Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = CO2 rock interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3708 KB  
Article
Numerical Study of SC-CO2 Jet-Induced Rock Fracturing Using SPH-FEM and the RHT Model: Parameter Effects and Damage Evolution
by Yun Lin, Tianxing Ma, Chong Li, Liangxu Shen, Xionghuan Tan, Kun Luo and Kang Peng
Appl. Sci. 2025, 15(21), 11357; https://doi.org/10.3390/app152111357 - 23 Oct 2025
Viewed by 163
Abstract
Supercritical carbon dioxide (SC-CO2) jetting has emerged as a promising technique for rock fracturing due to its superior physical properties such as low viscosity, high diffusivity, and zero surface tension. However, the complex interaction mechanisms between SC-CO2 jets and heterogeneous [...] Read more.
Supercritical carbon dioxide (SC-CO2) jetting has emerged as a promising technique for rock fracturing due to its superior physical properties such as low viscosity, high diffusivity, and zero surface tension. However, the complex interaction mechanisms between SC-CO2 jets and heterogeneous rock media remain inadequately understood. In this study, a coupled Smooth Particle Hydrodynamics–Finite Element Method (SPH-FEM) framework is established to simulate the dynamic fracturing process of rocks under SC-CO2 jet impact. The Riedel–Hiermaier–Thoma (RHT) constitutive model is incorporated to describe the nonlinear damage evolution of brittle rocks, and key material parameters are calibrated via sensitivity analysis and SHPB experimental validation. A series of numerical simulations are performed to investigate the effects of jet standoff distance, jet velocity, and rock lithology (marble, granite, red sandstone) on fracturing efficiency. Damage area, damage volume, and a novel metric—block size distribution—are employed to quantify the fracturing quality from both macro and meso scales. The results indicate that SC-CO2 jets outperform conventional water jets in creating more extensive and homogeneous fracture networks. An optimal standoff distance of 1–2 cm and a velocity threshold of 0.2 cm/μs are identified for maximum fracturing efficiency in marble. Furthermore, smaller block sizes are achieved under higher velocities, indicating a more complete and efficient rock fragmentation process. This study provides a comprehensive numerical insight into SC-CO2 jet-induced rock failure and offers theoretical guidance for optimizing green and water-free rock fracturing techniques in complex geological environments. Full article
(This article belongs to the Special Issue Advanced Technology in Geotechnical Engineering)
Show Figures

Figure 1

19 pages, 5195 KB  
Article
Study on Experiment and Molecular Dynamics Simulation of Variation Laws of Crude Oil Distribution States in Nanopores
by Yukun Chen, Hui Zhao, Yongbin Wu, Rui Guo, Yaoli Shi and Yuhui Zhou
Appl. Sci. 2025, 15(21), 11308; https://doi.org/10.3390/app152111308 - 22 Oct 2025
Viewed by 130
Abstract
This study is based on an experiment and a molecular dynamics simulation to investigate the distribution states and property variation laws of crude oil in nanopores, aiming to provide theoretical support for efficient unconventional oil and gas development. Focus is placed on the [...] Read more.
This study is based on an experiment and a molecular dynamics simulation to investigate the distribution states and property variation laws of crude oil in nanopores, aiming to provide theoretical support for efficient unconventional oil and gas development. Focus is placed on the distribution mechanisms of multicomponent crude oil in oil-wet siltstone (SiO2) and dolomitic rock (dolomite, CaMg3(CO3)4) nanopores, with comprehensive consideration of key factors including pore size, rock type, and CO2 flooding on crude oil distribution at 353 K and 40 MPa. It is revealed that aromatic hydrocarbons (toluene) in multicomponent crude oil are preferentially adsorbed on pore walls due to π-π interactions, while n-hexane diffuses toward the pore center driven by hydrophobic effects. Pore size significantly affects the distribution states of crude oil: ordered adsorption structures form for n-hexane in 2 nm pores, whereas distributions become dispersed in 9 nm pores, with adsorption energy changing as pore size increases. Dolomite exhibits a significantly higher adsorption energy than SiO2 due to surface roughness and calcium–magnesium ion crystal fields. CO2 weakens the interaction between crude oil and pore walls through competitive adsorption and reduces viscosity via dissolution, promoting crude oil mobility. Nuclear magnetic resonance (NMR) experiments further verified the effect of CO2 on crude oil stripping in pores. This study not only clarifies the collaborative adsorption mechanisms and displacement regulation laws of multi-component crude oil in nanopores but also provides a solid theoretical basis for CO2 injection strategies in unconventional reservoir development. Full article
(This article belongs to the Special Issue Advances and Innovations in Unconventional Enhanced Oil Recovery)
Show Figures

