Numerical Study of SC-CO2 Jet-Induced Rock Fracturing Using SPH-FEM and the RHT Model: Parameter Effects and Damage Evolution
Abstract
1. Introduction
2. Methodology
2.1. SPH-FEM Coupling
2.2. Particle Jet Rock-Fracturing Model
2.3. Mechanical Constitutive Model
2.3.1. Rock Constitutive Model
- (1)
- Failure Surface Equation
- (2)
- Elastic Limit Surface Equation
- (3)
- Linear Hardening Stage
- (4)
- Damage Softening Stage
2.3.2. SC-CO2 Model
3. Numerical Analysis of Rock Fracture by SC-CO2 Jet
3.1. Effect of Jet Standoff Distance on Rock-Fracturing Performance
3.2. Effect of Jet Velocity on Rock-Fracturing Performance
4. Damage Evolution and Mechanism of SC-CO2 Jet-Induced Rock Fracturing
4.1. Rock Chronology Damage Cloud Map Analysis
4.2. Shear Wave Propagation and Rock Fracturing Characteristics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Lv, C.-J.; Ren, Q.-K.; Wang, Y.; Liao, Y.; Zhang, Z. A new fracability evaluation model for complex lithologies fractured shale oil reservoir. Therm. Sci. 2024, 28, 1121–1126. [Google Scholar] [CrossRef]
- Lind, S.J.; Rogers, B.D.; Stansby, P.K. Review of smoothed particle hydrodynamics: Towards converged Lagrangian flow modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 201908001. [Google Scholar] [CrossRef]
- Assefa, E.; Tilahun, K.; Assefa, S.M.; Jilo, N.Z.; Pantelidis, L.; Sachpazis, C. Stability evaluation of tunnels in steeply dipping layered rock mass using numerical models: A case study. Sci. Rep. 2025, 15, 2046. [Google Scholar] [CrossRef]
- Steiakakis, E.; Xiroudakis, G.; Lazos, I.; Vavadakis, D.; Bazdanis, G. Stability Analysis of a Multi-Layered Slope in an Open Pit Mine. Geosciences 2023, 13, 359. [Google Scholar] [CrossRef]
- Zhang, C.; Ye, J.; Liu, N.; Xie, Q.; Hu, M.; Li, L. True triaxial modeling test of high-sidewall underground caverns subjected to dynamic disturbances. J. Rock Mech. Geotech. Eng. 2025, 17, 2109–2132. [Google Scholar] [CrossRef]
- Xie, S.; Jiang, Z.; Lin, H.; Ma, T.; Peng, K.; Liu, H.; Liu, B. A new integrated intelligent computing paradigm for predicting joints shear strength. Geosci. Front. 2024, 15, 101884. [Google Scholar] [CrossRef]
- Suboyin, A.; Rahman, M.; Haroun, M. Hydraulic fracturing design considerations, water management challenges and insights for Middle Eastern shale gas reservoirs. Energy Rep. 2020, 6, 745–760. [Google Scholar] [CrossRef]
- Ma, T.; Hu, X.; Liu, H.; Peng, K.; Lin, Y.; Chen, Y.; Luo, K.; Xie, S.; Han, C.; Chen, M. Elastic modulus prediction for high-temperature treated rock using multi-step hybrid ensemble model combined with coronavirus herd immunity optimizer. Measurement 2025, 240, 115596. [Google Scholar] [CrossRef]
- Qiu, X.; Shen, W.; Guo, Z.; Chen, H.; Shi, X. Effect of in-situ stresses on fracturing performance of crater blasting under different resistance lines. J. Cent. South Univ. 2023, 30, 2686–2700. [Google Scholar] [CrossRef]
- Ma, T.; Chen, C.; Shen, L.; Luo, K.; Jiang, Z.; Liu, H.; Hu, X.; Lin, Y.; Peng, K. A novel social network search and LightGBM framework for accurate prediction of blast-induced peak particle velocity. Front. Struct. Civ. Eng. 2025, 19, 645–662. [Google Scholar] [CrossRef]
- Xue, H.; Gao, Y.; Zhang, X.; Tian, X.; Wang, H.; Yuan, D. Directional Blasting Fracturing Technology for the Stability Control of Key Strata in Deep Thick Coal Mining. Energies 2019, 12, 4665. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, J.; Jiang, Y.; Xian, X.; Liu, Q. Physical and structural changes in shale associated with supercritical CO2 exposure. Fuel 2016, 184, 289–303. [Google Scholar] [CrossRef]
