Microstructure of CuCrZrV and ODS(Y2O3)-Cu Alloys After Neutron Irradiation at 150, 350, and 450 °C to 2.5 dpa
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructures of Unirradiated CuCrZrV and ODS-Cu Alloys
3.2. Microstructure of the Irradiated CuCrZrV Alloy
3.3. Radiation Damage in the ODS-Cu Alloy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- You, J.-H. Copper matrix composites as heat sink materials for water-cooled divertor target. Nucl. Mater. Energy 2015, 5, 7–18. [Google Scholar] [CrossRef]
- Li, M.; Zinkle, S.J. Radiation Effects in Copper and Copper Alloys for Fusion Applications. In Comprehensive Nuclear Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 93–113. ISBN 9780081028667. [Google Scholar]
- Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R.T.; Tivey, R. Assessment and selection of materials for ITER in-vessel components. J. Nucl. Mater. 2000, 283–287, 10–19. [Google Scholar] [CrossRef]
- Poleshchuk, K.; Terentyev, D.; Chang, C.C.; Galatanu, A.; Gavrilov, S.; Zhou, H.; Verbeken, K. Development of sub-miniaturised testing methodology for W/Cu joints extracted from the ITER-specification monoblock. Fusion Eng. Des. 2023, 194, 113925. [Google Scholar] [CrossRef]
- Li, M.; Zinkle, S.J. Physical and Mechanical Properties of Copper and Copper Alloys. In Comprehensive Nuclear Materials: Online Version; Konings, R., Ed.; Elsevier Science: Burlington, VT, USA, 2011; pp. 667–690. ISBN 9780080560335. [Google Scholar]
- Zinkle, S.J. Applicability of copper alloys for DEMO high heat flux components. Phys. Scr. 2016, T167, 14004. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Farrell, K.; Kanazawa, H. Microstructure and cavity swelling in reactor-irradiated dilute copper-boron alloy. J. Nucl. Mater. 1991, 179–181, 994–997. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Farrell, K. Void swelling and defect cluster formation in reactor-irradiated copper. J. Nucl. Mater. 1989, 168, 262–267. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Pokrovsky, A.S. The effect of neutron irradiation on the electrical resistivity of high-strength copper alloys. J. Nucl. Mater. 1997, 249, 239–249. [Google Scholar] [CrossRef]
- Edwards, D.J.; Singh, B.N.; Bilde-Sørensen, J.B. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy. J. Nucl. Mater. 2005, 342, 164–178. [Google Scholar] [CrossRef]
- Watanabe, H.; Garner, F.A. Void swelling of pure copper, Cu-5Ni and Cu-5Mn alloys irradiated with fast neutrons. J. Nucl. Mater. 1994, 212–215, 370–374. [Google Scholar] [CrossRef]
- Terentyev, D.; Rieth, M.; Pintsuk, G.; von Müller, A.; Antusch, S.; Zinovev, A.; Bakaev, A.; Poleshchuk, K.; Aiello, G. Effect of neutron irradiation on tensile properties of advanced Cu-based alloys and composites developed for fusion applications. J. Nucl. Mater. 2023, 584, 154587. [Google Scholar] [CrossRef]
- Shimada, Y.; Nakajima, Y.; Hishinuma, Y.; Ikeda, K.; Noto, H.; Muroga, T.; Yoshida, K.; Konno, T.J.; Nagai, Y. Microstructure and mechanical property of Y2O3-based ODS-Cu alloy fabricated by MA-HIP with novel elemental addition process. Mater. Chem. Phys. 2023, 307, 128223. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Designing Radiation Resistance in Materials for Fusion Energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Klimenkov, M.; Jäntsch, U.; Rieth, M.; Dürrschnabel, M.; Möslang, A.; Schneider, H.C. Post-irradiation microstructural examination of EUROFER-ODS steel irradiated at 300 °C and 400 °C. J. Nucl. Mater. 2021, 557, 153259. [Google Scholar] [CrossRef]
- Singh, B.N.; Zinkle, S.J. Defect accumulation in pure fcc metals in the transient regime: A review. J. Nucl. Mater. 1993, 206, 212–229. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Knoll, R.W. A Literature Review of Radiation Damage Data for Copper and Copper Alloys 1984. Fusion Technology Institute, University of Wisconsin, UWFDM-578. Available online: https://fti.neep.wisc.edu/fti.neep.wisc.edu/pdf/fdm578.pdf (accessed on 3 November 2024).
