Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning
Abstract
1. Introduction
2. Data Preparation and Interpretable Machine Learning Methods
2.1. Data Collection and Preparation
2.2. Machine Learning Methods
2.2.1. Liner Models
2.2.2. Tree-Based Models
2.2.3. Other Models
2.2.4. SHAP
2.3. Machine Learning Model Construction
- Stage 1: Data Preprocessing
- Stage 2: Machine Learning Model Construction and Optimization
- Stage 3: Interpretability and Agate-Formation Mechanism Analysis
3. Results
3.1. Filter-Based Feature Selection
3.2. Classifier Comparison
3.3. Ablation Experiments and Robustness of LightGBM Model
3.4. SHAP-Derived Interpretations
3.4.1. SHAP Global Explanation
3.4.2. Interaction Effect Analysis of Elements
3.4.3. SHAP Local Explanation
4. Discussion
4.1. Geochemical Characteristics of Agate Based on Correlation and Interaction
4.1.1. Co-Migration and Co-Precipitation Driven by Synergistic Effects
4.1.2. Source Competition and Precipitation Inhibition Driven by Antagonistic Effects
4.2. Metallogenic Model of Agates in Volcanic Rocks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Götze, J.; Möckel, R.; Pan, Y.; Müller, A. Geochemistry and formation of agate-bearing lithophysae in Lower Permian volcanics of the NW-Saxonian Basin (Germany). Mineral. Petrol. 2024, 118, 23–40. [Google Scholar] [CrossRef]
- Moxon, T.; Palyanova, G. Agate genesis: A continuing enigma. Minerals 2020, 10, 953. [Google Scholar] [CrossRef]
- Fallick, A.; Jocelyn, J.; Donnelly, T.; Guy, M.; Behan, C. Origin of agates in volcanic rocks from Scotland. Nature 1985, 313, 672–674. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Vennemann, T.; Müller, A. Origin and geochemistry of agates in Permian volcanic rocks of the Sub-Erzgebirge basin, Saxony (Germany). Chem. Geol. 2016, 428, 77–91. [Google Scholar] [CrossRef]
- Götze, J.; Tichomirowa, M.; Fuchs, H.; Pilot, J.; Sharp, Z. Geochemistry of agates: A trace element and stable isotope study. Chem. Geol. 2001, 175, 523–541. [Google Scholar] [CrossRef]
- Lee, D.R. Characterisation of silica minerals in a banded agate: Implications for agate genesis and growth mechanisms. Masters Res. 2007, 1–18. [Google Scholar]
- Merino, E.; Wang, Y.; Deloule, E. Genesis of agates in flood basalts; twisting of chalcedony fibers and trace-element geochemistry. Am. J. Sci. 1995, 295, 1156–1176. [Google Scholar] [CrossRef]
- Moxon, T.; Reed, S.; Zhang, M. Metamorphic effects on agate found near the Shap granite, Cumbria, England: As demonstrated by petrography, X-ray diffraction and spectroscopic methods. Mineral. Mag. 2007, 71, 461–476. [Google Scholar] [CrossRef]
- Mrozik, M.; Götze, J.; Pan, Y.; Möckel, R. Mineralogy, Geochemistry, and Genesis of Agates from Chihuahua, Northern Mexico. Minerals 2023, 13, 687. [Google Scholar] [CrossRef]
- Pabian, R.K.; Zarins, A. Banded Agates, Origins and Inclusions; Conservation and Survey Division: Lincoln, NE, USA, 1994. [Google Scholar]
- Powolny, T.; Dumańska-Słowik, M.; Sikorska-Jaworowska, M.; Wójcik-Bania, M. Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Poland)–microtextural, mineralogical, and geochemical constraints. Ore Geol. Rev. 2019, 114, 103130. [Google Scholar] [CrossRef]
- Svetova, E.N.; Svetov, S.A. Mineralogy and geochemistry of agates from Paleoproterozoic volcanic rocks of the Karelian Craton, Southeast Fennoscandia (Russia). Minerals 2020, 10, 1106. [Google Scholar] [CrossRef]
