Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (247)

Search Parameters:
Keywords = CUPRAC antioxidant assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 (registering DOI) - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

22 pages, 1630 KiB  
Article
Development of Cytisus Flower Extracts with Antioxidant and Anti-Inflammatory Properties for Nutraceutical and Food Uses
by Adela Alvaredo-López-Vizcaíno, Augusto Costa-Barbosa, Paula Sampaio, Pablo G. del Río, Claudia Botelho and Pedro Ferreira-Santos
Int. J. Mol. Sci. 2025, 26(15), 7100; https://doi.org/10.3390/ijms26157100 - 23 Jul 2025
Viewed by 335
Abstract
Plant flowers are recognized as a rich source of bioactive phenolic compounds. In this study, for the first time, the recovery of antioxidant phenolic compounds from Cytisus striatus flowers (CF) was optimized using microwave-assisted extraction (MAE). The variables (% of ethanol, temperature, and [...] Read more.
Plant flowers are recognized as a rich source of bioactive phenolic compounds. In this study, for the first time, the recovery of antioxidant phenolic compounds from Cytisus striatus flowers (CF) was optimized using microwave-assisted extraction (MAE). The variables (% of ethanol, temperature, and time) were studied using a response surface methodology (RSM). Extraction efficiency was assessed by total phenol content, total flavonoid content, and the antioxidant capacity through DPPH, ABTS, FRAP, and CUPRAC assays. Additionally, cytotoxicity and anti-inflammatory properties were evaluated in different cell lines. The optimal extraction conditions (87.6% ethanol, 160.8 °C and 8.76 min) yielded extracts rich in phenolics (85.9 mg GAE/g CF) and flavonoids (120.3 mg RE/g CF), with strong antioxidant capacity. LC-MS/MS analysis identified 27 phenolic compounds, including chrysin, apigenin, and quercetin derivatives. Cytotoxicity tests showed that CF extract maintained high viability (>80%) in human embryonic kidney (HEK293T) and human lung adenocarcinoma (A549) cells up to 2000 µg/mL, indicating low cytotoxicity. The anti-inflammatory potential was evidenced by a decrease in IL-1β levels and an increase in IL-10 cytokine production in LPS-stimulated macrophages. These results highlight the great potential of CF as a promising bioresource to obtain value-added compounds for the development of functional foods, nutraceuticals, and cosmetic products. Full article
Show Figures

Graphical abstract

17 pages, 983 KiB  
Article
Oak Acorns as Functional Foods: Antioxidant Potential and Safety Assessment
by Vesna Stankov Jovanović, Vladan Djurić, Violeta Mitić, Ana Barjaktarević, Snežana Cupara, Marija Ilić and Jelena Nikolić
Foods 2025, 14(14), 2486; https://doi.org/10.3390/foods14142486 - 16 Jul 2025
Viewed by 350
Abstract
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted [...] Read more.
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted “coffee,” and washed-and-roasted “super coffee.” Extracts were obtained using methanol, acetone, and hexane to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via ABTS, DPPH, CUPRAC, FRAP, and TRP assays. Methanol proved to be the most effective solvent, extracting up to 66.53 mg GAE/g dw of phenolics in raw flour and 76.50 mg GAE/g dw in roasted “coffee,” reflecting a 15% increase in TPC after thermal treatment. However, the same treatment resulted in a 17% decrease in flavonoid content, from 181.5 mg RE/g dw in raw flour to 150.67 mg RE/g dw in “super coffee.” Antioxidant activity followed a similar pattern, with methanol extracts showing the highest values, up to 584 mg TE/g dw in the CUPRAC assay and 126.7 mg TE/g dw in ABTS. Safety was also assessed through the quantification of 16 priority polycyclic aromatic hydrocarbons (PAHs). The total PAH levels in the roasted “coffee” and “super coffee” samples were 222 ng/g dw and 290 ng/g dw, respectively. Importantly, PAH4 compounds, used as key safety indicators in EU regulations, were present in low concentrations, primarily as benzo[a]anthracene (34.3–39.8 ng/g), and none exceeded the maximum limits established for cocoa-based products. Benzo[a]pyrene, a major carcinogen, was not detected. The results confirm that acorns of Quercus robur, especially in their native flour form, are rich in antioxidants, naturally gluten-free, and safe when thermally processed, making them a strong candidate for use in functional foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

