

17 pages, 5094 KiB  
Article
Extrusion-Based 3D Printing of Pharmaceuticals—Evaluating Polymer (Sodium Alginate, HPC, HPMC)-Based Ink’s Suitability by Investigating Rheology
by Farzana Khan Rony, Georgia Kimbell, Toby R. Serrano, Destinee Clay, Shamsuddin Ilias and Mohammad A. Azad
Micromachines 2025, 16(2), 163; https://doi.org/10.3390/mi16020163 - 30 Jan 2025
Cited by 1 | Viewed by 1152
Abstract
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the [...] Read more.
Three-dimensional printing is promising in the pharmaceutical industry for personalized medicine, on-demand production, tailored drug loading, etc. Pressure-assisted microsyringe (PAM) printing is popular due to its low cost, simple operation, and compatibility with heat-sensitive drugs but is limited by ink formulations lacking the essential characteristics, impacting their performance. This study evaluates inks based on sodium alginate (SA), hydroxypropyl cellulose (HPC H), and hydroxypropyl methylcellulose (HPMC K100 and K4) for PAM 3D printing by analyzing their rheology. The formulations included the model drug Fenofibrate, functional excipients (e.g., mannitol, polyethylene glycol, etc.), and water or water–ethanol mixtures. Pills and thin films as an oral dosage were printed using a 410 μm nozzle, a 10 mm/s speed, a 50% infill density, and a 60 kPa pressure. Among the various formulated inks, only the ink containing 0.8% SA achieved successful prints with the desired shape fidelity, linked to its rheological properties, which were assessed using flow, amplitude sweep, and thixotropy tests. This study concludes that (i) an ink’s rheological properties—viscosity, shear thinning, viscoelasticity, modulus, flow point, recovery, etc.—have to be considered to determine whether it will print well; (ii) printability is independent of the dosage form; and (iii) the optimal inks are viscoelastic solids with specific rheological traits. This research provides insights for developing polymer-based inks for effective PAM 3D printing in pharmaceuticals. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

21 pages, 6499 KiB  
Article
Influence of Cu Content Variation on the Tribological Properties of Ni60CuMo with Sandwich-Structured Composite Coatings by Laser Cladding
by Fengqin Ji, Xincheng Li, Songyang Zhang and Ming Pang
Micromachines 2024, 15(12), 1429; https://doi.org/10.3390/mi15121429 - 27 Nov 2024
Viewed by 772
Abstract
To enhance the tribological properties of the coatings and to inhibit cracking, sandwich-structured composite coatings were fabricated, consisting of a Ni60CuMo/IN718 transition layer and a Ni60CuMo/Ni-coated Cu wear-resistant layer with four different Ni-coated Cu contents. The results indicate that the transition layer inhibits [...] Read more.
To enhance the tribological properties of the coatings and to inhibit cracking, sandwich-structured composite coatings were fabricated, consisting of a Ni60CuMo/IN718 transition layer and a Ni60CuMo/Ni-coated Cu wear-resistant layer with four different Ni-coated Cu contents. The results indicate that the transition layer inhibits the crack formation in the coating, and the refined grain structure stabilizes its average hardness at approximately 485 HV0.5. Increasing the Cu content in the wear-resistant layer exacerbates the segregation of the Cu-rich solid solution phases and refines the in situ-generated Cr7C3, TiC, and NbC phases. The average hardness of the wear-resistant layer decreases from 474 HV0.5 to 408 HV0.5 as the Ni-coated Cu content increases from zero to 75%. The coating with 50% Ni-coated Cu has the best Cu self-lubricating properties and exhibits the best wear resistance at both room and high temperatures. At room temperature, abrasive wear is the primary wear mechanism in the coatings. Although the ductility of the coatings is improved with increasing Cu content, excessive Cu reduces the hardness and load-bearing capacity. At 300 °C, oxidation wear becomes the dominant wear mechanism, accompanied by plastic deformation and three-body wear as the Cu content increases. At 500 °C, severe oxidation wear is the dominant mechanism, with excessive Cu leading to oxidation film failure. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