- Svetova, E.N.; Svetov, S.A. Agates from Mesoproterozoic Volcanics (Pasha–Ladoga Basin, NW Russia): Characteristics and Proposed Origin. Minerals 2022, 13, 62. [Google Scholar] [CrossRef]
- Wang, Y.; Merino, E. Origin of fibrosity and banding in agates from flood basalts. Am. J. Sci. 1995, 295, 49–77. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.-C.; Huang, X.-W.; Xi, X. Geochemical Discrimination of Agate in Diverse Volcanic Host Rocks Through Machine Learning Methods. Minerals 2025, 15, 32. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, L.; He, X. Gemological characteristics and origin of the Zhanguohong agate from Beipiao, Liaoning province, China: A combined microscopic, X-ray diffraction, and Raman spectroscopic study. Minerals 2020, 10, 401. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Pan, Y. Mineralogy, geochemistry and genesis of agate—A review. Minerals 2020, 10, 1037. [Google Scholar] [CrossRef]
- Götze, J.; Möckel, R.; Kempe, U.; Kapitonov, I.; Vennemann, T. Characteristics and origin of agates in sedimentary rocks from the Dryhead area, Montana, USA. Mineral. Mag. 2009, 73, 673–690. [Google Scholar]
- Moxon, T.; Nelson, D.; Zhang, M. Agate recrystallisation: Evidence from samples found in Archaean and Proterozoic host rocks, Western Australia. Aust. J. Earth Sci. 2006, 53, 235–248. [Google Scholar] [CrossRef]
- Gliozzo, E. Variations on the Silica Theme: Classification and Provenance from Pliny to Current Supplies. In The Contribution of Mineralogy to Cultural Heritage; European Mineralogical Union: Paris, France, 2019. [Google Scholar]
- Holzhey, G. Contribution to petrochemical-mineralogical characterization of alteration processes within the marginal facies of rhyolitic volcanics of lower Permian Age, Thuringian Forest, Germany. Chem. Der Erde 2001, 61, 149–186. [Google Scholar]
- Dumańska-Słowik, M.; Natkaniec-Nowak, L.; Wesełucha-Birczyńska, A.; Gaweł, A.; Lankosz, M.; Wróbel, P. Agates from Sidi Rahal, in the atlas Mountains of Morocco: Gemological characteristics and proposed origin. Gems Gemol. 2013, 49, 148–159. [Google Scholar] [CrossRef]
- Flörke, O.; Köhler-Herbertz, B.; Langer, K.; Tönges, I. Water in microcrystalline quartz of volcanic origin: Agates. Contrib. Mineral. Petrol. 1982, 80, 324–333. [Google Scholar] [CrossRef]
- Gliozzo, E.; Cairncross, B.; Vennemann, T. A geochemical and micro-textural comparison of basalt-hosted chalcedony from the Jurassic Drakensberg and Neoarchean Ventersdorp Supergroup (Vaal River alluvial gravels), South Africa. Int. J. Earth Sci. 2019, 108, 1857–1877. [Google Scholar] [CrossRef]
- Götze, J.; Nasdala, L.; Kempe, U.; Libowitzky, E.; Rericha, A.; Vennemann, T. The origin of black colouration in onyx agate from Mali. Mineral. Mag. 2012, 76, 115–127. [Google Scholar] [CrossRef]
- Götze, J.; Nasdala, L.; Kleeberg, R.; Wenzel, M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study. Contrib. Mineral. Petrol. 1998, 133, 96–105. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Habermann, D. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—A review. Mineral. Petrol. 2001, 71, 225–250. [Google Scholar] [CrossRef]
- Heaney, P.J. A proposed mechanism for the growth of chalcedony. Contrib. Mineral. Petrol. 1993, 115, 66–74. [Google Scholar] [CrossRef]