23 pages, 4204 KiB  
Article
Investigation of Bioactive Compounds Extracted from Verbena officinalis and Their Biological Effects in the Extraction by Four Butanol/Ethanol Solvent Combinations
by Dejan Stojković, Nikoleta Đorđevski, Mladen Rajaković, Biljana Filipović, Jelena Božunović, Stefani Bolevich, Gokhan Zengin, Sergey Bolevich, Uroš Gašić and Marina Soković
Pharmaceuticals 2025, 18(7), 1012; https://doi.org/10.3390/ph18071012 - 7 Jul 2025
Viewed by 440
Abstract
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios [...] Read more.
Background/Objectives: Verbena officinalis L. (common vervain) is a medicinal plant traditionally used and investigated in phytotherapy for its neuroprotective, antioxidant, and anti-inflammatory properties. This study aims to investigate the phytochemical diversity and biological activity of V. officinalis extracts prepared with different ratios of butanol and ethanol. Methods: Aerial parts of V. officinalis were extracted using four solvent systems: 100% butanol (B1), 75:25 (BE7.5), 50:50 (BE5), and 25:75 (BE2.5) butanol:ethanol mixtures. Metabolite profiling was conducted using liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS). Antioxidant activities were evaluated through six assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion-reducing antioxidant capacity (CUPRAC), ferric-reducing antioxidant power (FRAP), metal-chelating ability (MCA), and the phosphomolybdenum assay (PMA). Enzyme inhibition assays targeted acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, and α-amylase. Antibacterial activity against Pseudomonas aeruginosa was tested via microdilution, while dominant phytochemicals were evaluated for binding affinity through molecular docking. Results: Seventy-five compounds, including phenolic acids, flavonoids, iridoids, phenylethanoids, and xanthones, were identified. BE5 extract exhibited the highest total phenolic content and strongest antioxidant capacity, while BE2.5 demonstrated the greatest antibacterial and metal-chelating effects. All extracts showed comparable AChE inhibition, with BE5 achieving the strongest tyrosinase and α-amylase inhibition. Docking studies confirmed high binding affinities of luteolin glucuronides to human and bacterial target enzymes. Conclusions: Solvent composition markedly influenced the chemical and biological profiles of V. officinalis extracts. BE5 and BE2.5 emerged as promising systems for obtaining bioactive fractions with therapeutic potential. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

24 pages, 1299 KiB  
Article
Comprehensive Phytochemical Analysis and Evaluation of Antioxidant, Antimicrobial, Cytotoxic, and Immunomodulatory Activities of Commercial Cinnamon Bark Essential Oil (Cinnamomum zeylanicum L.)
by Milja Živković, Isidora Stanisavljević, Nevena Gajović, Slađana Pavlović, Bojana Simović Marković, Ivan P. Jovanović, Snežana Cupara, Vanja Tadić, Ana Žugić, Marina T. Milenković and Ana Barjaktarević
Int. J. Mol. Sci. 2025, 26(13), 6482; https://doi.org/10.3390/ijms26136482 - 5 Jul 2025
Viewed by 595
Abstract
The essential oil derived from the bark of Cinnamomum zeylanicum L., Lauraceae, has gained significant attention because of its numerous biological benefits. This study aimed to perform a phytochemical analysis of commercially available Cinnamomum zeylanicum bark essential oil and to evaluate its [...] Read more.
The essential oil derived from the bark of Cinnamomum zeylanicum L., Lauraceae, has gained significant attention because of its numerous biological benefits. This study aimed to perform a phytochemical analysis of commercially available Cinnamomum zeylanicum bark essential oil and to evaluate its antioxidant, antimicrobial, immunomodulatory, and antitumor properties. GC–MS analysis was employed to determine the phytochemical composition. The major component of the total essential oil composition was (E)-cinnamaldehyde, constituting 77.93%, followed by eugenol (4.34%), E-caryophyllene (3.68%), and linalool (2.79%). The antioxidant activity was confirmed by DPPH, ABTS, CUPRAC, and TAC assays. In the broth microdilution assay, cinnamon essential oil demonstrated strong antimicrobial activity, with MIC values ranging from 7.37 to 29.50 µg/mL. Furthermore, cinnamon essential oil demonstrated selective antitumor activity by inducing apoptosis and cell-cycle arrest in human colorectal cancer cells (HCT116) while sparing non-cancerous cells (MRC-5). In HCT116 cells, cinnamon essential oil induced apoptosis, downregulated Cyclin D and p-AKT, and caused G1-phase arrest. Additionally, cinnamon essential oil modulated immune responses by reducing pro-inflammatory cytokine production in activated splenocytes and enhancing pro-inflammatory activity in naïve cells. These findings highlight the great potential of the cinnamon bark essential oil in the development of new therapeutic agents. Full article
(This article belongs to the Special Issue Recent Advances in Medicinal Plants and Natural Products)
Show Figures