12 pages, 3968 KiB  
Article
Comparison of Interfaces Between In Situ Laser Beam Deposition Forming and Electron Beam Welding for Thick-Walled Titanium Alloy Structures
by Pingchuan Yang, Fei Li, Zongtao Zhu and Hui Chen
Micromachines 2024, 15(11), 1383; https://doi.org/10.3390/mi15111383 - 15 Nov 2024
Viewed by 911
Abstract
An investigation was conducted on electron beam-welded and additively manufactured joints on a thick-walled titanium alloy utilizing in situ laser beam deposition and electron beam welding techniques. The surface morphology, microstructural characteristics, and mechanical properties of both joint types were comprehensively analyzed using [...] Read more.
An investigation was conducted on electron beam-welded and additively manufactured joints on a thick-walled titanium alloy utilizing in situ laser beam deposition and electron beam welding techniques. The surface morphology, microstructural characteristics, and mechanical properties of both joint types were comprehensively analyzed using stereomicroscopy, scanning electron microscopy (SEM), microhardness and tensile strength testing, and electron backscatter diffraction (EBSD) techniques. The electron-beam-welded joint exhibited distinct fusion and heat-affected zones, whereas the laser-beam-deposited joint exhibited a smoother surface that was free from excess spatter. Both joints featured a sharp microstructural boundary with a pronounced hardness gradient across the interface, lacking a gradual transition area. During tensile testing, both joint types demonstrated a mixed brittle-ductile fracture mode; however, the electron beam-welded joints surpassed the laser-beam-deposited joints in terms of tensile strength, achieving over 1183 MPa with an elongation of more than 7.3%, compared to 1123 MPa and 5.9% elongation, respectively. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

18 pages, 12338 KiB  
Article
Effects of Mo Addition on Microstructure and Corrosion Resistance of Cr25-xCo25Ni25Fe25Mox High-Entropy Alloys via Directed Energy Deposition
by Han-Eol Kim, Jae-Hyun Kim, Ho-In Jeong, Young-Tae Cho, Osama Salem, Dong-Won Jung and Choon-Man Lee
Micromachines 2024, 15(10), 1196; https://doi.org/10.3390/mi15101196 - 27 Sep 2024
Cited by 1 | Viewed by 1090
Abstract
Highly entropy alloys (HEAs) are novel materials that have great potential for application in aerospace and marine engineering due to their superior mechanical properties and benefits over conventional materials. NiCrCoFe, also referred to as Ni-based HEA, has exceptional low-temperature strength and microstructural stability. [...] Read more.
Highly entropy alloys (HEAs) are novel materials that have great potential for application in aerospace and marine engineering due to their superior mechanical properties and benefits over conventional materials. NiCrCoFe, also referred to as Ni-based HEA, has exceptional low-temperature strength and microstructural stability. However, HEAs have limited corrosion resistance in some environments, such as a 3.5 wt% sodium chloride (NaCl) solution. Adding corrosion-resistant elements such as molybdenum (Mo) to HEAs is expected to increase their corrosion resistance in a variety of corrosive environments. Metal additive manufacturing reduces production times compared to casting and eliminates shrinkage issues, making it ideal for producing homogeneous HEA. This study used directed energy deposition (DED) to create Cr25-xCo25Ni25Fe25Mox (x = 0, 5, 10%) HEAs. Tensile strength and potentiodynamic polarization tests were used to assess the materials’ mechanical properties and corrosion resistance. The mechanical tests revealed that adding 5% Mo increased yield strength (YS) by 20.1% and ultimate tensile strength (UTS) by 9.5% when compared to 0% Mo. Adding 10% Mo led to a 32.5% increase in YS and a 20.4% increase in UTS. Potentiodynamic polarization tests were used to assess corrosion resistance in a 3.5-weight percent NaCl solution. The results showed that adding Mo significantly increased initial corrosion resistance. The alloy with 5% Mo had a higher corrosion potential (Ecorr) and a lower current density (Icorr) than the alloy with 0% Mo, indicating improved initial corrosion resistance. The alloy containing 10% Mo had the highest corrosion potential and the lowest current density, indicating the slowest corrosion rate and the best initial corrosion resistance. Finally, Cr25-xCo25Ni25Fe25Mox (x = 0, 5, 10%) HEAs produced by DED exhibited excellent mechanical properties and corrosion resistance, which can be attributed to the presence of Mo. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

30 pages, 13930 KiB  
Article
Development of Robust Steel Alloys for Laser-Directed Energy Deposition via Analysis of Mechanical Property Sensitivities
by Jonathan Kelley, Joseph W. Newkirk, Laura N. Bartlett, Sriram Praneeth Isanaka, Todd Sparks, Saeid Alipour and Frank Liou
Micromachines 2024, 15(10), 1180; https://doi.org/10.3390/mi15101180 - 24 Sep 2024
Viewed by 1639
Abstract
To ensure consistent performance of additively manufactured metal parts, it is advantageous to identify alloys that are robust to process variations. This paper investigates the effect of steel alloy composition on mechanical property robustness in laser-directed energy deposition (L-DED). In situ blending of [...] Read more.
To ensure consistent performance of additively manufactured metal parts, it is advantageous to identify alloys that are robust to process variations. This paper investigates the effect of steel alloy composition on mechanical property robustness in laser-directed energy deposition (L-DED). In situ blending of ultra-high-strength low-alloy steel (UHSLA) and pure iron powders produced 10 compositions containing 10–100 wt% UHSLA. Samples were deposited using a novel configuration that enabled rapid collection of hardness data. The Vickers hardness sensitivity of each alloy was evaluated with respect to laser power and interlayer delay time. Yield strength (YS) and ultimate tensile strength (UTS) sensitivities of five select alloys were investigated in a subsequent experiment. Microstructure analysis revealed that cooling rate-driven phase fluctuations between lath martensite and upper bainite were a key factor leading to high hardness sensitivity. By keeping the UHSLA content ≤20% or ≥70%, the microstructure transformed primarily to ferrite or martensite, respectively, which generally corresponded to improved robustness. Above 70% UHSLA, the YS sensitivity remained low while the UTS sensitivity increased. This finding, coupled with the observation of auto-tempered martensite at lower cooling rates, may suggest a strong response of the work hardening capability to auto-tempering at higher alloy contents. This work demonstrates a methodology for incorporating robust design into the development of alloys for additive manufacturing. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