- Heaney, P.J.; Davis, A.M. Observation and origin of self-organized textures in agates. Science 1995, 269, 1562–1565. [Google Scholar] [CrossRef]
- Moxon, T. A re-examination of water in agate and its bearing on the agate genesis enigma. Mineral. Mag. 2017, 81, 1223–1244. [Google Scholar] [CrossRef]
- Moxon, T.; Petrone, C.; Reed, S. Characterization and genesis of horizontal banding in Brazilian agate: An X-ray diffraction, thermogravimetric and electron microprobe study. Mineral. Mag. 2013, 77, 227–248. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, B.-C.; Zheng, J.-L.; Guo, X.-Y. Formation mechanism of basalt-related agate deposits: An example from the Ating River alluvial gravels in the Xunke area, Heilongjiang, NE China. Front. Earth Sci. 2025, 13, 1548167. [Google Scholar] [CrossRef]
- Abedi, M.; Norouzi, G.-H.; Bahroudi, A. Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci. 2012, 46, 272–283. [Google Scholar] [CrossRef]
- Cao, G.; Chen, H.; Zhang, Y.; Sun, W.; Zhao, J.; Zhao, H.; Wang, H. Primary controlling factors of apatite trace element composition and implications for exploration in orogenic gold deposits. Geochem. Geophys. Geosystems 2024, 25, e2024GC011574. [Google Scholar] [CrossRef]
- Cao, G.; Zhang, Y.; Zhao, H.; Cheng, J.; Hao, J.; Lei, J.; Song, S.; Wang, X. Trace element variations of pyrite in orogenic gold deposits: Constraints from big data and machine learning. Ore Geol. Rev. 2023, 157, 105447. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Laborte, A.G. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput. Geosci. 2015, 74, 60–70. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Laborte, A.G. Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Nat. Resour. Res. 2016, 25, 35–50. [Google Scholar] [CrossRef]
- Carrasco-Godoy, C.; Campbell, I.H.; Cajal, Y. Quantifying the Criteria Used to Identify Zircons from Ore-Bearing and Barren Systems in Porphyry Copper Exploration. Econ. Geol. 2024, 119, 1035–1058. [Google Scholar] [CrossRef]
- Daviran, M.; Maghsoudi, A.; Ghezelbash, R.; Pradhan, B. A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Comput. Geosci. 2021, 148, 104688. [Google Scholar] [CrossRef]
- Han, F.-G.; Leng, C.-B.; Chen, J.-J.; Zhan, Y.-Y. Rock type discrimination by using trace elements of apatite based on the machine learning. Bull. Mineral. Petrol. Geochem. 2024, 43, 607–620. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Zhang, R.; Xie, Q.; Zhang, L.; Santosh, M. Geochemical discrimination of pyrite in diverse ore deposit types through statistical analysis and machine learning techniques. Am. Mineral. 2024, 109, 846–857. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Miao, T.; Li, X.; Yu, S.; Zhang, Y.; Wei, J.; Zou, K. Discrimination of Pb-Zn deposit types using the trace element data of galena based on deep learning. Ore Geol. Rev. 2024, 170, 106133. [Google Scholar] [CrossRef]
- Luo, L.; Chen, G.; Li, Z. Identifying tectonic settings of porphyry copper deposits using zircon trace elements–A semi-supervised machine learning method. Ore Geol. Rev. 2024, 171, 106170. [Google Scholar] [CrossRef]
- Meng, Y.-M.; Huang, X.-W.; Hu, R.; Beaudoin, G.; Zhou, M.-F.; Meng, S. Deposit type discrimination based on trace elements in sphalerite. Ore Geol. Rev. 2024, 165, 105887. [Google Scholar] [CrossRef]