Graphical abstract

23 pages, 4407 KiB  
Article
Integration Viewpoint Using UHPLC-MS/MS, In Silico Analysis, Network Pharmacology, and In Vitro Analysis to Evaluate the Bio-Potential of Muscari armeniacum Extracts
by Nilofar Nilofar, Gokhan Zengin, Mehmet Veysi Cetiz, Evren Yildiztugay, Zoltán Cziáky, József Jeko, Claudio Ferrante, Tina Kostka, Tuba Esatbeyoglu and Stefano Dall’Acqua
Molecules 2025, 30(13), 2855; https://doi.org/10.3390/molecules30132855 - 4 Jul 2025
Viewed by 511
Abstract
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different [...] Read more.
The current study investigates the chemical profiling, antioxidant activities, and enzyme inhibitory and cytotoxic potential of the water and methanolic extracts of different parts (flower, leaf, and bulb) of Muscari armeniacum. Chemical profiling was performed using UHPLC-MS/MS. At the same time, different in vitro assays were employed to support the results for antioxidant potential, such as DPPH, ABTS, FRAP, CUPRAC, metal chelation, and PBD, along with the measurement of total phenolic and flavonoid contents. Enzyme inhibition was investigated for cholinesterase (AChE and BChE), α-amylase, α-glucosidase, and tyrosinase enzymes. Additionally, the relative expression of NRF2, HMOX1, and YGS was evaluated by qPCR. LC-MS/MS analysis indicated the presence of some significant compounds, including apigenin, muscaroside, hyacinthacine A, B, and C, and luteolin. According to the results, the highest TPC and TFC were obtained with both extracts of the leaves, followed by the water extract (flower) and methanolic extract of the bulb. In contrast, the methanolic extract from the bulb exhibited the highest antioxidant potential using DPPH, ABTS, CUPRAC, and FRAP, followed by the extracts of leaves. In contrast, the leaf extracts had the highest values for the PBD assay and maximum chelation ability compared to other tested extracts. According to the enzyme inhibition studies, the methanolic extract from the bulb appeared to be the most potent inhibitor for all the tested enzymes, with the highest values obtained for AChE (1.96 ± 0.05), BChE (2.19 ± 0.33), α-amylase (0.56 ± 0.02), α-glucosidase (2.32 ± 0.01), and tyrosinase (57.19 ± 0.87). Interestingly, the water extract from the bulb did not inhibit most of the tested enzymes. The relative expression of NRF2 based on qPCR analysis was considerably greater in the flower methanol extract compared to the other extracts (p < 0.05). The relative expression of HMOX1 was stable in all the extracts, whereas YGS expression remained stable in all the treatments and had no statistical differences. The current results indicate that the components of M. armeniacum (leaves, flowers, and bulb) may be a useful source of natural bioactive compounds that are effective against oxidative stress-related conditions, including hyperglycemia, skin disorders, and neurodegenerative diseases. Complementary in silico approaches, including molecular docking, dynamics simulations, and transcription factor (TF) network analysis for NFE2L2, supported the experimental findings and suggested possible multi-target interactions for the selected compounds. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