12 pages, 3903 KiB  
Article
Mechanical Properties and Interfacial Characterization of Additive-Manufactured CuZrCr/CoCrMo Multi-Metals Fabricated by Powder Bed Fusion Using Pulsed Wave Laser
by Hao Zhang, Xiang Jin, Zhongmin Xiao and Liming Yao
Micromachines 2024, 15(6), 765; https://doi.org/10.3390/mi15060765 - 7 Jun 2024
Cited by 2 | Viewed by 1101
Abstract
In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that [...] Read more.
In this study, CoCrMo cuboid samples were deposited on a CuZrCr substrate using laser powder bed fusion (L-PBF) technology to investigate the influence of process parameters and laser remelting strategies on the mechanical properties and interface characteristics of multi-metals. This study found that process parameters and laser scanning strategies had a significant influence on the mechanical properties and interface characteristics. Samples fabricated with an EV ≤ 20 J/mm3 showed little tensile ductility. As the volumetric energy density (EV) increased to a range between 40 J/mm3 and 100 J/mm3, the samples achieved the desired mechanical properties, with a strong interface combining the alloys. However, an excessive energy density could result in cracks due to thermal stress. Laser remelting significantly improved the interface properties, especially when the EV was below 40 J/mm3. Variances in the EV showed little influence on the hardness at the CuZrCr end, while the hardness at the interface and the CoCrMo end showed an increasing and decreasing trend with an increase in the EV, respectively. Interface characterization showed that when the EV was greater than 43 J/mm3, the main defects in the L-PBF CoCrMo samples were thermal cracks, which gradually changed to pores with a lack of fusion when the EV decreased. This study provides theoretical and technical support for the manufacturing of multi-metal parts using L-PBF technology. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

20 pages, 19077 KiB  
Article
Evaluation of the Surface Integrity and Recast Layer in Electrical Discharge Turning of WC-Co Composites
by Mehdi Soleymani and Mohammadjafar Hadad
Micromachines 2024, 15(6), 707; https://doi.org/10.3390/mi15060707 - 27 May 2024
Cited by 1 | Viewed by 1334
Abstract
Tungsten carbide (WC) and its composites are typically associated with high hardness and high wear resistance, posing challenges in conventional machining processes like turning. To address the machining difficulties of WC-Co, electrical discharge turning (EDT) was proposed. The rotational speed in EDT is [...] Read more.
Tungsten carbide (WC) and its composites are typically associated with high hardness and high wear resistance, posing challenges in conventional machining processes like turning. To address the machining difficulties of WC-Co, electrical discharge turning (EDT) was proposed. The rotational speed in EDT is a key factor influencing the machining results; however, conflicting reports exist about its impact on the EDT process. Therefore, the effect of rotational speed on three different machining regimes, including roughing, semi-finishing, and finishing, was investigated using energy-dispersive X-ray spectroscopy (EDX), SEM, and roughness tests. Additionally, elemental mapping was applied to illustrate the element distribution on the machined surface. The results indicated that increasing the rotational speed led to a 10% to 17% decrease in the recast layer thickness and a 14% to 54% reduction in the surface roughness (Ra). Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