- Sun, G.; Zeng, Q.; Zhou, J.-X. Machine learning coupled with mineral geochemistry reveals the origin of ore deposits. Ore Geol. Rev. 2022, 142, 104753. [Google Scholar] [CrossRef]
- Sun, G.-T.; Zhou, J.-X. Application of Machine Learning Algorithms to Classification of Pb–Zn Deposit Types Using LA–ICP–MS Data of Sphalerite. Minerals 2022, 12, 1293. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Ma, H.; Dong, S.; Wang, Z.; Wang, Z. Application of Machine Learning to Research on Trace Elemental Characteristics of Metal Sulfides in Se-Te Bearing Deposits. Minerals 2024, 14, 538. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Xu, B.; Lentz, D.R.; Yu, X.-Y.; Hou, Z.-Q.; Wang, T. Machine learning applied to apatite compositions for determining mineralization potential. Am. Mineral. 2024, 109, 1394–1405. [Google Scholar] [CrossRef]
- Zou, S.; Brzozowski, M.J.; Chen, X.; Xu, D. Machine-learning oxybarometer developed using zircon trace-element chemistry and its applications. Am. Mineral. 2024, 109, 1181–1192. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Hart, S. Shapley value. In The New Palgrave Dictionary of Economics; Springer: Berlin/Heidelberg, Germany, 1987; pp. 1–6. [Google Scholar]
- Pradhan, B.; Dikshit, A.; Lee, S.; Kim, H. An explainable AI (XAI) model for landslide susceptibility modeling. Appl. Soft Comput. 2023, 142, 110324. [Google Scholar] [CrossRef]
- Sun, D.; Wang, J.; Wen, H.; Ding, Y.; Gu, Q.; Zhang, J.; Zhang, F. Insights into landslide susceptibility in different karst erosion landforms based on interpretable machine learning. Earth Surf. Process. Landf. 2024, 49, 1006–1027. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, H.; Dahal, A.; Cheng, W.; Zhao, M.; Lombardo, L. On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values. Geosci. Front. 2024, 15, 101800. [Google Scholar] [CrossRef]
- Yang, S.; Tan, J.; Luo, D.; Wang, Y.; Guo, X.; Zhu, Q.; Ma, C.; Xiong, H. Sample size effects on landslide susceptibility models: A comparative study of heuristic, statistical, machine learning, deep learning and ensemble learning models with SHAP analysis. Comput. Geosci. 2024, 193, 105723. [Google Scholar] [CrossRef]
- Zheng, D.; Li, Y.; Yan, C.; Wu, H.; Yamashiki, Y.A.; Gao, B.; Nian, T. Landslide susceptibility assessment using AutoML-SHAP method in the southern foothills of Changbai Mountain, China. Landslides 2025, 22, 1855–1875. [Google Scholar] [CrossRef]
- Beer, M. Achate und andere Mineralien aus den nordost-böhmischen Melaphyren. Mineralien-Welt 1992, 4, 47–51. [Google Scholar]
- Blankenburg, H.-J. Achat; VEB Deutscher Verlag für Grundstoffindustrie: Leipzig, Germany, 1988. [Google Scholar]
- Haake, R.; Fischer, J.; Reissmann, R. Über das Achat-Amethyst-Vorkommen von Schlottwitz im Osterzgebirge. Mineralien-Welt 1991, 2, 20–24. [Google Scholar]
- Lorenzi, R.; Zullino, A.; Gagliardi, V.; Prosperi, L.; Paleari, A.; Adamo, I. Atomic and microstructural origin of banded colours in purple-blue variety of agate from Yozgat Province, Turkey. Phys. Chem. Miner. 2022, 49, 33. [Google Scholar] [CrossRef]
- McCrank, G.; Misiura, J.D.; Brown, P.A. Plutonic Rocks in Ontario; Geological Survey of Canada: Ottawa, ON, Canada, 1981. [Google Scholar]
- Schmitt-Riegraf, C. Magmenentwicklung und Spät-Bis Post-Magmatische Alterationsprozesse Permischer Vulkanite im Nordwesten der Nahe-Mulde; Institut für Geologie und Paläontologie: Münster, Germany, 1996. [Google Scholar]