Figure 1

28 pages, 3042 KB  
Review
Experimental and Molecular Dynamics Simulation of Interfacial Tension Measurements in CO2–Brine/Oil Systems: A Literature Review
by Nadieh Salehi, Mohammad Kazemi, Mohammad Amin Esmaeilbeig, Abbas Helalizadeh and Mehdi Bahari Moghaddam
Gases 2025, 5(4), 23; https://doi.org/10.3390/gases5040023 - 16 Oct 2025
Viewed by 518
Abstract
Carbon dioxide (CO2), a major greenhouse gas, contributes significantly to global warming and environmental degradation. Carbon Capture, Utilization, and Storage (CCUS) is a promising strategy to mitigate atmospheric CO2 levels. One widely applied utilization approach involves injecting captured CO2 [...] Read more.
Carbon dioxide (CO2), a major greenhouse gas, contributes significantly to global warming and environmental degradation. Carbon Capture, Utilization, and Storage (CCUS) is a promising strategy to mitigate atmospheric CO2 levels. One widely applied utilization approach involves injecting captured CO2 into depleted oil reservoirs to enhance oil recovery—a technique known as CO2-Enhanced Oil Recovery (CO2-EOR). The effectiveness of CO2-EOR largely depends on complex rock–fluid interactions, including mass transfer, wettability alteration, capillary pressure, and interfacial tension (IFT). Various factors, such as the presence of asphaltenes, salinity, pressure, temperature, and rock type, influence these interactions. This review explores the impact of these parameters on the IFT between CO2 and oil/water systems, drawing on findings from both experimental studies and molecular dynamics (MD) simulations. The literature indicates that increased temperature, reduced pressure, lower salinity, and the presence of asphaltenes tend to reduce IFT at the oil–water interface. Similarly, elevated temperature and pressure, along with asphaltene content, also lower the surface tension between CO2 and oil. Most MD simulations employ synthetic oil mixtures of various alkanes and use tools such as LAMMPS and GROMACS. Experimentally, the pendant drop method is most commonly used with crude oil and brine samples. Future research employing actual reservoir fluids and alternative measurement techniques may yield more accurate and representative IFT data, further advancing the application of CO2-EOR. Full article
Show Figures

Figure 1

38 pages, 7590 KB  
Article
Pore-Scale Evolution of Carbonate and Sandstone Reservoirs Under CO2–Brine Interaction: Implications for Sustainable Carbon Storage
by Renata Cicha-Szot, Krzysztof Labus and Grzegorz Leśniak
Sustainability 2025, 17(20), 9102; https://doi.org/10.3390/su17209102 - 14 Oct 2025
Viewed by 243
Abstract
The rise in atmospheric CO2 intensified the urgency for carbon capture and storage (CCS), yet uncertainties remain in predicting evolution of reservoir properties under CO2 injection. This study investigates how CO2–brine–rock interactions alter porosity and permeability in carbonate and [...] Read more.
The rise in atmospheric CO2 intensified the urgency for carbon capture and storage (CCS), yet uncertainties remain in predicting evolution of reservoir properties under CO2 injection. This study investigates how CO2–brine–rock interactions alter porosity and permeability in carbonate and sandstone reservoirs. We quantify pore-scale changes and effects of CO2-saturated brine on rock. In calcite-rich carbonates, CO2-induced acidification enhances permeability through selective dissolution. Dolomite-rich samples and sandstones exhibit suppressed permeability response due to slower dissolution and pore clogging. μCT and SEM reveal that although bulk porosity changes are small, local changes—especially formation of micropores and mineral occlusions—substantially influence permeability. Geochemical modeling confirms three-stage evolution: early dissolution, intermediate buffering with onset of precipitation, and long-term mineral trapping with near-steady porosity. The results indicate that early injectivity gains may be temporary and that proactive monitoring and management are required to safeguard long-term storage integrity. The findings provide actionable insight for sustainable CCS design, risk assessment, and reservoir stewardship. Full article
Show Figures