25 pages, 2198 KiB  
Article
Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
by Valentina Masala, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk and Carlo Ignazio Giovanni Tuberoso
Foods 2025, 14(13), 2365; https://doi.org/10.3390/foods14132365 - 3 Jul 2025
Viewed by 512
Abstract
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, [...] Read more.
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, DPPH, and ABTS•+ assays; and tested ROS scavenging activity in Caco-2 cell cultures. Phenolic compounds were identified by (HR) LC-ESI-QTOF MS/MS and quantified with HPLC-PDA. Furthermore, Keap1-Nrf2, iNOS, and NOX enzymes involved in oxidative stress and antioxidant defences were the targets of molecular docking on key polyphenols. Hydroxycinnamic acids and flavonoids are the most important classes of compounds detected in the extracts. Among these compounds, the most significant was rosmarinic acid, followed by caffeic acid, luteolin glucuronide, and methyl rosmarinate. Although all extracts have shown encouraging results, the ethanolic extract solubilised with water (SEtOHA) was the one with the highest hydroxycinnamic acid content and total phenol content (518.64 ± 5.82 mg/g dw and 106.02 ± 6.02 mg GAE/g dw), as well as the highest antioxidant and antiradical activity. The extracts have shown anti-inflammatory activity by inhibiting NO release in LPS-stimulated Caco-2 cells. Finally, the in silico evaluation against the three selected enzymes showed interesting results for both numerical affinity ranking and predicted ligand binding models. The outcome of this study suggests this by-product as a possible ally in counteracting oxidative stress, as established by its favourable antioxidant compound profile, thus suggesting an interesting future application as a nutraceutical. Full article
Show Figures

Figure 1

15 pages, 421 KiB  
Article
Fermentation of Sainfoin Seed Flour with Saccharomyces boulardii: Effects on Total Dietary Fiber, Anti-Nutrients, Antimicrobial Activity, and Bioaccessibility of Bioactive Compounds
by Havva Polat Kaya, Burcu Kaya, Necati Barış Tuncel, Gulay Ozkan, Esra Capanoglu, Seedhabadee Ganeshan and Mehmet Caglar Tulbek
Microorganisms 2025, 13(6), 1421; https://doi.org/10.3390/microorganisms13061421 - 18 Jun 2025
Viewed by 409
Abstract
This study investigates the effects of fermentation on sainfoin seed flour using Saccharomyces boulardii for total dietary fiber (TDF) content, anti-nutritional profiles (including phytates, tannins, saponins, and trypsin inhibitors), and bioactive compounds. It also focused on assessing the in vitro availability of phenolic [...] Read more.
This study investigates the effects of fermentation on sainfoin seed flour using Saccharomyces boulardii for total dietary fiber (TDF) content, anti-nutritional profiles (including phytates, tannins, saponins, and trypsin inhibitors), and bioactive compounds. It also focused on assessing the in vitro availability of phenolic compounds, antioxidant potential, and anti-nutrient compounds after gastrointestinal digestion. Four treatment groups were designed: a non-fermented control group, and flour samples fermented with S. boulardii CNCM I-745 for 24, 48, and 72 h. All fermentations were carried out at 30 °C. The effects of fermentation and the analysis results were statistically evaluated at the significance level of p < 0.05, and significant differences were detected. Fermentation significantly increased soluble dietary fiber (from 3.32% to 4.43%) and reduced anti-nutritional factors, including phytates (by 18%), tannin (by 19%), and trypsin inhibitor activity (TIA) (by 79%). However, saponin content increased by 21% after 72 h of fermentation. Tannin levels of non-fermented and fermented sainfoin flour decreased dramatically after in vitro digestion. Moreover, it was concluded that the bioaccessibility of phytic acid significantly increased through fermentation, while that of tannins declined. Antimicrobial activity against Escherichia coli ATCC 25922 improved after fermentation, while the antioxidant capacity was enhanced post-digestion. In addition, the highest phenolic content (612 mg GAE/100 g) and antioxidant capacity (1745 mg TE/100 g by CUPRAC assay and 1127 mg TE/100 g by DPPH assay) were determined in fermented sainfoin seed flour at 72 h after gastrointestinal digestion. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 1764 KiB  
Article
Analysis of Antioxidant Profiles in Cold-Drip and Hot-Brew Coffee
by Dinil S. Jayasekara, Jake A. Cravino, Corey Manwaring, Arianne Soliven and Ross A. Shalliker
Appl. Sci. 2025, 15(12), 6695; https://doi.org/10.3390/app15126695 - 14 Jun 2025
Viewed by 760
Abstract
Coffee is the second most traded commodity in the world. With such a high popularity throughout the world, there have been many variations in the beverage. Cold-drip coffee is prepared by slowly filtering cold water through a bed of ground coffee. This study [...] Read more.
Coffee is the second most traded commodity in the world. With such a high popularity throughout the world, there have been many variations in the beverage. Cold-drip coffee is prepared by slowly filtering cold water through a bed of ground coffee. This study aims to identify differences in antioxidant profiles between coffee prepared through cold-drip and standard hot-brew methods. While specific studies have been undertaken on the antioxidant capacity of coffee, many were benchtop analyses with the inability to study individual compounds. In this study, taking advantage of post-column derivatisation in specially designed chromatography columns coupled with the cupric reducing antioxidant capacity (CUPRAC) assay, it was observed that there is indeed a difference in antioxidant profiles as a result of the method of preparation. Further, while many core components were similar between different preparation methods, cold-drip coffee yields a lower concentration of antioxidants than the same coffee prepared as a hot brew. The reproducibility and variation between different coffee brands were also explored. Full article
Show Figures