- Fallick, A.; Jocelyn, J.; Hamilton, P.; Rodriguez-Clemente, R.; Tardy, Y. Oxygen and hydrogen stable isotope systematics in Brazilian agates. Geochem. Miner. Form. Earth Surf. 1987, 99–117. [Google Scholar]
- Cross, B.L. The Agates of Northern Mexico; Burgess International Group: Edina, MN, USA, 1996. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Belyadi, H.; Haghighat, A. Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications; Gulf Professional Publishing: Houston, TX, USA, 2021. [Google Scholar]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. A J. Chemom. Soc. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Can, R.; Kocaman, S.; Gokceoglu, C. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Appl. Sci. 2021, 11, 4993. [Google Scholar] [CrossRef]
- Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Azmi, S.S.; Baliga, S. An overview of boosting decision tree algorithms utilizing AdaBoost and XGBoost boosting strategies. Int. Res. J. Eng. Technol. 2020, 7, 6867–6870. [Google Scholar]
- Rajesh, K.N.; Dhuli, R. Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed. Signal Process. Control 2018, 41, 242–254. [Google Scholar] [CrossRef]
- Rätsch, G.; Onoda, T.; Müller, K.-R. Soft margins for AdaBoost. Mach. Learn. 2001, 42, 287–320. [Google Scholar] [CrossRef]
- Otchere, D.A.; Ganat, T.O.A.; Ojero, J.O.; Tackie-Otoo, B.N.; Taki, M.Y. Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. J. Pet. Sci. Eng. 2022, 208, 109244. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, X.; Huang, Q.; Lan, Z.; Wang, X.; Yao, G. Logging-data-driven permeability prediction in low-permeable sandstones based on machine learning with pattern visualization: A case study in Wenchang A Sag, Pearl River Mouth Basin. J. Pet. Sci. Eng. 2022, 214, 110517. [Google Scholar] [CrossRef]
- Kramer, O. Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer: Berlin/Heidelberg, Germany, 2013; Volume 51. [Google Scholar]
- Bui, X.-N.; Jaroonpattanapong, P.; Nguyen, H.; Tran, Q.-H.; Long, N.Q. A novel hybrid model for predicting blast-induced ground vibration based on k-nearest neighbors and particle swarm optimization. Sci. Rep. 2019, 9, 13971. [Google Scholar] [CrossRef]
- Mangalathu, S.; Hwang, S.-H.; Jeon, J.-S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Haake, R.; Holzhey, G. Achate in kugelförmigen Rhyolithen des Rotliegenden im sächsisch-thüringischem Raum. Chem. Der Erde 1989, 49, 173–183. [Google Scholar]
- Correns, C. The experimental chemical weathering of silicates. Clay Miner. Bull. 1961, 4, 249–265. [Google Scholar] [CrossRef]
- Götze, J.; Hofmann, B.; Machałowski, T.; Tsurkan, M.V.; Jesionowski, T.; Ehrlich, H.; Kleeberg, R.; Ottens, B. Biosignatures in subsurface filamentous fabrics (SFF) from the Deccan Volcanic Province, India. Minerals 2020, 10, 540. [Google Scholar] [CrossRef]
- Klammer, D. Mass change during extreme acid-sulphate hydrothermal alteration of a Tertiary latite, Styria, Austria. Chem. Geol. 1997, 141, 33–48. [Google Scholar] [CrossRef]
- Ottens, B.; Götze, J.; Schuster, R.; Krenn, K.; Hauzenberger, C.; Zsolt, B.; Vennemann, T. Exceptional multi stage mineralization of secondary minerals in cavities of flood basalts from the Deccan Volcanic Province, India. Minerals 2019, 9, 351. [Google Scholar] [CrossRef]