Figure 1

22 pages, 12373 KB  
Article
Groundwater Quality and Health Risk Assessment in Trenggalek Karst Springs and Underground Rivers as a Drinking Water Source
by Aminuddin, Nendaryono Madiutomo, Zulfahmi, Tedy Agung Cahyadi, Ilham Firmansyah, Rizka Maria, Heri Nurohman and Nopri Dwi Siswanto
Geosciences 2025, 15(10), 381; https://doi.org/10.3390/geosciences15100381 - 2 Oct 2025
Viewed by 498
Abstract
The karst landscape of Trenggalek Regency, located in several sub-districts including Dongko, Kampak, and Watulimo, is shaped by the Wonosari Formation and is characterized by springs and underground rivers. Due to water scarcity in the region, local communities heavily depend on these natural [...] Read more.
The karst landscape of Trenggalek Regency, located in several sub-districts including Dongko, Kampak, and Watulimo, is shaped by the Wonosari Formation and is characterized by springs and underground rivers. Due to water scarcity in the region, local communities heavily depend on these natural water sources. This study assesses the groundwater quality of 16 springs and 20 underground rivers to evaluate their suitability for consumption and associated health risks. Using the groundwater quality index (GWQI), human health risk assessment (HHRA), and statistical methods, various physicochemical parameters were analyzed, including pH, total dissolved solids (TDS), electrical conductivity (EC), and concentrations of iron (Fe2+), manganese (Mn2+), calcium carbonate (CaCO3), and sulfate (SO4). Water generally meets the World Health Organization standards for safe drinking. However, correlation analysis reveals notable mineral dissolution and possible anthropogenic influence. TDS strongly correlates with EC (r = 0.97), while Fe2+ shows significant relationships with Mn and TDS. Conversely, CaCO3 shows a negative correlation with EC and TDS, suggesting alternative sources beyond rock weathering. The HHRA indicates higher non-carcinogenic health risks from Fe2+ contamination in underground rivers compared to springs. The study’s novelty comes in its integrated assessment of groundwater quality and health hazards in Trenggalek’s karst region, which uses GWQI, HHRA, and statistical analysis to show geochemical interactions and highlight iron-related health issues in underground rivers. Full article
Show Figures