Figure 1

11 pages, 689 KiB  
Article
Critical Evaluation and Validation of a High-Throughput Microplate-Based Cupric Reducing Antioxidant Capacity Method for the Analysis of Fish Feed Ingredients
by Aleksander Arnø, Viviana Sarmiento, Odd Elvebø and Pedro Araujo
Antioxidants 2025, 14(6), 728; https://doi.org/10.3390/antiox14060728 - 14 Jun 2025
Viewed by 610
Abstract
The cupric ion reducing antioxidant capacity (CUPRAC) assay, originally developed to measure the antioxidant capacity of nutritional products spectrophotometrically, utilized water as the solvent for Trolox. Due to the limited solubility of Trolox in aqueous solutions, the optimization of the solvent system was [...] Read more.
The cupric ion reducing antioxidant capacity (CUPRAC) assay, originally developed to measure the antioxidant capacity of nutritional products spectrophotometrically, utilized water as the solvent for Trolox. Due to the limited solubility of Trolox in aqueous solutions, the optimization of the solvent system was investigated to enhance analytical performance. Solvent combinations consisting of methanol, ethanol, and water were evaluated to identify the mixture that ensures complete dissolution and maximum absorbance signal, using a ternary plot diagram and mathematical modeling. A methanol/water ratio of 0.64:0.36 was identified as the optimal solvent composition. Under these conditions, the CUPRAC assay demonstrated a linear range of 0–50 μM, a limit of detection of 0.91 μM, and a limit of quantification of 2.75 μM. Precision, expressed as the coefficient of variation, was below 5%, and accuracy—defined as the deviation between nominal and back-calculated concentrations—remained within ±7.0%, in accordance with the variation range recommended by the International Committee on Harmonization. The estimated molar absorption coefficient at the optimized solvent ratio (εTrolox = 2.62 × 104 L mol−1 cm−1) was applied to determine the antioxidant capacity of fish commercial feed ingredients containing a mixture of rosemary and olive extracts. Full article
Show Figures