- Weißenfels, C. Simulation of Additive Manufacturing Using Meshfree Methods; Springer Nature: Durham, NC, USA, 2022. [Google Scholar]
- Pan, C.; Xie, L.; Li, X.; Liu, K.; Gao, P.; Tian, L. Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage. J. Cent. South Univ. 2022, 29, 663–679. [Google Scholar] [CrossRef]
- Cai, C.; Wang, B.; Huang, Z.; Yue, W.; Wang, H.; Gao, Y.; Feng, Y.; Yang, Y.; Gao, C. Comparison with the effect of the cyclic liquid nitrogen jet and liquid nitrogen immersion cooling on the deterioration of mechanical properties of high temperature rocks. Geoenergy Sci. Eng. 2024, 243, 213295. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Liu, H.; Li, J.; Zhang, S.; Cheng, X. Study on Influencing Factors of Liquid Carbon Dioxide Blasting in Rock Cutting. Recent Pat. Eng. 2024, 18, 140–151. [Google Scholar] [CrossRef]
- Huang, M.; Kang, Y.; Wang, X.; Hu Yi Li, D.; Cai, C.; Chen, F.; Coelho, A. Effects of Nozzle Configuration on Rock Erosion Under a Supercritical Carbon Dioxide Jet at Various Pressures and Temperatures. Appl. Sci. 2017, 7, 606. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; He, Z.; Shen, Z.; Wang, M.; Wang, Y. Mechanism study on rock breaking with supercritical carbon dioxide jet. At. Sprays 2017, 27, 383–394. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, J.; Pan, C.; Jiang, Y. Application of supercritical carbon dioxide jet to recycle waste tire rubber: An experimental and optimization study. J. Supercrit. Fluids 2023, 192, 105790. [Google Scholar] [CrossRef]
- Cai, C.; Li, B.R.; Zhang, Y.Y.; He, W.; Yang, Y.; Kang, Y.; Wu, J. Fracture propagation and induced strain response during supercritical CO2 jet fracturing. Pet. Sci. 2022, 19, 1682–1699. [Google Scholar] [CrossRef]
- Cheng, Y.; He, D.; Ma, T.; Lin, H.; Hu, X.; Liu, H. Hybrid data-driven model and shapley additive explanations for peak dilation angle of rock discontinuities. Mater. Today Commun. 2024, 40, 110194. [Google Scholar] [CrossRef]
- Mukun, L.; Gang, W.; Weimin, C.; Pu, S.; Ni, H.; Shi, X. Heat-fluid-solid coupling mechanism of supercritical carbon dioxide jet in rock-breaking. Pet. Explor. Dev. Online 2021, 48, 1450–1461. [Google Scholar]
- Wang, C.; Shi, X.; Zhang, W.; Elsworth, D.; Cui, G.; Liu, S.; Wang, H.; Song, W.; Hu, S.; Zheng, P. Dynamic analysis of heat extraction rate by supercritical carbon dioxide in fractured rock mass based on a thermal-hydraulic-mechanics coupled model. Int. J. Min. Sci. Technol. 2022, 32, 225–236. [Google Scholar] [CrossRef]
- Yang, C.; Hu, J.; Ma, S. Numerical investigation of rock breaking mechanism with supercritical carbon dioxide jet by SPH-FEM approach. IEEE Access 2019, 7, 55485–55495. [Google Scholar] [CrossRef]
- Ma, T.; Luo, R.; Shen, L.; Ye, B.; Wang, X.; Sun, H. Modified Herschel–Bulkley–Papanastasiou model considering particle size distribution to debris flow rheological properties. Phys. Fluids 2025, 37, 023127. [Google Scholar] [CrossRef]
- Linforth, S.; Tran, P.; Rupasinghe, M.; Nguyen, N.; Ngo, T.; Saleh, M.; Odish, R.; Shanmugam, D. Unsaturated soil blast: Flying plate experiment and numerical investigations. Int. J. Impact Eng. 2018, 125, 212–228. [Google Scholar] [CrossRef]
- Song, S.; Xu, X.; Ren, W.; Liu, S.; Jiang, J. Determination and application of the RHT constitutive model parameters for ultra-high-performance concrete. Structures 2024, 69, 107488. [Google Scholar] [CrossRef]