- Seyfried, W., Jr.; Bischoff, J. Low temperature basalt alteration by sea water: An experimental study at 70 °C and 150 °C. Geochim. Cosmochim. Acta 1979, 43, 1937–1947. [Google Scholar] [CrossRef]
- Tagirov, B.; Seward, T.M. Hydrosulfide/sulfide complexes of zinc to 250 °C and the thermodynamic properties of sphalerite. Chem. Geol. 2010, 269, 301–311. [Google Scholar] [CrossRef]
- Noll, P., Jr.; Newsom, H.; Leeman, W.; Ryan, J.G. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron. Geochim. Cosmochim. Acta 1996, 60, 587–611. [Google Scholar] [CrossRef]
- Pan, Y.; Li, D.; Feng, R.; Wiens, E.; Chen, N.; Chernikov, R.; Götze, J.; Lin, J. Uranyl binding mechanism in microcrystalline silicas: A potential missing link for uranium mineralization by direct uranyl co-precipitation and environmental implications. Geochim. Cosmochim. Acta 2021, 292, 518–531. [Google Scholar] [CrossRef]
- Zielinski, R.A. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120 C, P = 210 kg/cm2. Chem. Geol. 1979, 27, 47–63. [Google Scholar] [CrossRef]
- Tan, W.; Zeng, Y.; Lin, M.; Zeng, X.; Lin, R.; Guo, H. Hydrothermal alteration and elements migration features of Mali Krivelj porphyry copper deposit in Bor metallogenic belt, Serbia. Miner. Depos. 2023, 42, 1266–1284. [Google Scholar]
- Mei, Y.; Sherman, D.M.; Liu, W.; Etschmann, B.; Testemale, D.; Brugger, J. Zinc complexation in chloride-rich hydrothermal fluids (25–600 C): A thermodynamic model derived from ab initio molecular dynamics. Geochim. Cosmochim. Acta 2015, 150, 265–284. [Google Scholar] [CrossRef]
- Wood, S.A.; Samson, I.M. The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol. Rev. 2006, 28, 57–102. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.; Yu, X. Plagioclase-regulated hydrothermal alteration of basaltic rocks with implications for the South China Sea rifting. Chem. Geol. 2021, 585, 120569. [Google Scholar] [CrossRef]
- Zhang, T.; Li, C.; Sun, S.; Hao, X. Geochemical characteristics of antimony and genesis of antimony deposits in South China. Acta Petrol. Sin. 2020, 36, 44–54. [Google Scholar]
- Wu, C.; Liu, Y.; Cao, M.; Hong, T.; Xu, X.; Dong, L. Characteristics and formation mechanism of reduced porphyry Cu and Mo-Cu deposits. Acta Petrol. Sin. 2015, 31, 617–638. [Google Scholar]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Shen, Q.-H.; Wang, H.-Y.; Zhou, J.-M.; Du, C.-W.; Chen, X.-Q. Dynamic Release of Potassium from Potassium Bearing Minerals as Affected by Ion Species in Solution. Soils 2009, 41, 862–868. [Google Scholar]
- Feng, Y.; Shao, Y.; Jiang, M.; Feng, Y.; Song, Z. Micro Area Composition Characteristics of Metal Minerals in the Laoyachao Pb-Zn Deposit in Hunan Province. Adv. Geosci. 2017, 7, 574–585. [Google Scholar] [CrossRef]
- Harris, C. Oxygen isotope Geochemistry of a Quartz-Agate Geode from northwestern Namibia. Communs Geol. Surv. SW Afr. Namib. 1988, 4, 43–44. [Google Scholar]
- Harris, C. Oxygen-isotope zonation of agates from Karoo volcanics of the Skeleton Coast, Namibia. Am. Mineral. 1989, 74, 476–481. [Google Scholar]
- Shen, M.; Lu, Z.; He, X. Mineralogical and Geochemical Characteristics of Banded Agates from Placer Deposits: Implications for Agate Genesis. ACS Omega 2022, 7, 23858–23864. [Google Scholar] [CrossRef] [PubMed]