Graphical abstract

20 pages, 1295 KiB  
Article
Phenolic Profile, Fatty Acid Composition, and Antioxidant Activity of Italian Riesling Grape Pomace from Two Transylvanian Microclimates
by Veronica Sanda Chedea, Liliana Lucia Tomoiagă, Mariana Ropota, Gabriel Marc, Floricuta Ranga, Maria Comșa, Maria Doinița Muntean, Alexandra Doina Sîrbu, Ioana Sorina Giurca, Horia Silviu Răcoare, Corina Ioana Bocsan, Anca Dana Buzoianu, Hesham Kisher and Raluca Maria Pop
Plants 2025, 14(12), 1809; https://doi.org/10.3390/plants14121809 - 12 Jun 2025
Viewed by 1360
Abstract
Italian Riesling is a grapevine (Vitis vinifera) cultivar widely grown in Transylvania vineyards. During the winemaking process, grape pomace (GP) is generated. This study aimed to exploit the potential of the Italian Riesling GP through its composition in polyphenols and fatty [...] Read more.
Italian Riesling is a grapevine (Vitis vinifera) cultivar widely grown in Transylvania vineyards. During the winemaking process, grape pomace (GP) is generated. This study aimed to exploit the potential of the Italian Riesling GP through its composition in polyphenols and fatty acids, as well as its antioxidant activity. Thus, two Italian Riesling GPs from two distinct Transylvanian microclimates (Crăciunelu de Jos and Ciumbrud) were analysed in terms of their phenolic and fatty acid composition and antioxidant activity while considering the influence of their respective microclimates. Every vineyard has unique geographical and meteorological characteristics that significantly influence grape production and consequently the structure of the resultant pomace. For example, Ciumbrud has a warmer, drier microclimate, whereas Crăciunelu de Jos has a colder, more humid environment. Biochemically, GP from Ciumbrud Italian Riesling grapes (RICI) contained greater amounts of gallic acid, total phenolic acids, and procyanidins and presented improved antioxidant activities, as reflected by DPPH˙, ABTS˙+, CUPRAC, and FRAP assays. RICI pomace also possessed a better fatty acid profile with higher oleic and linolenic acid levels, leading to a lower thrombogenicity index (TI) and a better PUFAω-6/PUFA ω-3 ratio. However, GP produced from Crăciunelu de Jos Italian Riesling grapes (RICR) possessed more catechin, epicatechin, epicatechin gallate, total flavanols, and higher COX values. The findings demonstrate that the two GPs have significant and distinct nutritional content, highlighting them as valuable resources for food consumption, providing benefits to consumers’ health. Full article
Show Figures

Graphical abstract

16 pages, 2009 KiB  
Article
Thin-Layer, Intermittent, Near-Infrared Drying of Two-Phase Olive Pomace: Mathematical Modeling and Effect on Recovery of Bioactive Compounds and Antioxidant Activity
by Ioanna Pyrka and Nikolaos Nenadis
Foods 2025, 14(12), 2042; https://doi.org/10.3390/foods14122042 - 10 Jun 2025
Viewed by 419
Abstract
The present study examined the drying kinetics of two-phase olive pomace (OP) using near-infrared (NIR) thin layer intermittent drying at 70–140 °C. For the first time, this approach was combined with color, bioactive compound retention and antioxidant activity assessment. Among tested models, the [...] Read more.
The present study examined the drying kinetics of two-phase olive pomace (OP) using near-infrared (NIR) thin layer intermittent drying at 70–140 °C. For the first time, this approach was combined with color, bioactive compound retention and antioxidant activity assessment. Among tested models, the Midilli’s semi-empirical model best described the drying behavior (r2 ≥ 0.99839, RMSE ≤ 0.01349). Effective diffusivity ranged from 1.417 × 10−9 to 5.807 × 10−9 m2/s, and activation energy was calculated at 23.732 kJ/mol. Drying at 140 °C reduced time by 68% compared to 70 °C. The corresponding sample had the highest total phenolics content, antioxidant activity (DPPH, CUPRAC assays) and triterpenic acid (maslinic, oleanolic) content, and a significant amount of hydroxytyrosol, despite the increased sample browning. Compared to oven-drying (140 °C), NIR was equal or better and 3.2-fold faster. The same was evidenced compared to freeze-drying, except for tyrosol recovery (1.2-fold lower in NIR). These findings were obtained using two different OP industrial samples. Given that NIR is already used industrially for food drying, the present study offers proof-of-concept for its application as a rapid and eco-friendly pretreatment of OP for food and feed uses. However, scalability challenges and the limitations of semi-empirical modeling must be addressed in the future to support industrial-scale implementation. Full article
Show Figures