Figure 1

30 pages, 10855 KB  
Article
Hydrochemical Characteristics and Evolution Mechanisms of Shallow Groundwater in the Alluvial–Coastal Transition Zone of the Tangshan Plain, China
by Shiyin Wen, Shuang Liang, Guoxing Pang, Qiang Shan, Yingying Ye, Jianan Zhang, Mingqi Dong, Linping Fu and Meng Wen
Water 2025, 17(19), 2810; https://doi.org/10.3390/w17192810 - 24 Sep 2025
Viewed by 502
Abstract
To elucidate the hydrochemical characteristics and evolution mechanisms of shallow groundwater in the alluvial–coastal transitional zone of the Tangshan Plain, 76 groundwater samples were collected in July 2022. An integrated approach combining Piper and Gibbs diagrams, ionic ratio analysis, multivariate statistical methods (including [...] Read more.
To elucidate the hydrochemical characteristics and evolution mechanisms of shallow groundwater in the alluvial–coastal transitional zone of the Tangshan Plain, 76 groundwater samples were collected in July 2022. An integrated approach combining Piper and Gibbs diagrams, ionic ratio analysis, multivariate statistical methods (including Pearson correlation, hierarchical cluster analysis, and principal component analysis), and PHREEQC inverse modeling was employed to identify hydrochemical facies, dominant controlling factors, and geochemical reaction pathways. Results show that groundwater in the upstream alluvial plain is predominantly of the HCO3–Ca type with low mineralization, primarily controlled by carbonate weathering, water–rock interaction, and natural recharge. In contrast, groundwater in the downstream coastal plain is characterized by high-mineralized Cl–Na type water, mainly influenced by seawater intrusion, evaporation concentration, and dissolution of evaporite minerals. The spatial distribution of groundwater follows a pattern of “freshwater in the north and inland, saline water in the south and coastal,” reflecting the transitional nature from freshwater to saline water. Ionic ratio analysis reveals a concurrent increase in Na+, Cl, and SO42− in the coastal zone, indicating coupled processes of saline water mixing and cation exchange. Statistical analysis identifies mineralization processes, carbonate weathering, redox conditions, and anthropogenic inputs as the main controlling factors. PHREEQC simulations demonstrate that groundwater in the alluvial zone evolves along the flow path through CO2 degassing, dolomite precipitation, and sulfate mineral dissolution, whereas in the coastal zone, continuous dissolution of halite and gypsum leads to the formation of high-mineralized Na–Cl water. This study establishes a geochemical evolution framework from recharge to discharge zones in a typical alluvial–coastal transitional setting, providing theoretical guidance for salinization boundary identification and groundwater management. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 3668 KB  
Article
Coupled Evolution of Clay Minerals and Organic Matter During Diagenesis: Mechanisms of Smectite Illitization in Organic-Rich Shale
by Kun Ling, Ziyi Wang, Changhu Zhang and Lin Dong
Processes 2025, 13(9), 2966; https://doi.org/10.3390/pr13092966 - 17 Sep 2025
Viewed by 532
Abstract
The transformation of smectite to illite documents multi-scale water–rock–hydrocarbon interaction dynamics. Current studies predominantly emphasize the influence of inorganic systems on this process, while overlooking the dynamic regulation by organic matter and the synergistic effects of multiple controlling factors under actual geological conditions. [...] Read more.
The transformation of smectite to illite documents multi-scale water–rock–hydrocarbon interaction dynamics. Current studies predominantly emphasize the influence of inorganic systems on this process, while overlooking the dynamic regulation by organic matter and the synergistic effects of multiple controlling factors under actual geological conditions. In this study, we conducted integrated semi-open pyrolysis experiments on natural samples from the Chang-7 Member and hydrothermal experiments using synthetic analogs. The illitization process of smectite was characterized through XRD analysis and SEM observations, while organic geochemical testing was employed to track the corresponding thermal evolution of organic matter. The semi-open pyrolysis results reveal that significant changes in illite–smectite (I/S) mixed layer minerals and illite content/morphology occur above 320 °C, which coincides with the critical threshold for extensive organic matter evolution. Thermal degradation of organic matter generates pore space, thereby enhancing water–rock interactions involving clay minerals. This demonstrates the co-evolution of organic matter and smectite, and indicates that temperature indirectly influences illitization by regulating organic matter thermal evolution. The hydrothermal simulation experiments demonstrate the early-stage characteristics of illitization. Unlike long-term geological evolution, K+ under experimental conditions primarily originates from the aqueous medium due to kinetic constraints on feldspar dissolution. Notably, organic matter regulates K+ partitioning dynamics—increased organic matter content hinders K+ incorporation into smectite interlayers, thereby suppressing the illitization process. Cross-system experimental analysis reveals that organic matter exhibits temporally dependent dual functionality, serving both mediating and modulating roles within inorganic diagenetic systems. This study delineates diagnostic-stage-dependent mechanisms governing smectite illitization through multifactorial synergistic interplay, establishing a predictive framework applicable to organic-rich systems exemplified by the Chang-7 Shale. Full article
Show Figures