- Xu, H.; Wen, H. A computational constitutive model for concrete subjected to dynamic loadings. Int. J. Impact Eng. 2016, 91, 116–125. [Google Scholar] [CrossRef]
- Hooman, R.; Mehdi, A.; Ebrahim, F. Investigating the effects of confining pressure and loading rate on damage propagation and mode I stress intensity factor of granite using the RHT constitutive model. Geomech. Geophys. Geo-Energy Geo-Resour. 2025, 11, 79. [Google Scholar]
- Gholamhossein, S.; Hamidreza, B.; Mohsen, A.; Majid, N. Solubility measurement of Ceftriaxone sodium in SC-CO2 and thermodynamic modeling using PR-KM EoS and vdW mixing rules with semi-empirical models. Case Stud. Therm. Eng. 2024, 61, 105074. [Google Scholar]
- Yang, S.; Jesus, A.; Meng, D.; Nie, P.; Darabi, R.; Azinpour, E.; Zhu, S.; Wang, Q. Very high-cycle fatigue behavior of steel in hydrogen environment: State of the art review and challenges. Eng. Fail. Anal. 2024, 166, 108898. [Google Scholar] [CrossRef]
- Meng, D.; Li, Y.; He, C.; Guo, J.; Lv, Z.; Wu, P. Multidisciplinary design for structural integrity using a collaborative optimization method based on adaptive surrogate modelling. Mater. Des. 2021, 206, 109789. [Google Scholar] [CrossRef]
- Guo, Y.; Meng, D.; Pan, L.; Zhang, J.; Yang, S. Reliability evaluation of precision hot extrusion production line based on fuzzy analysis. Structures 2024, 64, 106553. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, L.; Zhang, Z.; Chen, L.; Li, Y. The influence of SC-CO2 on the shales’ fracture behavior described by using ultra-fast time resolution method and the damage fracture constitutive model: A case study of the Cretaceous Qingshankou formation in Gulong Depression, Songliao Basin, NE China. Theor. Appl. Fract. Mech. 2024, 134, 104705. [Google Scholar] [CrossRef]
- He, C.; Mishra, B.; Yuan, W.; Waang, X.; Shi, Q. Investigation of the dynamic behavior and fracturing mechanism of granite. Fuel 2024, 360, 130579. [Google Scholar]
- Herrmann, W. Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 1969, 40, 2490–2499. [Google Scholar] [CrossRef]









| Scheme | Jet Velocity (cm/μs) | Standoff Distance (cm) | Jet Duration (μs) |
|---|---|---|---|
| Water and SC-CO2 Jet | 0.2 | 1.0 | 150 |
| SC-CO2 Standoff | 0.2 | 0.5~3.0 | 150 |
| SC-CO2 jet velocity | 0.05~0.3 | 1.0 | 150 |
| Density (kg/m3) | Pressure (MPa) | Temperature (°C) | Molar Volume (L/mol) |
|---|---|---|---|
| 693.9 | 45 | 70 | 63.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Ma, T.; Li, C.; Shen, L.; Tan, X.; Luo, K.; Peng, K. Numerical Study of SC-CO2 Jet-Induced Rock Fracturing Using SPH-FEM and the RHT Model: Parameter Effects and Damage Evolution. Appl. Sci. 2025, 15, 11357. https://doi.org/10.3390/app152111357
Lin Y, Ma T, Li C, Shen L, Tan X, Luo K, Peng K. Numerical Study of SC-CO2 Jet-Induced Rock Fracturing Using SPH-FEM and the RHT Model: Parameter Effects and Damage Evolution. Applied Sciences. 2025; 15(21):11357. https://doi.org/10.3390/app152111357
Chicago/Turabian StyleLin, Yun, Tianxing Ma, Chong Li, Liangxu Shen, Xionghuan Tan, Kun Luo, and Kang Peng. 2025. "Numerical Study of SC-CO2 Jet-Induced Rock Fracturing Using SPH-FEM and the RHT Model: Parameter Effects and Damage Evolution" Applied Sciences 15, no. 21: 11357. https://doi.org/10.3390/app152111357
APA StyleLin, Y., Ma, T., Li, C., Shen, L., Tan, X., Luo, K., & Peng, K. (2025). Numerical Study of SC-CO2 Jet-Induced Rock Fracturing Using SPH-FEM and the RHT Model: Parameter Effects and Damage Evolution. Applied Sciences, 15(21), 11357. https://doi.org/10.3390/app152111357