Figure 1

18 pages, 1041 KiB  
Article
Oxidative Stress Protection and Anti-Inflammatory Activity of Polyphenolic Fraction from Urtica dioica: In Vitro Study Using Human Skin Cells
by Katarzyna Wójcik-Borowska, Weronika Wójciak, Magdalena Żuk, Piotr Luchowski, Agnieszka Skalska-Kamińska, Wiktoria Pacuła, Ireneusz Sowa and Magdalena Wójciak
Molecules 2025, 30(12), 2515; https://doi.org/10.3390/molecules30122515 - 9 Jun 2025
Viewed by 818
Abstract
Polyphenols are valuable contributors to skin health, offering potent antioxidant and anti-inflammatory effects that help counteract the process of inflammaging. According to the literature, Urtica dioica L. is a rich source of polyphenolic compounds, suggesting its potential for applications in cosmetology and dermatology. [...] Read more.
Polyphenols are valuable contributors to skin health, offering potent antioxidant and anti-inflammatory effects that help counteract the process of inflammaging. According to the literature, Urtica dioica L. is a rich source of polyphenolic compounds, suggesting its potential for applications in cosmetology and dermatology. This study aimed to evaluate the antioxidant and anti-inflammatory activity of polyphenol-rich fractions isolated from U. dioica leaves (UdLs) and flowers (UdFs) using human skin cells subjected to oxidative stress and lipopolysaccharide (LPS) stimulation, respectively. Extracts were obtained via an accelerated solvent extraction and further purified by a solid-phase extraction to concentrate their polyphenolic content. Their chemical composition was analyzed using UPLC-DAD-MS. Biological activity was assessed through cytotoxicity assays (NR and MTT), chemical and cellular antioxidant assays (DPPH, ABTS, FRAP, CUPRAC, TPC, and H₂DCFDA), an evaluation of antioxidant enzyme activity (SOD, CAT), lipid peroxidation (MDA), and cytokine production (IL-1β, IL-6, IL-10). Our study showed that both fractions were abundant in phenolic compounds, with chlorogenic acid identified as the predominant constituent. UdLs contained higher levels of phenolic acids, whereas the UdF was richer in flavonoids, particularly derivatives of isorhamnetin. Both the UdL and UdF were non-cytotoxic and exhibited strong radical scavenging potential, with the UdL being slightly more effective. They significantly reduced intracellular ROS levels, enhanced the activity of antioxidant enzymes, and attenuated lipid peroxidation in cells exposed to oxidative stress. Moreover, both fractions reduced the secretion of pro-inflammatory cytokines in LPS and H2O2-stimulated fibroblasts. These results highlight the potential of polyphenolic fractions derived from U. dioica leaves and flowers as multifunctional ingredients for anti-aging and skin-protective cosmetics. Full article
(This article belongs to the Special Issue Antioxidant, and Anti-Inflammatory Activities of Natural Plants)
Show Figures