Figure 1

15 pages, 1970 KB  
Article
Role of RhoGEFs or RhoGAPs in Pyk2-Mediated RhoA Activation in Depolarization-Induced Contraction of Rat Caudal Arterial Smooth Muscle
by Kazuki Aida, Mitsuo Mita and Reiko Ishii-Nozawa
Int. J. Mol. Sci. 2025, 26(17), 8676; https://doi.org/10.3390/ijms26178676 - 5 Sep 2025
Viewed by 1051
Abstract
It has previously been reported that the RhoA/Rho-associated kinase (ROCK) pathway is involved in depolarization-induced contraction triggered by high [K+] stimulation in rat caudal arterial smooth muscle. Furthermore, we reported that activation of the upstream Ca2+-dependent proline-rich tyrosine kinase [...] Read more.
It has previously been reported that the RhoA/Rho-associated kinase (ROCK) pathway is involved in depolarization-induced contraction triggered by high [K+] stimulation in rat caudal arterial smooth muscle. Furthermore, we reported that activation of the upstream Ca2+-dependent proline-rich tyrosine kinase 2 (Pyk2) leads to phosphorylation of myosin targeting subunit of myosin light chain phosphatase (MYPT1) and 20 kDa myosin light chain (LC20). These findings suggest that Rho guanine nucleotide exchange factors (RhoGEFs) or Rho GTPase-activating proteins (RhoGAPs) may mediate RhoA activation downstream of Pyk2, thereby contributing to depolarization-induced contraction. However, it remains unclear whether Pyk2 directly interacts with RhoGEFs or RhoGAPs. In this study, we investigated the interaction between Pyk2 and RhoGEFs or RhoGAPs during depolarization stimulation of rat caudal arterial smooth muscle. We examined the interaction between Pyk2 and RhoGEFs or RhoGAPs, which previously were identified in smooth muscle, specifically in rat caudal arterial smooth muscle, in response to 60 mM K+ stimulation by immunoprecipitation analysis. ArhGEF11, ArhGEF12, phosphorylated ArhGAP42 at Tyr792 (pTyr792-ArhGAP42) and phosphorylated ArhGAP42 at Tyr376 (pTyr376-ArhGAP42) co-immunoprecipitated with Pyk2. The co-immunoprecipitation of pTyr792-ArhGAP42, but not pTyr376-ArhGAP42, with Pyk2 was inhibited by a Pyk2 inhibitor, sodium salicylate. Furthermore, 60 mM K+ stimulation increased ArhGAP42 phosphorylation at Tyr792, which was also suppressed by sodium salicylate. These findings indicate that Pyk2-mediated phosphorylation of ArhGAP42 at Tyr792 may play a role in depolarization-induced contraction of rat caudal arterial smooth muscle. Full article
(This article belongs to the Special Issue Smooth Muscle Cells in Vascular Disease)
Show Figures

Figure 1

30 pages, 11585 KB  
Article
Multifractal Characterization of Marine Shale Pore Structure Alteration Induced by Supercritical CO2–Water–Rock Interaction
by Haonan Wei, Yi Du, Changqing Fu, Gaoqiang Fu, Yingfang Zhou, Jinfeng Ma, Zhenliang Wang, Zhejun Pan and Wei Gao
Fractal Fract. 2025, 9(9), 582; https://doi.org/10.3390/fractalfract9090582 - 2 Sep 2025
Viewed by 599
Abstract
Supercritical CO2 (ScCO2) injection has emerged as a promising method to enhance shale gas recovery while simultaneously achieving CO2 sequestration. This research investigates how ScCO2 interacts with water and shale rock, altering the pore structure characteristics of shale [...] Read more.
Supercritical CO2 (ScCO2) injection has emerged as a promising method to enhance shale gas recovery while simultaneously achieving CO2 sequestration. This research investigates how ScCO2 interacts with water and shale rock, altering the pore structure characteristics of shale reservoirs. The study examines shale samples from three marine shale formations in southern China under varying thermal and pressure regimes simulating burial conditions at 1000 m (45 °C and 10 MPa) and 2000 m (80 °C and 20 MPa). The research employs multiple analytical techniques including XRD for mineral composition analysis, MICP, N2GA, and CO2GA for comprehensive pore characterization, FE–SEM for visual observation of mineral and pore changes, and multifractal theory to analyze pore structure heterogeneity and connectivity. Key findings indicate that ScCO2–water–shale interactions lead to dissolution of minerals such as kaolinite, calcite, dolomite, and chlorite, and as the reaction proceeds, substantial secondary mineral precipitation occurs, with these changes being more pronounced under 2000 m simulation conditions. Mineral dissolution and precipitation cause changes in pore structure parameters of different pore sizes, with macropores showing increased PV and decreased SSA, mesopores showing decreased PV and SSA, and micropores showing insignificant changes. Moreover, mineral precipitation effects are stronger than dissolution effects. These changes in pore structure parameters lead to alterations in multifractal parameters, with mineral precipitation reducing pore connectivity and consequently enhancing pore heterogeneity. Correlation analysis further revealed that H and D−10D10 exhibit a significant negative correlation, confirming that reduced connectivity corresponds to stronger heterogeneity, while mineral composition strongly controls the multifractal responses of macropores and mesopores, with micropores mainly undergoing morphological changes. However, these changes in micropores are mainly manifested as modifications of internal space. Siliceous shale samples exhibit stronger structural stability compared to argillaceous shale, which is attributed to the mechanical strength of the quartz framework. By integrating multifractal theory with multi–scale pore characterization, this study achieves a unified quantification of shale pore heterogeneity and connectivity under ScCO2–water interactions at reservoir–representative pressure–temperature conditions. This novelty not only advances the methodological framework but also provides critical support for understanding CO2–enhanced shale gas recovery mechanisms and CO2 geological sequestration in depleted shale gas reservoirs, highlighting the complex coupling between geochemical reactions and pore structure evolution. Full article
Show Figures