- GARNER, F. Response of solute and precipitation strengthened copper alloys at high neutron exposure. J. Nucl. Mater. 1992, 191–194, 386–390. [Google Scholar] [CrossRef]
- Brager, H.R. Effects of neutron irradiation to 63 dpa on the properties of various commercial copper alloys. J. Nucl. Mater. 1986, 141–143, 79–86. [Google Scholar] [CrossRef]
- Greenwood, L.R.; Garner, F.A.; Edwards, D.J. Calculation of Transmutation in Copper and Comparison with Measured Electrical Properties. In Reactor Dosimetry; Farrar, H., Lippincott, E.P., Williams, J.G., Vehar, D.W., Eds.; ASTM International100 Barr Harbor Drive: West Conshohocken, PA, USA, 1994; pp. 500–508. ISBN 0-8031-1899-6. [Google Scholar]
- Terentyev, D.; Rieth, M.; Pintsuk, G.; Riesch, J.; von Müller, A.; Antusch, S.; Mergia, K.; Gaganidze, E.; Schneider, H.-C.; Wirtz, M.; et al. Recent progress in the assessment of irradiation effects for in-vessel fusion materials: Tungsten and copper alloys. Nucl. Fusion 2022, 62, 26045. [Google Scholar] [CrossRef]
- Pelowitz, D.B.; Durkee, J.W.; Elson, J.S.; Fensin, M.L.; Hendricks, J.S.; James, M.R.; Johns, R.C.; Mc Kinney, G.W.; Mashnik, S.G.; Waters, L.S.; et al. MCNPX 2.7.0 Extensions; Los Alamos National Laboratory: Los Alamos, NM, USA, 2011. [Google Scholar]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Edwards, D.J.; Singh, B.N.; Tähtinen, S. Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy. J. Nucl. Mater. 2007, 367–370, 904–909. [Google Scholar] [CrossRef]
- Browne, E.; Firestone, R.B. Table of Radioactive Isotopes; Wiley: New York, NY, USA, 1986; ISBN 978-0471849094. [Google Scholar]
- Xiu, P.; Bei, H.; Zhang, Y.; Wang, L.; Field, K.G. STEM Characterization of Dislocation Loops in Irradiated FCC Alloys. J. Nucl. Mater. 2021, 544, 152658. [Google Scholar] [CrossRef]
- Fabritsiev, S.; Pokrovsky, A.; Zinkle, S.; Ostrovsky, S. Effect of helium on the swelling of GlidCop Al25 IG alloy. J. Nucl. Mater. 2002, 306, 218–231. [Google Scholar] [CrossRef]
- Klimiankou, M.; Lindau, R.; Möslang, A. Energy-filtered TEM imaging and EELS study of ODS particles and argon-filled cavities in ferritic-martensitic steels. Micron 2005, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zinkle, S.J.; Lee, E.H. Effect of oxygen on vacancy cluster morphology in metals. Metall. Trans. A 1990, 21, 1037–1051. [Google Scholar] [CrossRef]
- Mukouda, I.; Shimomura, Y.; Iiyama, T.; Harada, Y.; Katano, Y.; Nakazawa, T.; Yamaki, D.; Noda, K. Microstructure in pure copper irradiated by simultaneous multi-ion beam of hydrogen, helium and self ions. J. Nucl. Mater. 2000, 283–287, 302–305. [Google Scholar] [CrossRef]
- Edwards, D.J.; Singh, B.N.; Xu, Q.; Toft, P. Post-irradiation annealing of neutron irradiated CuCrZr. J. Nucl. Mater. 2002, 307–311, 439–443. [Google Scholar] [CrossRef]
- Garner, F.A.; Heinisch, H.L.; Simons, R.L.; Mann, F.M. Implications of neutron spectrum and flux differences on fission-fusion correlations at high neutron fluence. Radiat. Eff. Defects Solids 1990, 113, 229–255. [Google Scholar] [CrossRef]