Figure 1

21 pages, 1368 KiB  
Article
Green Extraction Combined with Chemometric Approach: Profiling Phytochemicals and Antioxidant Properties of Ten Species of the Lamiaceae Family
by Branislava Teofilović, Emilia Gligorić, Martina Ninić, Saša Vukmirović, Žarko Gagić, Nebojša Mandić-Kovačević, Biljana Tubić, Đorđe Đukanović and Nevena Grujić-Letić
Separations 2025, 12(6), 155; https://doi.org/10.3390/separations12060155 - 8 Jun 2025
Viewed by 431
Abstract
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, [...] Read more.
The pharmacological potential of Lamiaceae plants is primarily linked to their high content of phenolic acids and flavonoids, known for strong antioxidant properties. This study investigated the antioxidant activity of ten widely used Lamiaceae herbs—oregano, lavender, basil, savory, garden thyme, wild thyme, sage, rosemary, lemon balm, and mint—prepared as traditional infusions and microwave-assisted extracts. The antioxidant capacity was evaluated using spectrophotometric assays, and total phenolics and flavonoids were quantified via spectrophotometry and HPLC. Chemometric analysis (PCA) was applied to explore correlations among antioxidant parameters. The results demonstrated excellent antioxidant activity across all samples. The IC50 for DPPH radicals was in the range from 3.73(0.13) to 8.03(0.17) μg/mL and that for ABTS radicals was from 2.89(0.12) to 8.55(0.34). The CUPRAC antioxidant assay delivered values in the range from 351.93(11.85) to 1129.68(44.46) μg TE/mg DE. The FRAP method produced values from 1.27(0.03) to 6.60(0.26) μmol Fe/mg DE. The presence of gallic acid was detected in all examined samples, with lemon balm and lavender exhibiting the highest concentrations across both applied extraction methods. Notably, lavender showed especially high levels of p-hydroxybenzoic acid and chlorogenic acid. Microwave-assisted extraction generally yielded higher levels of bioactive compounds compared to infusion. These findings highlight the potential of Lamiaceae herbal extracts, particularly those obtained through microwave-assisted extraction, as valuable sources of dietary antioxidants for everyday use. Full article
Show Figures

Figure 1

17 pages, 1899 KiB  
Article
Extracts, Fractions, and Subfractions from Purple-Orange Sweet Potato (Ipomoea batatas L.): Xanthine Oxidase Inhibitory Potential and Antioxidant Properties
by Hendy Suhendy, Muhamad Insanu and Irda Fidrianny
Molecules 2025, 30(11), 2442; https://doi.org/10.3390/molecules30112442 - 3 Jun 2025
Viewed by 631
Abstract
Previous research has shown that fractions outperformed extracts in pharmacological activity and safety. This study assessed the total phenol and flavonoid content, as well as antioxidant and xanthine oxidase inhibitory (XOI) activities, of purple-orange sweet potato extracts, fractions, and subfractions. Using UV-visible spectrophotometry, [...] Read more.
Previous research has shown that fractions outperformed extracts in pharmacological activity and safety. This study assessed the total phenol and flavonoid content, as well as antioxidant and xanthine oxidase inhibitory (XOI) activities, of purple-orange sweet potato extracts, fractions, and subfractions. Using UV-visible spectrophotometry, the leaves showed the highest values for total phenol, flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), Cupric Ion Reducing Antioxidant Capacity (CUPRAC) assays, and XOI activity. The sequential extraction of the leaves yielded ethyl acetate extract as the most potent, with a yield of 10.4%, a DPPH assay result of 511.212 ± 0.416 mg ascorbic acid equivalent antioxidant capacity (AEAC)/g, and XOI activity of 45.192 ± 4.981 mg allopurinol equivalent xanthine inhibitory capacity (AEXIC)/g. CF5 had the greatest DPPH assay (158.475 ± 0.170 mg AEAC/g), FRAP assay (86.849 ± 0.048 mg AEAC/g), CUPRAC assay (1008.892 ± 1.620 mg AEAC/g), and XOI activity (6.062 ± 1.730 mg AEXIC/g) values. Subfraction CSF3 from fraction CF5 was analyzed using UPLC-MS/MS and revealed the presence of compounds such as cholest-4-en-3-one, 4-hydroxy-6-[2-(2-methyl-1,2,4a,5,6,7,8,8a-octahydronaphthalen-1-yl) ethyl] oxan-2-one, tangeritin, 4-methyl benzophenone, benzophenone, (+)-ar-turmerone, 4-methoxycinnamic acid, and ricinine. This study was the first to report xanthine oxidase inhibitory activity in allopurinol equivalence. The leaves of the purple-orange sweet potato showed potential as a source of natural antioxidants. Full article
Show Figures

Graphical abstract

Back to TopTop