Figure 1

22 pages, 5306 KB  
Article
Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning
by Peng Zhang, Xi Xi and Bo-Chao Wang
Minerals 2025, 15(9), 923; https://doi.org/10.3390/min15090923 - 29 Aug 2025
Viewed by 507
Abstract
To unravel the link between agate geochemistry, host volcanic rocks, and ore-forming processes, this study integrated elemental correlation analysis, interaction interpretation, and interpretable machine learning (LightGBM-SHAP framework with SMOTE and 5-fold cross-validation) using 203 in-situ element datasets from 16 global deposits. The framework [...] Read more.
To unravel the link between agate geochemistry, host volcanic rocks, and ore-forming processes, this study integrated elemental correlation analysis, interaction interpretation, and interpretable machine learning (LightGBM-SHAP framework with SMOTE and 5-fold cross-validation) using 203 in-situ element datasets from 16 global deposits. The framework achieved 99.01% test accuracy and 97.4% independent prediction accuracy in discriminating host volcanic rock types. Key findings reveal divergence between statistical elemental correlations and geological interactions. Synergies reflect co-migration/co-precipitation, while antagonisms stem from source competition or precipitation inhibition, unraveling processes like stepwise crystallization. Rhyolite-hosted agates form via a “crust-derived magmatic hydrothermal fluid—medium-low salinity complexation—multi-stage precipitation” model, driven by high-silica fluids enriching Sb/Zn. Andesite-hosted agates follow a “contaminated fluid—hydrothermal alteration—precipitation window differentiation” model, controlled by crustal contamination. Basalt-hosted agates form through a “low-temperature hydrothermal fluid—basic alteration—progressive mineral decomposition” model, with meteoric water regulating Na-Zn relationships. Zn acts as a cross-lithology indicator, tracing crust-derived fluid processes in rhyolites, feldspar alteration intensity in andesites, and alteration timing in basalts. This work advances volcanic-agate genetic studies via “correlation—interaction—mineralization model” coupling, with future directions focusing on large-scale micro-area elemental analysis. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

29 pages, 5957 KB  
Article
Multistage Fluid Evolution and P-T Path at Ity Gold Deposit and Dahapleu Prospect (Western Ivory Coast)
by Yacouba Coulibaly, Michel Cathelineau and Marie-Christine Boiron
Minerals 2025, 15(9), 918; https://doi.org/10.3390/min15090918 - 28 Aug 2025
Viewed by 862
Abstract
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite [...] Read more.
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite or as a Bi–Te–Au–Ag telluride assemblage. Fluid inclusion data indicate that Ity formed through a hybrid model: a mesothermal orogenic gold system dominated by CO2–CH4 fluids at >350 °C, superimposed on earlier skarn mineralisation characterised by saline fluids. At Dahapleu, no skarn fluids were identified, but volatile-rich inclusions with more variable signatures (CO2, CO2–CH4, CO2–N2) indicate metamorphic fluids circulating in convective, fault-related systems and recording distinct fluid–rock interactions. The Ity–Dahapleu mineralising system thus displays fluid inclusion characteristics typical of mesothermal orogenic gold systems, likely at higher temperatures than most West African Birimian deposits. Overall, the Ity system reflects a long-lived thermal anomaly driving fluid circulation and metal deposition, with successive favourable events: rapid exhumation of hot lithospheric crust, granite intrusion, and skarn formation, followed by shear deformation and hydrothermal activity. Full article
Show Figures

Figure 1

24 pages, 6119 KB  
Article
Dynamic Response of Methane Explosion and Roadway Surrounding Rock in Restricted Space: A Simulation Analysis of Fluid-Solid Coupling
by Qiangyu Zheng, Peijiang Ding, Zhenguo Yan, Yaping Zhu and Jinlong Zhang
Appl. Sci. 2025, 15(17), 9454; https://doi.org/10.3390/app15179454 - 28 Aug 2025
Viewed by 574
Abstract
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of [...] Read more.
A methane-air premixed gas explosion is one of the most destructive disasters in the process of coal mining, and the dynamic coupling between the shock wave triggered by the explosion and the surrounding rock of the roadway can lead to the destabilization of the surrounding rock structure, the destruction of equipment, and casualties. The aim of this study is to systematically reveal the propagation characteristics of the blast wave, the spatial and temporal evolution of the wall load, and the damage mechanism of the surrounding rock by establishing a two-way fluid-solid coupling numerical model. Based on the Ansys Fluent fluid solver and Transient Structure module, a framework for the co-simulation of the fluid and solid domains has been constructed by adopting the standard kε turbulence model, finite-rate/eddy-dissipation (FR/ED) reaction model, and nonlinear finite-element theory, and by introducing a dynamic damage threshold criterion based on the Drucker–Prager and Mohr–Coulomb criteria. It is shown that methane concentration significantly affects the kinetic behavior of explosive shock wave propagation. Under chemical equivalence ratio conditions (9.5% methane), an ideal Chapman–Jouguet blast wave structure was formed, exhibiting the highest energy release efficiency. In contrast, lean ignition (7%) and rich ignition (12%) conditions resulted in lower efficiencies due to incomplete combustion or complex combustion patterns. In addition, the pressure time-history evolution of the tunnel enclosure wall after ignition triggering exhibits significant nonlinear dynamics, which can be divided into three phases: the initiation and turbulence development phase, the quasi-steady propagation phase, and the expansion and dissipation phase. Further analysis reveals that the closed end produces significant stress aggregation due to the interference of multiple reflected waves, while the open end increases the stress fluctuation due to turbulence effects. The spatial and temporal evolution of the strain field also follows a three-stage dynamic pattern: an initial strain-induced stage, a strain accumulation propagation stage, and a residual strain stabilization stage and the displacement is characterized by an initial phase of concentration followed by gradual expansion. This study not only deepens the understanding of methane-air premixed gas explosion and its interaction with the roadway’s surrounding rock, but also provides an important scientific basis and technical support for coal mine safety production. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

40 pages, 855 KB  
Article
Integrated Equilibrium-Transport Modeling for Optimizing Carbonated Low-Salinity Waterflooding in Carbonate Reservoirs
by Amaury C. Alvarez, Johannes Bruining and Dan Marchesin
Energies 2025, 18(17), 4525; https://doi.org/10.3390/en18174525 - 26 Aug 2025
Viewed by 487
Abstract
Low-salinity waterflooding (LSWF) enhances oil recovery at low cost in carbonate reservoirs, but its effectiveness requires the precise control of injected water chemistry and interaction with reservoir minerals. This study specifically investigates carbonated low-salinity waterflooding (CLSWF), where dissolved CO2 modulates geochemical processes. [...] Read more.
Low-salinity waterflooding (LSWF) enhances oil recovery at low cost in carbonate reservoirs, but its effectiveness requires the precise control of injected water chemistry and interaction with reservoir minerals. This study specifically investigates carbonated low-salinity waterflooding (CLSWF), where dissolved CO2 modulates geochemical processes. This study develops an integrated transport model coupling geochemical surface complexation modeling (SCM) with multiphase compositional dynamics to quantify wettability alteration during CLSWF. The framework combines PHREEQC-based equilibrium calculations of the Total Bond Product (TBP)—a wettability indicator derived from oil–calcite ionic bridging—with Corey-type relative permeability interpolation, resolved via COMSOL Multiphysics. Core flooding simulations, compared with experimental data from calcite systems at 100 C and 220 bar, reveal that magnesium ([Mg2+]) and sulfate ([SO42]) concentrations modulate the TBP, reducing oil–rock adhesion under controlled low-salinity conditions. Parametric analysis demonstrates that acidic crude oils (TAN higher than 1 mg KOH/g) exhibit TBP values approximately 2.5 times higher than those of sweet crudes, due to carboxylate–calcite bridging, while pH elevation (higher than 7.5) amplifies wettability shifts by promoting deprotonated -COO interactions. The model further identifies synergistic effects between ([Mg2+]) (ranging from 50 to 200 mmol/kgw) and ([SO42]) (higher than 500 mmol/kgw), which reduce (Ca2+)-mediated oil adhesion through competitive mineral surface binding. By correlating TBP with fractional flow dynamics, this framework could support the optimization of injection strategies in carbonate reservoirs, suggesting that ion-specific adjustments are more effective than bulk salinity reduction. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