Classifier | Accuracy | Precision (Weighted) | Recall (Weighted) | F1 (Weighted) | F1 (Macro) | Kappa | AUC (Macro) | AUC (Micro) | AUPR | G-Mean | MAE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Logistic Regression | Mean | 0.9460 | 0.9637 | 0.9460 | 0.9489 | 0.8859 | 0.8632 | 0.9811 | 0.9812 | 0.9375 | 0.9725 | 0.1081 |
SD | 0.0265 | 0.0112 | 0.0265 | 0.0218 | 0.0456 | 0.0559 | 0.0262 | 0.0168 | 0.0621 | 0.0137 | 0.0086 | |
LDA | Mean | 0.9068 | 0.9355 | 0.9068 | 0.9139 | 0.8151 | 0.7719 | 0.9600 | 0.9624 | 0.8583 | 0.9521 | 0.0705 |
SD | 0.0432 | 0.0402 | 0.0432 | 0.0403 | 0.0880 | 0.1003 | 0.0368 | 0.0192 | 0.0904 | 0.0225 | 0.0162 | |
Decision Tree | Mean | 0.9752 | 0.9776 | 0.9752 | 0.9748 | 0.9562 | 0.9296 | 0.9631 | 0.9850 | 0.9407 | 0.9704 | 0.0165 |
SD | 0.0177 | 0.0167 | 0.0177 | 0.0186 | 0.0345 | 0.0523 | 0.0494 | 0.0156 | 0.0644 | 0.0256 | 0.0103 | |
Random | Mean | 0.9950 | 0.9952 | 0.9950 | 0.9948 | 0.9915 | 0.9860 | 1.0000 | 0.9999 | 1.0000 | 0.9908 | 0.0349 |
Forest | SD | 0.0112 | 0.0108 | 0.0112 | 0.0117 | 0.0189 | 0.0313 | 0.0000 | 0.0001 | 0.0000 | 0.0206 | 0.0055 |
XGBoost | Mean | 0.9901 | 0.9913 | 0.9901 | 0.9901 | 0.9831 | 0.9733 | 1.0000 | 0.9996 | 1.0000 | 0.9883 | 0.0167 |
SD | 0.0135 | 0.0121 | 0.0135 | 0.0136 | 0.0232 | 0.0367 | 0.0000 | 0.0007 | 0.0000 | 0.0199 | 0.0044 | |
AdaBoost | Mean | 0.9802 | 0.9840 | 0.9802 | 0.9806 | 0.9527 | 0.9465 | 0.9972 | 0.9965 | 0.9878 | 0.9890 | 0.4077 |
SD | 0.0110 | 0.0089 | 0.0110 | 0.0109 | 0.0336 | 0.0302 | 0.0033 | 0.0053 | 0.0170 | 0.0065 | 0.0059 | |
LightGBM | Mean | 0.9901 | 0.9904 | 0.9901 | 0.9896 | 0.9810 | 0.9721 | 1.0000 | 0.9999 | 1.0000 | 0.9883 | 0.0068 |
SD | 0.0135 | 0.0131 | 0.0135 | 0.0143 | 0.0263 | 0.0382 | 0.0000 | 0.0002 | 0.0000 | 0.0199 | 0.0067 | |
SVM | Mean | 0.9756 | 0.9798 | 0.9756 | 0.9767 | 0.9461 | 0.9362 | 0.9797 | 0.9822 | 0.9313 | 0.9877 | 0.0578 |
SD | 0.0244 | 0.0211 | 0.0244 | 0.0234 | 0.0627 | 0.0639 | 0.0294 | 0.0169 | 0.0835 | 0.0123 | 0.0160 | |
MLP | Mean | 0.9560 | 0.9636 | 0.9560 | 0.9578 | 0.9015 | 0.8868 | 0.9831 | 0.9843 | 0.9433 | 0.9765 | 0.0469 |
SD | 0.0361 | 0.0333 | 0.0361 | 0.0348 | 0.0977 | 0.0939 | 0.0259 | 0.0144 | 0.0629 | 0.0188 | 0.0185 | |
Naive Bayes | Mean | 0.9459 | 0.9627 | 0.9459 | 0.9498 | 0.9084 | 0.8677 | 0.9890 | 0.9733 | 0.9145 | 0.9713 | 0.0383 |
SD | 0.0400 | 0.0207 | 0.0400 | 0.0354 | 0.0555 | 0.0851 | 0.0085 | 0.0230 | 0.0588 | 0.0232 | 0.0253 | |
KNN | Mean | 0.9755 | 0.9812 | 0.9755 | 0.9751 | 0.9349 | 0.9345 | 0.9995 | 0.9995 | 0.9967 | 0.9876 | 0.0147 |
SD | 0.0172 | 0.0124 | 0.0172 | 0.0188 | 0.0626 | 0.0472 | 0.0010 | 0.0005 | 0.0075 | 0.0087 | 0.0095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Xi, X.; Wang, B.-C. Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning. Minerals 2025, 15, 923. https://doi.org/10.3390/min15090923
Zhang P, Xi X, Wang B-C. Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning. Minerals. 2025; 15(9):923. https://doi.org/10.3390/min15090923
Chicago/Turabian StyleZhang, Peng, Xi Xi, and Bo-Chao Wang. 2025. "Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning" Minerals 15, no. 9: 923. https://doi.org/10.3390/min15090923
APA StyleZhang, P., Xi, X., & Wang, B.-C. (2025). Geochemical Signatures and Element Interactions of Volcanic-Hosted Agates: Insights from Interpretable Machine Learning. Minerals, 15(9), 923. https://doi.org/10.3390/min15090923