- Massalski, T.B. Binary Alloy Phase Diagrams; American Society for Metals; ASM International: Materials Park, OH, USA, 1990; ISBN 978-0-87170-403-0. [Google Scholar]
- Christian, J.W. Crystallography of Martensitic Transformations. In The Theory of Transformations in Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2002; pp. 992–1061. ISBN 9780080440194. [Google Scholar]
- Chbihi, A.; Sauvage, X.; Blavette, D. Atomic scale investigation of Cr precipitation in copper. Acta Mater. 2012, 60, 4575–4585. [Google Scholar] [CrossRef]
Irradiation Temperature (°C) | Damage Dose (dpa) |
---|---|
150 | 2.15 |
350 | 2.5 |
450 | 2.55 |
Tirr (°C) | Void Size (nm) | Void Number Density ×1020 m−3 | TEM Void Swelling (%) | Loop Size (nm) | Loop Number Density ×1022 m−3 | Size of Cr Precipitates (nm) | Number Density of Cr Precipitates ×1022 m−3 |
---|---|---|---|---|---|---|---|
unirr. | --- | --- | --- | --- | --- | 2.7 ± 0.15 | 4.8 ± 1.0 |
150 | --- | --- | --- | 6 ± 1 | 15 ± 2 | 3.3 ± 0.2 | 3.3 ± 0.7 |
350 | 7.5 ± 2 | 8.0 ± 4.0 | (1.5 ± 1) × 10−2 | 16 ± 2 | 21 ± 3 | 8.3 ± 0.5 | 0.32 ± 0.07 |
450 | 3 ± 1 | 1.0 ± 0.5 | (2 ± 1.5) × 10−4 | 17 ± 2 | 7 ± 1 | 55 ± 10 | 0.03 ± 0.015 |
Tirr (°C) | Void Size (nm) | Void Number Density ×1022 m−3 | TEM Void Swelling (%) | Loop Size (nm) | Loop Number Density ×1022 m−3 |
---|---|---|---|---|---|
unirr. | 11 ± 4 | ~0.04 ± 0.02 | 0.02 ± 0.01 | --- | --- |
150 | 5 ± 1.5 | 1.5 ± 0.4 | 0.17 ± 0.05 | 11 ± 1.0 | 1.5 ± 0.3 |
350 | 15.7 ± 4 | 0.33 ± 0.1 | 0.48 ± 0.15 | 16 ± 1.5 | 2.1 ± 0.4 |
450 | 7.8 ± 2 | 0.61 ± 0.15 | 0.18 ± 0.05 | 17 ± 1.5 | 5.3 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimenkov, M.; Bonnekoh, C.; Jaentsch, U.; Rieth, M.; Schneider, H.-C.; Terentyev, D.; Iroc, K.; Van Renterghem, W. Microstructure of CuCrZrV and ODS(Y2O3)-Cu Alloys After Neutron Irradiation at 150, 350, and 450 °C to 2.5 dpa. Materials 2025, 18, 1401. https://doi.org/10.3390/ma18071401
Klimenkov M, Bonnekoh C, Jaentsch U, Rieth M, Schneider H-C, Terentyev D, Iroc K, Van Renterghem W. Microstructure of CuCrZrV and ODS(Y2O3)-Cu Alloys After Neutron Irradiation at 150, 350, and 450 °C to 2.5 dpa. Materials. 2025; 18(7):1401. https://doi.org/10.3390/ma18071401
Chicago/Turabian StyleKlimenkov, Michael, Carsten Bonnekoh, Ute Jaentsch, Michael Rieth, Hans-Christian Schneider, Dmitry Terentyev, Koray Iroc, and Wouter Van Renterghem. 2025. "Microstructure of CuCrZrV and ODS(Y2O3)-Cu Alloys After Neutron Irradiation at 150, 350, and 450 °C to 2.5 dpa" Materials 18, no. 7: 1401. https://doi.org/10.3390/ma18071401
APA StyleKlimenkov, M., Bonnekoh, C., Jaentsch, U., Rieth, M., Schneider, H.-C., Terentyev, D., Iroc, K., & Van Renterghem, W. (2025). Microstructure of CuCrZrV and ODS(Y2O3)-Cu Alloys After Neutron Irradiation at 150, 350, and 450 °C to 2.5 dpa. Materials, 18(7), 1401. https://doi.org/10.3390/ma18071401