30 pages, 2129 KB  
Article
Theoretical and Simulation Study of CO2 Laser Pulse Coupled with Composite Mechanical Drill Bit for Rock-Breaking Technology
by Lei Tao, Hailu Li, Liangzhu Yan and Zhiyuan Zhou
Processes 2025, 13(8), 2619; https://doi.org/10.3390/pr13082619 - 19 Aug 2025
Viewed by 884
Abstract
Facing challenges of low efficiency and severe wear in deep hard formations with conventional drilling bits, this study investigates the synergistic rock-breaking technology combining a pulsed CO2 laser with mechanical bits. The background highlights the need for novel methods to enhance drilling [...] Read more.
Facing challenges of low efficiency and severe wear in deep hard formations with conventional drilling bits, this study investigates the synergistic rock-breaking technology combining a pulsed CO2 laser with mechanical bits. The background highlights the need for novel methods to enhance drilling speed in high-strength, abrasive strata where traditional bits struggle. The theoretical analysis explores the thermo-mechanical coupling mechanism, where pulsed laser irradiation rapidly heats the rock surface, inducing thermal stress cracks, micro-spallation, and strength reduction through mechanisms like mineral thermal expansion mismatch and pore fluid vaporization. This pre-damage layer facilitates subsequent mechanical fragmentation. The research employs finite element numerical simulations (using COMSOL Multiphysics with an HJC constitutive model and damage evolution criteria) to model the coupled laser–mechanical–rock interaction, capturing temperature fields, stress distribution, crack propagation, and assessing efficiency. The results demonstrate that laser pre-conditioning significantly achieves 90–120% higher penetration rates compared to mechanical-only drilling. The dominant spallation mechanism proves energy-efficient. Conclusions affirm the feasibility and significant potential of CO2 laser-assisted drilling for deep formations, contingent on optimized laser parameters, composite bit design (incorporating laser transmission, multi-head layout, and environmental protection), and addressing challenges, like high in-situ stress and drilling fluid interference through techniques like gas drilling. Future work should focus on high-power laser downhole transmission, adaptive control, and rigorous field validation. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

29 pages, 4812 KB  
Article
Geochemical Assessment of Long-Term CO2 Storage from Core- to Field-Scale Models
by Paa Kwesi Ntaako Boison, William Ampomah, Jason D. Simmons, Dung Bui, Najmudeen Sibaweihi, Adewale Amosu and Kwamena Opoku Duartey
Energies 2025, 18(15), 4089; https://doi.org/10.3390/en18154089 - 1 Aug 2025
Viewed by 641
Abstract
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated [...] Read more.
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated through history-matching, utilizing data from saltwater disposal wells to improve predictive accuracy. Core-scale simulations incorporating mineral interactions and equilibrium reactions validated the model against laboratory flow-through experiments. The calibrated geochemical model was subsequently upscaled into a field-scale 3D model of the SJB site to predict how mineral precipitation and dissolution affect reservoir properties. The results indicate that the majority of the injected CO2 is trapped structurally, followed by residual trapping and dissolution trapping; mineral trapping was found to be negligible in this study. Although quartz and calcite precipitation occurred, the dissolution of feldspars, phyllosilicates, and clay minerals counteracted these effects, resulting in a minimal reduction in porosity—less than 0.1%. The concentration of the various ions in the brine is directly influenced by dissolution/precipitation trends. This study provides valuable insights into CO2 sequestration’s effects on reservoir fluid dynamics, mineralogy, and rock properties in the San Juan Basin. It highlights the importance of reservoir simulation in assessing long-term CO2 storage effectiveness, particularly focusing on geochemical interactions. Full article
Show Figures

Figure 1

Back to TopTop