11 pages, 2602 KiB  
Article
Interface Hardness Analysis of between IN625 and CoCrMo Manufactured by Pulsed Wave Laser Powder Bed Fusion
by Zhiong Sheng Hoo, Zhongmin Xiao, Liming Yao, Bozhong Jing, Chuanjie Jin and Chao Tang
Micromachines 2024, 15(1), 162; https://doi.org/10.3390/mi15010162 - 21 Jan 2024
Cited by 1 | Viewed by 1800
Abstract
The nuclear and petrochemical industries often require multi-metal parts that are corrosion-resistant, heat-resistant, and possess high strength to enhance equipment safety and reduce downtime. Additive manufacturing technology enables the rapid and flexible processing of multi-metal parts to meet these stringent demands. This study [...] Read more.
The nuclear and petrochemical industries often require multi-metal parts that are corrosion-resistant, heat-resistant, and possess high strength to enhance equipment safety and reduce downtime. Additive manufacturing technology enables the rapid and flexible processing of multi-metal parts to meet these stringent demands. This study is aimed at investigating the interface hardness between CoCrMo/IN625 to determine optimal processing parameters that can be utilized in manufacturing reliable and durable multi-metal parts. The result indicates that when the volumetric energy density, Ev, is at or below 20 J/mm3, microfluidic forces are unable to sufficiently diffuse between the two metals, leading to insufficient diffusion, and the high hardness CoCrMo acts as a support, resulting in a significantly higher interface hardness. As Ev increases, intense recoil pressure within the microfluidic forces disrupts the melt pool, allowing for full diffusion between the two metals. The fully diffused high-hardness CoCrMo has been diluted by the low-hardness IN625, thus reducing the interface hardness. Considering the interface hardness, strength, and printing efficiency (time and energy consumption), we recommend a range of 35 J/mm3 < Ev ≤ 75 J/mm3. In this range, the average values for interface hardness and tensile strength of the samples are approximately 382 HV and 903 MPa, respectively. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

14 pages, 5928 KiB  
Article
Design of a Femtosecond Laser Percussion Drilling Process for Ni-Based Superalloys Based on Machine Learning and the Genetic Algorithm
by Zhixi Zhao, Yunhe Yu, Ruijia Sun, Wanrong Zhao, Hao Guo, Zhen Zhang and Chenchong Wang
Micromachines 2023, 14(11), 2110; https://doi.org/10.3390/mi14112110 - 17 Nov 2023
Cited by 8 | Viewed by 1904
Abstract
Femtosecond laser drilling is extensively used to create film-cooling holes in aero-engine turbine blade processing. Investigating and exploring the impact of laser processing parameters on achieving high-quality holes is crucial. The traditional trial-and-error approach, which relies on experiments, is time-consuming and has limited [...] Read more.
Femtosecond laser drilling is extensively used to create film-cooling holes in aero-engine turbine blade processing. Investigating and exploring the impact of laser processing parameters on achieving high-quality holes is crucial. The traditional trial-and-error approach, which relies on experiments, is time-consuming and has limited optimization capabilities for drilling holes. To address this issue, this paper proposes a process design method using machine learning and a genetic algorithm. A dataset of percussion drilling using a femtosecond laser was primarily established to train the models. An optimal method for building a prediction model was determined by comparing and analyzing different machine learning algorithms. Subsequently, the Gaussian support vector regression model and genetic algorithm were combined to optimize the taper and material removal rate within and outside the original data ranges. Ultimately, comprehensive optimization of drilling quality and efficiency was achieved relative to the original data. The proposed framework in this study offers a highly efficient and cost-effective solution for optimizing the femtosecond laser percussion drilling process. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 28398 KiB  
Review
Advances in Experimentation and Numerical Modeling of Aluminum and Copper Ultrasonic Welding
by Zhe Li, Shiying Wu and Huan Li
Micromachines 2025, 16(3), 263; https://doi.org/10.3390/mi16030263 - 26 Feb 2025
Viewed by 488
Abstract
Ultrasonic welding is characterized by its energy-saving and environmentally friendly nature. Compared to conventional molten welding technology, the intermetallic compounds formed by diffusion during ultrasonic welding are thinner, and material deformation is reduced. This process has become a primary welding technique for assembling [...] Read more.
Ultrasonic welding is characterized by its energy-saving and environmentally friendly nature. Compared to conventional molten welding technology, the intermetallic compounds formed by diffusion during ultrasonic welding are thinner, and material deformation is reduced. This process has become a primary welding technique for assembling lithium batteries in electric vehicles. Aluminum and copper ultrasonic welding has increasingly gained attention as a research hotspot. The research on aluminum and copper ultrasonic welding primarily focuses on the interfacial microstructure evolution, mechanical performance during the welding process, and numerical simulations to investigate macro- and micro-scale physical phenomena. Given the aluminum and copper multi-layer structures used in lithium battery packaging, numerous studies have been conducted on aluminum and copper multi-layer ultrasonic welding. For Al/Cu joints, advancements in understanding the microstructure evolution, joint performance, and finite element modeling of the welding process have been systematically reviewed and summarized. Moreover, significant progress has been made in molecular dynamics simulations of Al/Cu ultrasonic welding and hybrid welding techniques based on Al/Cu ultrasonic welding. Finally, several new research directions for Al/Cu ultrasonic welding and joining have been proposed to guide further in-depth studies. Full article
(This article belongs to the Special Issue Future Prospects of Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop